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Electronic transport in graphene with out-of-plane disorder
Yifei Guan 1 and Oleg V. Yazyev 1✉

Real-world samples of graphene often exhibit various types of out-of-plane disorder–ripples, wrinkles and folds–introduced at the
stage of growth and transfer processes. These complex out-of-plane defects resulting from the interplay between self-adhesion of
graphene and its bending rigidity inevitably lead to the scattering of charge carriers thus affecting the electronic transport
properties of graphene. We address the ballistic charge-carrier transmission across the models of out-of-plane defects using tight-
binding and density functional calculations while fully taking into account lattice relaxation effects. The observed transmission
oscillations in commensurate graphene wrinkles are attributed to the interference between intra- and interlayer transport channels,
while the incommensurate wrinkles show vanishing backscattering and retain the transport properties of flat graphene. The
suppression of backscattering reveals the crucial role of lattice commensuration in the electronic transmission. Our results provide
guidelines to controlling the transport properties of graphene in presence of this ubiquitous type of disorder.
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INTRODUCTION
Being the first and the most investigated two-dimensional (2D)
material, graphene continues attracting attention as a platform for
exploring novel physics and realizing prospective technological
applications1,2. The 2D nature of graphene gives rise to soft flexural
modes that result in low-energy out-of-plane disorder otherwise
absent in bulk, three-dimensional materials3–6. The interplay
between bending upon in-plane compression and the interlayer
adhesion results in several distinct types of out-of-plane disorder:
ripples, wrinkles and folds (see refs. 3,7 and Fig. 1a, b). The out-of-
plane disorder has a prominent effect on the electronic structure
and transport properties of graphene8–11. Finite curvature of the
deformed region results in pseudo-gauge fields12,13, while the
collapsed regions in wrinkles and folds provide a pathway for
electronic tunnelling between layers7,14. In addition, out-of-plane
disorder locally accumulates charges and acts as scattering
centers7,15–17, subsequently having an impact on the operation
of graphene-based nanoscale electronic devices14,18,19 as well as
electrical characteristics of large-scale graphene samples.
Out-of-plane disorder in graphene may occur for several reasons.

For instance, graphene grown using the chemical vapour decom-
position (CVD) process develops wrinkles and folds as a result of
the thermal contraction of substrate during the cooling stage20–22.
The out-of-plane disorder may also be introduced during the
transfer procedure23,24. Significant efforts have then be devoted to
eliminating wrinkles3,21, e.g. by using the substrates with matching
thermal expansion coefficients23, strain engineering25 and tailored
temperature control protocols21. Experimental studies of the
electronic transport in graphene with out-of-plane disorder have
also been published7,26. It was proposed that controlled folding of
graphene can be used for engineering charge-carrier
dynamics27–30. No question, future applications of graphene in
electronics call for a detailed understanding of the effect of this
ubiquitous type of disorder on the electronic transport.
In this work, we systematically investigate the electronic

transport across wrinkles and folds in graphene using first-
principle computations. For commensurate graphene wrinkles, in
which the interlayer stacking corresponds to the energetically
favorable Bernal stacking configuration, we find that the electronic

transmission oscillates over wide energy ranges. The observed
oscillation patterns are attributed to quantum interference
between the inter- and intralayer transport channels. In incom-
mensurate wrinkles and folds, the mismatch between the layers is
found to suppresses the interlayer tunneling resulting in transmis-
sion probabilities close to the limit of flat, pristine graphene.

RESULTS
Construction of models
The atomistic models of graphene with out-of-plane disorder
considered in our work are defined by a compressive displace-
ment of length ΔW (see Fig. 1a) forming a wrinkle or a fold along
crystallographic vector v= (a, b). The considered configurations
are thus assumed to be periodic along v. The interplay between
the bending energy and attractive interlayer interactions of
graphene layers define the evolution across the three types of
out-of-plane disorder realized upon increasing ΔW as shown in Fig.
1b. While ripples are formed at small ΔW, interlayer attraction
collapses such structures to wrinkles for larger values of ΔW, and
further increase of ΔW leads to folds, in which the contact area
between graphene layers is further increased. Extremities of
wrinkles and folds have loop-like structures free of interlayer
coupling7. In our work, we focus on the latter two types of out-of-
plane defects since it is the interlayer coupling between graphene
layers that is expected to have strong effects on the electronic
transport. All atomistic models of wrinkles and folds considered in
our work have been constructed with the help of classical force-
field relaxation (see the Methods section for details).

