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AI powered quantification of nuclear
morphology in cancers enables prediction
of genome instability and prognosis
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While alterations in nucleus size, shape, and color are ubiquitous in cancer, comprehensive
quantification of nuclearmorphology across awhole-slide histologic image remains a challenge.Here,
we describe the development of a pan-tissue, deep learning-based digital pathology pipeline for
exhaustive nucleus detection, segmentation, and classification and the utility of this pipeline for
nuclear morphologic biomarker discovery.Manually-collected nucleus annotations were used to train
an object detection and segmentation model for identifying nuclei, which was deployed to segment
nuclei in H&E-stained slides from the BRCA, LUAD, and PRAD TCGA cohorts. Interpretable features
describing the shape, size, color, and texture of each nucleus were extracted from segmented nuclei
and compared to measurements of genomic instability, gene expression, and prognosis. The nuclear
segmentation and classification model trained herein performed comparably to previously reported
models. Features extracted from the model revealed differences sufficient to distinguish between
BRCA, LUAD, and PRAD. Furthermore, cancer cell nuclear area was associated with increased
aneuploidy score and homologous recombination deficiency. In BRCA, increased fibroblast nuclear
area was indicative of poor progression-free and overall survival and was associated with gene
expression signatures related to extracellular matrix remodeling and anti-tumor immunity. Thus, we
developed a powerful pan-tissue approach for nucleus segmentation and featurization, enabling the
construction of predictive models and the identification of features linking nuclear morphology with
clinically-relevant prognostic biomarkers across multiple cancer types.

Histological assessment of tissue is central to the diagnosis and classification
of malignancy, and critically informs patient management. Pathologists
routinely report visible alterations in nuclear morphology. Altered nuclear
features are ubiquitous in cancer, and changes in nuclear size, shape, col-
oration, texture, nucleoli, and nuclear-cytoplasmic ratio, as well as their
intratumoral variance, are important features of histologic grade, which has
prognostic relevance independent of disease stage1,2. The enumeration and
morphologic features of mitoses also informs pathologist assessment of
malignancy3. Furthermore, nuclear morphology can be important

diagnostic features of certain cancers, such as nuclear clearing (“Orphan
Annie Eyes”) and pseudoinclusions of papillary thyroid carcinoma4.

A complex interplay exists between nuclear morphology and the
genetic, epigenetic, and transcriptomic milieu of cancer cells, reflecting the
importance of the nucleus to the process of oncogenic transformation.
Distorted nuclei can indicate dysregulated replication processes, aneu-
ploidy, genomic instability, and genetic mutations that affect stability and
function of the nuclear envelope5. Indeed, many cancers have altered
expression of nuclear envelope components, resulting in nuclear rupture
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and micronuclei formation, further increasing genomic instability5,6. In
addition, components of the nuclear envelope are known to bind to both
chromatin and transcription factors, providing a spatial regulation to gene
transcription and expression5,7. Therefore, the visual appearance of cancer
cell nuclei has the potential to reveal key information about the biology of
a tumor.

The quantitation of nuclear morphology has been a long sought-after
goal8. Early studies used semi-quantitative approaches to enumerate fea-
tures such as nuclear size and shape; these works revealed relationships
between increased nuclear area and altered nuclear shape with poor prog-
nosis and advanced disease in breast cancer and prostate cancer,
respectively9–11. The use of computational approaches in pathology image
analysis to identify and quantify nuclear changes has gained traction as
modern computer visionmethods have allowed for rapid, reproducible and
cost-effective quantification of nuclear morphology. Using these methods,
nuclear morphometric features have been shown to correlate with relevant
clinical and pathological metrics, such as oligodendroglioma component in
glioblastoma12, as well as stage13, disease aggressiveness14, recurrence15–17,
and outcome18 in other cancer subtypes. In addition, increased nuclear size
has been correlated with whole genome duplication19,20, and nuclear mor-
phometric features have allowed for the prediction of relevant molecular
information, such as ER status21 and Oncotype DX risk scores22,23 in breast
cancer.Most recently, Nimgaonkar et al. described anAI-derived histologic
signature, the main component of which was variance in nuclear mor-
phology in cancer cells, that predicted response to gemcitabine in patients
with pancreatic adenocarcinoma24.

Digitized whole slide images (WSIs) have enhanced the degree to
which nuclear morphology can be studied in histological specimens12,13.
However, the large size of WSIs—up to billions of pixels and containing
thousands of nuclei—makes exhaustive manual annotation infeasible; thus
studies have relied on manually-selected subregions of interest rather than
entire slides20,25. Automatedmethods are, therefore, needed to fully quantify
nuclear features in WSIs. We recently described a cell- and tissue-level
computational pathology pipeline using WSIs for the automated compu-
tation of human interpretable features (HIFs), distinctive features with
tangible methods for validation26. This pipeline allows the use of HIFs to
predict treatment-relevantmolecular phenotypes and allows for integration
with current pathological methods. Given that morphological analysis of
histology features is central topathologyworkflows,we sought to extend this
work to identify nuclear human interpretable features (nuHIFs) inmultiple
cancer types.