Electronic transport across commensurate wrinkles
We first consider the special case of wrinkles defined by v= (1, 0)
and v= (1, 1), referring to them as zigzag and armchair, respectively.
The collapsed regions of such wrinkles are compatible with the
energetically favorable Bernal interlayer stacking configuration31–34,
and hence referred to as commensurate in the rest of our paper. For
these relaxed models, we calculated ballistic charge-carrier transmis-
sion from first principles, using the combination of density
functional theory (DFT) and the non-equilibrium Green’s function
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formalism implemented in the TranSIESTA package35,36 (see
Methods). The results of DFT calculations are discussed in
comparison with the tight-binding (TB) approximation calculations
employing the Slater-Koster formalism7,37 (see the Supplementary
Information document as well as the Methods section for the details
on methodology). Figure 2a–d present the ballistic transmission
T(E, k//) for the models of zigzag wrinkles defined by ΔW= 40, 60,
120 and 240 Å as a function of energy E and momentum parallel to
the wrinkle k//. Furthermore, each panel shows transmission T(E)
plotted at a specific k//= ± 2π/(3a0) (a0= 2.46 Å is the lattice
constant of graphene), which corresponds to the momentum of
projections of the Dirac cone band degeneracies. The ballistic
transmissions T(E, k//) describes single scattering events on periodic
wrinkles or folds. Converting these result into measurable values of
conductance requires the knowledge of the device width W.
Conductance per transmission channel G(k//, E) is given by
G(k//, E)= T(k//, E)G0, where the conductance quantum G0= 2e2/
h= 7.748 × 10−5 S, including spin degeneracy. The total conduc-
tance G(E) is given by a summation over momenta k// permitted by
the Born-von Karman boundary conditions: G(E)= ∑iG0T(ki, E), with
ki= i ⋅ 2π/(W/a). This conductance corresponds to charge-carrier
energy E and is calculated in the zero-bias limit.
There are two striking observations in the presented transmis-

sion plots. Firstly, both in DFT and TB results, we observe a
pronounced electron-hole asymmetry in the charge-carrier
transmission. The electron-hole asymmetry has an origin in the
interlayer stacking of zigzag wrinkles. The collapsed region
assumes Bernal stacking configurations AB01 or AB

0
2
38, as illustrated

in Fig. 1c, in which one of the graphene sublattices couples to
itself upon folding since the two layers are mirror-symmetric with

respect to each other. Such a coupling breaks the sublattice
symmetry and hence the electron-hole symmetry39,40.
Secondly, ballistic transmission T(E, k//) shows pronounced

oscillations over broad energy ranges. Apart from making transmis-
sion highly energy-dependent, such oscillations also affect average
conductance at a finite bias. The oscillations are clearly visible in the
side panels of Fig. 2a–d that show transmission at a fixed
momentum k//= 2π/(3a0) that corresponds to the projections of
the Dirac points. Further analysis shows that the energy separation
ΔE between the peaks has an approximately linear dependence on
ΔW (Fig. 2e). Such a dependence is the signature of the interference
between the interlayer and intralayer transport channels, as found
by some of us previously in the case of the electromechanical
response of bilayer graphene14. The underlying mechanism is
further addressed in Section. We would also like to point out that
similar transport phenomena dominated by interlayer tunneling
have also been observed in break-junction systems41,42.
The second family of investigated commensurate configura-

tions is defined by v= (1, 1), that is wrinkles are oriented along the
armchair direction. Atomic relaxation effects are more complex in
such wrinkles. Unlike in the zigzag case, realizing the lowest-
energy Bernal stacking is possible only at a cost of introducing a
shear deformation as shown in Fig. 3a. Consequently, the Bernal
stacking is not achieved at small values of ΔW, and the collapsed
region assumes the saddle-point (SP) stacking configuration43 that
does not break sublattice symmetry. Figure 3b presents the
evolution of shear deformation Δy upon the change of ΔW with
Δy ¼ a0=ð2

ffiffiffi
3

p Þ representing the pure Bernal stacking configura-
tion. Figure 3c–d present the transmission maps for the armchair
wrinkles with ΔW= 40 Å and ΔW= 120 Å. In the case of v= (1, 1),

E

Ripple Wrinkle Fold

(a) (b)

(c)
(1,0)

(0,1)

y

x

Fig. 1 The structure of out-of-plane disorder in graphene. a Definition of compressive displacement ΔW relative to the flat, unstrained
graphene. b Formation of the three distinct types of out-of-plane disorder upon increasing ΔW. The curves show a schematic illustration of the
dependence of energy E on ΔW for the three deformation regimes. Yellow color exposes the collapsed regions where the interlayer coupling is
enabled. c Illustration of the interlayer coupling between the atoms belonging to the same sublattice in commensurate zigzag wrinkles and folds.
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the Dirac points are projected onto k//= 0. Similar to the case of
zigzag wrinkles, oscillations with the ΔE∝ 1/ΔW period are
observed in the transmission maps. The oscillation pattern is
more regular than in the case of ΔW= 40 Å armchair wrinkle,
which assumes the SP stacking and hence preserves electron-hole
symmetry. In contrast, the ΔW= 120 Å wrinkle is significantly
closer to the Bernal stacking (see Fig. 3b) and the electron-hole
symmetry appears to be well visible in this case.

Conductance oscillations in the atomic chain model
In order to further address the physical mechanism underlying the
conductance oscillations observed in both the zigzag and
armchair wrinkles, we introduce a simple one-dimensional model
treated using the tight-binding approximation. The presence of
interlayer conductance channels is defined by ΔW, and also l that
represents the absence of interlayer hopping in the loop-like
region as shown in Fig. 4a. At the same time, we observe that k//
does not have any significant effect on the oscillation period,
hence we introduce a one-dimensional chain described using the
nearest-neighbor tight-binding model with an extra hopping t0

that models interlayer coupling in graphene wrinkles. Schematic
diagram of this model with hopping t0 represented by a rainbow-

like graph is shown in Fig. 4b. The ratio of the newly introduced
hopping t0 to the nearest-neighbor hopping t is chosen to
resemble that of graphene wrinkles t′/t = 0.48 eV/−2.7 eV7,33.
Figure 4c shows transmission T as a function of energy E at a fixed
ΔW=12 in units of intersite distance, while parameter l is varied.
We observe that oscillation peaks have the same positions, which
indicates that l is of little effect on the oscillation period.
Combined with the results of DFT calculations we conclude that
the oscillations are defined by the largest path difference ΔW. We
further analyze the transmission oscillations in the atomic chain
model using the non-equilibrium Green’s functions (NEGF)
approach, in which hoppings t0 are treated as a perturbative
correction to the transmission.
First, we define an infinite atomic chain with the Hamiltonian

H ¼ t
X
i

cyi ciþ1 þ h:c:; (1)

where ciðcyi Þ is the annihilation (creation) operator on the ith site.
This Hamiltonian commutes with the translation operator, thus the
energy eigenstates are also momentum eigenstates.
In the NEGF formalism44,45, the transmission is calculated as

TðEÞ ¼ Tr½Γ1GΓ2G�; (2)