In this paper, we present a multi-tissue model for the exhaustive
detection, segmentation, and classification of nuclei from entire hematox-
ylin and eosin (H&E)-stainedWSIs, allowing for the exhaustive analysis of
slide-level descriptors of nuclear size, shape, texture, and staining intensity.
Furthermore, we demonstrate that these nuHIFs are predictive of clinically-
relevant information in multiple cancer types.

Results
Model development, performance, and nuclear feature
extraction
We collected annotations and trained a machine learning (ML) model to
detect and segment nuclei in H&E-stained WSIs as described in the
“Methods” and shown in Fig. 1. The model is not limited to sampling
regions of interest from tissue samples, but rather can be utilized to
exhaustively annotate WSIs. Application of the model to our held-out test
data, including held-out tissue and disease types, demonstrated perfor-
mance (mean Dice score = 0.818, aggregated Jaccard index (AJI) = 0.619)
comparable tomodels reported previously in the literature27,28. Importantly,
model speedwas adequate to apply tomulti-gigabyteWSIs at full resolution
(approximately 0.25 μm/pixel; roughly 30min per slide). Examples of
model performance in mesothelioma, head and neck squamous cell carci-
noma, and stomach adenocarcinoma are shown in Fig. 2.

We selected clinical samples from two additional datasets, designated
OOD-Test-1 and OOD-Test-2, characterized in Table 2. We collected

additional annotations on these datasets and characterized model perfor-
mance.We found performance numerically comparable or superior to our
initial held-out test data despite different sample origin, and one dataset
containing non-cancer tissue samples (OOD-Test-1 mean Dice = 0.818,
AJI = 0.628; OOD-Test-2 mean Dice = 0.826, AJI = 0.649).

Having evaluated our model’s performance, we deployed the resulting
model on primary diagnostic (DX1) H&E slides from the breast cancer
(BRCA; N = 892), prostate adenocarcinoma (PRAD; N = 392), and lung
adenocarcinoma (LUAD; N = 426) TCGA cohorts (Fig. 3); model perfor-
mance was visually assessed to be consistent with test data. The distribution
of pixel sizes (microns per pixel; MPP) of these three cohorts are shown in
Supplementary Fig. 4. The median MPPs were 0.248, 0.252, and 0.252 for
BRCA, LUAD, and PRAD datasets respectively.We extracted interpretable
features describing the shape, size, staining intensity, and texture of every
nucleus on each WSI (Supplementary Table 3). We performed further
analysis on nuHIFs specific to cancer cells, fibroblasts, and lymphocytes, as
these three cell classes are common across all cancer types and have been
implicated in clinical outcomes.

nuHIFs show within- and between-cancer-type variation
To assess whether nuHIFs differ between cancer types, we performed
UMAP to compare the nuHIFs from cancer cells (Fig. 4a), fibroblasts
(Fig. 4b), and lymphocytes (Fig. 4c) in BRCA, LUAD, and PRAD
datasets. We observed notable inter- and intra-dataset variation in
nuHIFs. For cancer cells, nuclear morphology was distinct between
PRAD and LUAD datasets, while BRCA dataset cancer cells showed
nuclear features similar to both PRAD and LUAD (Fig. 4a). Unsu-
pervised hierarchical clustering of z-scored features revealed specific
nuHIFs differentially exhibited in these three cancer subtypes (Fig. 4b).
For example, features associated with nuclear size were higher in LUAD
cancer nuclei relative to PRAD. Assessment of the distribution of three
size-related features in BRCA, LUAD, and PRAD confirmed these
observations—cancer nuclei in PRAD were smaller in area and major
axis length than cancer nuclei in BRCA and LUAD (Supplementary Fig.
5A), while fibroblast area andmajor axis length is larger in BRCA than in
LUAD and PRAD (Supplementary Fig. 5B). Minute variation in minor
axis length was observed between the three cancer types for cancer cells
and fibroblasts (Supplementary Fig. 5C). In contrast, lymphocyte
nucleus size parameters did not appear to differ between cancer types
(Supplementary Fig. 5). In addition to size features, features associated
with nuclear staining were observed to differ between cancer types. In
particular, notable differences in features relating to nucleus stain
intensity, color, and shape between PRAD and LUAD were observed
(Fig. 4). The clearest distinction between cancer subtypes was discerned
through nuHIFs of fibroblasts in BRCA, LUAD, and PRAD (Fig. 4b, d).
Unsupervised hierarchical clustering revealed specific features enriched
in fibroblasts from these cancer subtypes. Interestingly, lymphocyte
nuHIFs also differed between cancer types.

To ensure that the observed differences in nuclear features between
cancer types were not biased by scanned image pixel size, we measured the
Pearson correlation between nuclear size (using major axis length as a
representative feature) and MPP for each cell type within BRCA, LUAD,
and PRAD datasets individually, to remove the potential effect of possible
between-cancer-type variation in nuclear size. The within-cancer-type
variation inmean nuclearmajor axis length between slides at the sameMPP
is large for cancer cells (Supplementary Fig. 6A), fibroblasts (Supplementary
Fig. 6B), and lymphocytes (Supplementary Fig. 6C). In addition, the mag-
nitude of thewithin-cancer-type Pearson correlations is low, although some
rise to the level of significance, perhaps due to the high power of the large
dataset. The within-cancer-type Pearson correlations also show an incon-
sistent sign, ranging from 0.206 to −0.151. Generally, these results suggest
that there is an inconsistent directional effect of MPP on nuclear size, and
other factors are likely driving the observed differences.