Fig. 2 Electronic transport across commensurate zigzag wrinkles. Ballistic transmissions T(E, k//) across zigzag wrinkle models characterized
by a ΔW= 40 Å, b ΔW= 60 Å, c ΔW= 120 Å and d ΔW= 240 Å calculated from first principles. The side panels show the transmission
probability at k//= 2π/(3a0) which corresponds to the projections of the Dirac points. The energy spacing ΔE between the oscillation peaks are
highlighted by lines. Vertical lines indicate the quantized transmission in the absence of scattering. e Dependence of ΔE on 1/ΔW.
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where G is the Green’s function G(E)=[E−H−Σ]−1. The coupling
matrices Γi are given by Γi=iðΣi � Σyi Þ, with Σi being the self-
energies of the two semi-infinite leads.
Green’s function G0 describes the chain in absence of t0, while

adding coupling t0 that models interlayer coupling in wrinkles
adds an additional term

Δh ¼ t0
XΔW=2

i¼l=2

cyi c�i þ h:c: (3)

The Green’s function is then

GðEÞ ¼ 1
G�1
0 �Δh

¼ G0 þ G0ΔhG0 þ G0ðΔhG0Þ2 þ ¼ :
(4)

Keeping only the first order of correction G0ΔhG0, the transmission
becomes

T ¼ Tr Γ1G0Γ2G0½
þΓ1G0Γ2ðG0 þ G0ΔhG0Þ
þΓ1ðG0 þ G0ΔhG0ÞΓ2G0

þΓ1ðG0 þ G0ΔhG0ÞΓ2ðG0 þ G0ΔhG0Þ�:

(5)

The Green’s function can be written as an expansion involving
eigenstates ψnj i of the chain with no hoppings t0

G0ðEÞ ¼
X
n

1
E þ εi � En

ψnj i ψnh j; (6)
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Fig. 3 Electronic transport across commensurate armchair wrinkles. a Schematic illustration of the shear deformation in armchair wrinkles. The
shear is characterized by displacement Δy. b Evolution of shear deformation Δy versus compressive displacement ΔW. At small values of ΔW, shear
deformation Δy is small, which corresponds to to the SP stacking configuration (Δy ¼ a0=ð2

ffiffiffi
3

p Þ corresponds to pure Bernal stacking. Ballistic
transmissions T(E, k//) across armchair wrinkle models defined by c ΔW= 40 Å and d ΔW= 120 Å. The T(E) cross sections are taken at k//= 0 that
corresponding to the projected Dirac points. Vertical lines indicate the quantized transmission in absence of scattering. e Dependence of ΔE on 1/ΔW.
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and the correction term G0ΔhG0 becomes

G0ΔhG0 ¼
X
m

X
n

ψmj ihψmjΔhjψni ψnh j
ðE þ εi � EmÞðE þ εi � EnÞ : (7)

As the simplest case, we analyze the En= Em correction G0ΔhG0=
〈ψn∣Δh∣ψm〉G0 that gives an Ei-dependent prefactor to the Green’s
function. We write the factor as a function δ(E) as

δðEÞG0 ¼ G0ΔhG0: (8)

The leading order of transmission correction is Γ1(G0+ G0ΔhG0)
Γ2(G0+ G0ΔhG0)], hence the correction to transmission contains
δ2+ 4δ+ 1.
We then evaluate the correction δ(E), keeping in mind that the

eigenstates of the pristine chain

Ĥ ψðkÞj i ¼ 2t cosðkÞ ψðkÞj i; (9)

are also momentum eigenstates. The correction factor δ
represents the phase difference between wavefunctions

δðEÞ ¼
X
i

hψnðriÞjΔhjψnðr�iÞijEn¼E (10)

connected by the additional hoppings t0. It can then be
approximated by a sum of sinusoidal functions

δðkÞ ¼ t0

t

XΔW=2

i¼l=2

cosð2ikÞ: (11)

The results of the summation shown in Fig. 4d suggests that the
highest-frequency component in Eq. (11), which corresponds to
the interference path ΔW, defines the oscillation peaks. Our first-

principles results are consistent with the conclusions of this
simple model.

Transport across incommensurate wrinkles
We will now discuss graphene wrinkles formed along general
crystallographic directions v= (a, b) other than high-symmetry
zigzag and armchair orientations. In these cases, the collapsed
region locally forms twisted bilayer graphene with matching
vectors (a, b) and (b, a). The resulting twist angle is

θ ¼ arccos
a2 þ 4abþ b2

2ða2 þ abþ b2Þ

� �
; (12)

while the translational vector along the wrinkle has a length of

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ ab

p
.

We discuss the effect of wrinkle direction (a, b) on the
transmission T(E, k//). Translational vector (a, b) defines a one-
dimensional mini Brillouin zone (mBZ) obtained by projecting the
2D Brillouin zone of graphene onto the k// direction in momentum
space. The Dirac cones of graphene are projected onto either
k//= 0 (class Ia) or k//= 2π/(3∣v∣) (class Ib) of the mBZ according to
the classification introduced in ref. 46. Class Ia is defined by
ja� bjmod 3 ¼ 0, class Ib otherwise. The projections of the Dirac
cones define the regions in the T(E, k//) maps where transmission is
allowed and limited by n conductance channels in case of n-fold
degeneracy of bands at given E and k// in the ballistic regime.
The periodic structure of wrinkles results in consequences

deeper than just the conservation of momentum k// upon ballistic
transmission. We stress that semi-infinite graphene sheets on both
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Fig. 4 Transmission oscillations in the atomic chain model. a Cross-section drawing of the trivialized graphene wrinkle and b its unfolded
representation equivalent to atomic chain with additional hoppings t0. c Transmission T as a function energy E in units of t calculated using the
TB model Hamiltonian. In this plot, ΔW= 12 in units of intersite distance is fixed, while different curves correspond to difference values of l.
d First-order correction to the Green’s function δ(E)= G0ΔhG0/G0 plotted for different l and constant ΔW= 20 reveals that the period of
oscillations is governed by ΔW.
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sides of wrinkles of constant width have the same crystallographic
orientation. The momentum conservation implies suppressed
backscattering at the Dirac point, which can be observed by
evaluating contribution to the transmission from the first-order
correction G0ΔhG0. Starting with the pristine graphene and a
simple interlayer containing only hopping between aligned atoms

Δhij ¼
t0; r?i ¼ r?j
0; r?i ≠ r?j ;

(
(13)

the effective ΔG writes

G0ΔhG0ðzÞ ¼
X
m

X
n

hψmjΔhjψni
ðz � EmÞðz � EnÞ ψmj i ψnh j; (14)

which becomes most significant at Em= En= z. Recalling the fact
that ψmj i and ψnj i are eigenstates of pristine graphene,
〈ψm∣Δh∣ψn〉 gives an expð2πiðkm � knÞ � rijÞ term. Integrating over
rij, ΔG vanishes if km ≠ kn, while the wrinkle enforces a
transformation km ¼ Mxkn due to its mirror-symmetric stacking
configuration of the two layers as shown in Fig. 5a–c. Here, Mx
denotes the mirror-reflection with respect to transport direction x:
Mxðkx ; kyÞ ¼ ð�kx; kyÞ. From the above rules of momentum
conservation, we conclude that the transmission is only affected in
the overlapping region of the Dirac cones. In the non-overlapping
region, the correction G0ΔhG0 is vanishing, and the transmission
retains the value of ideal, defect-free graphene. These results are
verified by the explicit DFT transport calculations as shown in Fig.
5d–e for class Ia and class Ib wrinkles, respectively. The
transmission maps T(E, k//) have overall shape of the Dirac cone
projections. Transmission values near the charge neutrality are
T≈2 and T≈1 for class Ia and Ib configurations, respectively,
indicating that interlayer tunnelling plays a minor role. At higher

energies where the Dirac cones overlap, e.g. near E≈2 eV in Fig. 5e,
backscattering becomes significant leading to a series of
transmission dips. We also point out that class Ia presents larger
backscattering from the interlayer coupling since the projected
Dirac cones overlap with each other.

Transport across graphene folds
We will now discuss folds as the ultimate regime of out-of-plane
disorder in graphene. Folds realize triple-layer graphene config-
urations in their collapsed regions (Fig. 6a–c). Importantly,
adjacent layers (pairs 1–2 and 2–3) in incommensurate folds are
twisted with respect to each other, while the outside layers 1 and
3 are aligned. This configuration is equivalent to mirror-symmetric
twisted trilayer graphene. While we still expect the effect of
interlayer coupling to be weakened by the incommensuration, our
DFT calculations predict a larger degree of backscattering in folds
than in wrinkles (compare Figs. 5e and 6d for the (1,2) direction).
For the folded region of width lf= 40 Å, the average transmission
in the energy interval (−0.15 eV, 0.15 eV) is 0.727, while in the
wrinkle of equivalent ΔW= 80 Å it is 0.908. The observed transport
behaviour raises the question of whether the enhanced back-
scattering in incommensurate folds as compared to wrinkles
originates from the direct coupling of the outmost layers 1 and 3.
The corresponding matrix elements of the Hamiltonian in
localized-basis-set first-principles calculations35,47, are found to
be negligible. The estimated Slater-Koster coupling also has a
negligible magnitude of 10−4 eV. Therefore, we attribute the
enhanced scattering to the fact that the number of interlayer
tunneling channels is doubled in the folds. As expected, for a
commensurate zigzag fold (Fig. 6d) we observe strong

Fig. 5 Electronic transport across incommensurate wrinkles. Atomic structure of incommensurate wrinkle defined by the (1,2) direction:
a local structure of the collapsed region equivalent to twisted bilayer graphene (unit cell is shown with the shaded region), b side-view with
the sketch of the Brillouin zones and the Dirac cones of adjacent layers, and c top-view of the wrinkle illustrating the conservation of
crystallographic orientation of graphene leads. Transmission maps T(E, k//) across wrinkle models defined by d v= (1, 4) and ΔW= 80 Å (class
Ia), e v= (1, 2) and ΔW= 80 Å (class Ib). Vertical lines indicate the quantized transmission in the absence of scattering.
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backscattering with transmission magnitudes lower than in the
equivalent zigzag wrinkles (Fig. 2).

DISCUSSION
We investigated the effect of out-of-plane disorder on the
electronic transmission in graphene. Different forms of out-of-
plane disorder exist in graphene, depending on the compressive
displacement and the orientation of the deformation. Our work
addressed ballistic transmission through the wrinkles and folds
using first-principle calculations, taking into account their width
and interlayer commensuration.
The interlayer coupling was found to cause substantial

oscillations in the electronic transmission across commensurate
wrinkles. Such oscillations were found to originate from the
quantum interference involving the interlayer tunneling channels.
Based on DFT calculations, we propose a simple one-dimensional
model that fully captures the observed oscillations. On the other
hand, in incommensurate, “twisted” wrinkles the interlayer
coupling is effectively weaker, and the transmission near the
Fermi level preserves that of pristine, flat graphene. We have also
found enhanced backscattering in folds that was attributed to the
doubled contact region in this type of out-of-plane disorder.
Even though our work focuses on understanding physical

mechanisms underlying a single event of ballistic transmission
across out-of-plane defects in graphene, these results can be
translated to mesoscopic properties resulting from multiple
scattering events, e.g. electronic transport in diffusive and
localization regimes. This allows to apply use the results of our
work to samples and devices of diverse morphologies of the out-
of-plane disorder. Furthermore, same knowledge can be used for
breeding ideas of novel devices based on new operating regimes,
e.g. exploiting the combination of the discussed interference
phenomena and electromechanical coupling. One example of
such a electromechanical phenomenon was discussed by us
previously14, and we believe our work will stimulate further efforts
in this direction.

As a generalization, the principles presented in our work are
expected to apply also to other types of 2D materials. Formation
of locally twisted bilayers in the wrinkles and folds provides an
interesting outlook for further studies, e.g. of “twisted” wrinkles in
the smaller-angle regime. Even though explicitly addressing the
small-angle regime is challenging for standard DFT calculations,
we can still anticipate transport properties at small angles. One
important aspect is the presence of significant lattice relaxation in
bilayer graphene at small twist angles33. This relaxation drives
incommensurate stacking into the lattice of Bernal stacked AB and
BA domains, and hence the emergence of scattering associated
with commensurate configurations discussed in our work. Another
important aspect is the development of band gaps between the
flat-band manifold and remote bands, which is another conse-
quence of lattice relaxation, and the emergence of correlated
insulator states at low temperatures at the magic angle and at
specific charge-carrier densities48. Both effects would contribute
to the development of transport gaps. We anticipate that
transmission across wrinkles and folds characterized by small
twists inherits transport properties of both commensurate and
incommensurate configurations.

METHODS
Structure relaxation with classical force fields
The atomic structures of models of the out-of-plane disorder in
graphene were obtained by means of the classical force field
simulations using LAMMPS49,50. The classical force field includes
the bond-order potential for describing covalent bonding51 as
well as the modified version of the Kolmogorov-Crespi registry-
dependent potential52 for describing the interlayer van der Waals
interactions. The energy minimization was performed using the
conjugate-gradient and fire algorithms.

Fig. 6 Electronic transport across graphene folds. a Atomic structure of an incommensurate fold defined by v= (1,2) as an example. b Side-
view of the fold with layers numbered and Brillouin zone orientations indicated. Transmission maps T(E, k//) for c the incommensurate fold
shown in the above panels and d zigzag fold characterized by ΔW= 80 Å. Vertical lines indicate the quantized transmission in absence of
scattering.
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The tight-binding model calculations
In order to describe both the interlayer coupling and the effect of
curvature in the tight-binding calculations of graphene with out-
of-plane disorder, we employ the Slater-Koster model7,37. The pz
atomic orbitals of carbon atoms form the intralayer π bonds and
the interlayer σ bonds. The general form of the Hamiltonian
including both contributions is

Ĥ ¼
X
i;j

tijπc
y
i cj þ

X
i;j

tijσc
y
i cj : (15)

Explicit expressions for the hoppings tijπ and tijσ are7

tijπ ¼ V0
π exp � r � a0

r0

� �
j sin θi sin θj j; (16)

tijσ ¼ V0
σ exp � r � d0

r0

� �
j cos θi cos θj j: (17)

Following the previous7 Slater-Koster parametrization, we set
V0
π ¼ �2:7 eV, V0

σ ¼ 0:48 eV, characteristic distances a0= 1.42 Å,
d0= 3.35 Å and the decay length r0= 0.184a (a ¼ ffiffiffi

3
p

a0 ¼ 2:46 Å
as defined in the main text). In the orientation-dependent terms,
angles θi and θj are defined as the angle between rij and the local
normal vector at atomic positions ri and rj, that is θi= ff(rij, ni).
These terms accounts for the effect that the local curvature of
graphene sheet on the overlap between pz orbitals.

Recursive Green’s function methods
The ballistic transmission was calculated using the non-
equilibrium Green’s function methods in both the TB model and
DFT calculations. The transmission probability is expressed as

T ijðEÞ ¼ Tr½ΓiGΓjG�; (18)

where G is the Green’s function G ¼ ½G0 � Σ��1. The Γ matrices
contains the self-energy terms of the two leads

ΓiðEÞ ¼ i½ΣiðEÞ � Σyi ðEÞ�: (19)

The self-energy from the ith lead is calculated as Σi ¼ hiGih
y
i ,

where hi is the coupling matrix between the lead and the
scattering region. For each of the semi-infinite leads, Green’s
function Gi is obtained through the recursive Green’s function
methods. In each step one layer is added to the lead, and the

Green’s function iterates as gj=½E � h� Tgj�1T
y��1

. Gi is taken as

the converged value of g, that is Gi ¼ gj!1
j .

First-principles electronic transport calculations
First-principles transport calculations were performed with Tran-
SIESTA package35,36. We used the double-ζ plus polarization basis
set combined with the local density approximation exchange-
correlation functional53. The energy shift for constructing the
localized basis was set to 275 meV, and the real-space cutoff to
250 Ry. The estimation of the direct coupling between the top and
bottom layers in graphene folds was extracted from the localized
basis set Hamiltonian using the sisl package47.
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