Because of the apparent association between nuclear morphol-
ogy and cancer type, we hypothesized that nuHIF-quantified nuclear

https://doi.org/10.1038/s41698-024-00623-9 Article

npj Precision Oncology |           (2024) 8:134 2



morphology could be a distinguishing feature of cancer types. To test
this, we constructed a simple random forest binary classification
model for differentiating between each pair of cancer types (BRCA,
PRAD, LUAD) using cancer, fibroblast, or lymphocyte nuclear HIFs.
We performed five-fold cross-validation to estimate the extent to
which cancer types may be differentiated by nuclear morphology. We
found consistently strong performance for differentiating between
cancer types using nuclear morphology (Fig. 4d). Although lym-
phocyte nuclear morphology was less distinct between cancer types
when visualized with UMAP, supervised analysis indicated that
lymphocyte morphology differed between cancer types.

Cancer nuclear morphology is associated with metrics of geno-
mic instability in multiple cancer types
Cancer nuclear atypia is used clinically as a marker of malignancy. We
therefore hypothesized that underlying levels of genomic instability may
partially explain the observed heterogeneity in cancer nuclear morphology
within cancer subtypes, as well as between cancer types with known

differences in malignancy. We tested this hypothesis by assessing the rela-
tionship between cancer nuclear morphology and genomic instability in
LUAD, BRCA, and PRADcohorts using aneuploidy score and homologous
recombination deficiency (HRD) score as metrics of genomic instability.
Indeed, using the standard deviation of cancer nuclear area as a metric of
nuclear atypia, we detected significant correlation between this nuHIF and
both aneuploidy score (Fig. 5a) andHRDscore (Fig. 5b).When assessed in a
pan-cancer manner, the overall correlation increased, and the pattern
observed in cancer nuHIF UMAP analysis persisted: PRAD displayed a
lower level of genomic instability across both metrics compared to LUAD,
while BRCA showed awide range of genomic instability, with similarities to
both PRAD and LUAD. These results confirm that cancer nuclear mor-
phology, especially variability in nuclear size, is associated with the level of
genomic instability.

Because aneuploidy score was correlated to variation in cancer
nuclear area, we posited that cancer nuclear morphology was predictive
of whole genome doubling. To address this hypothesis, we trained
random forest models for predicting binarized whole-genome doubling
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Fig. 1 |Machine learningmodel annotation collection, training, and application.
aModel workflow. Briefly, pathologists trained expert annotators to perform
exhaustive annotations of nuclei on H&E slide patches from diverse tissue sources.
These were used to train a pan-H&E nucleus detection and segmentation model,

which was subsequently evaluated on held-out patches and applied to exhaustively
segment nuclei in three WSI datasets. b Features extracted from the model. Mean
and standard deviation values were calculated for these features at the whole-slide
level for cancer cells, lymphocytes, and fibroblasts.
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using cancer nuHIFs from each of the BRCA, LUAD, and PRAD cancer
types.We found that cancer nuclearmorphologywas predictive ofWGD
for each cancer type, with strongest predictive power in BRCA, andmore
variation in performance expected for PRAD, where WGD occurs less
frequently (Fig. 5c). The mean RF importance across the five splits is
reported for the top five features for each cancer type in Supplementary
Table 4. Briefly, variation in cancer nuclear dimensions were most
important for predicting WGD in BRCA, mean cancer nuclear dimen-
sions were most important for predicting WGD in LUAD, and a mix of
color and shape features were found to be most important for PRAD.

Nuclear morphology enables prediction of breast cancer mole-
cular subtype
We hypothesized that nuclear morphology would differ in subtle but
meaningful ways betweenmolecular subtypes of breast cancer, and that
these differences might enable classification of molecular subtypes of
breast cancer fromH&E images. To test this theory, we trained nuHIF-
based classification models for predicting breast cancer subtype in a
one-vs.-all manner (Fig. 6). Briefly, we found that cell-type-specific
nuclear morphology enabled classification of some but not all breast
cancer molecular subtypes. Interestingly, the ability to predict subtype
varied by subtype as well as by cell type being used to make the
inference. Cancer nuclear morphology (Fig. 6a) or lymphocyte nuclear
morphology (Fig. 6c) enabled moderate prediction (AUROC > 0.7) of
luminal A and basal-like breast cancer subtypes. Cancer nuclear
morphology but not lymphocyte or fibroblast nuclear morphology
enabled moderate prediction of HER-2 breast cancer subtype. Inter-
estingly, fibroblast nuclear morphology alone was a poor predictor of
molecular subtype (Fig. 6b). When aggregating cell types (Fig. 6d),

luminal A and basal-like prediction AUROC increased further to
≥0.80. These results suggest that altered nuclear morphology is
a possible histological presentation of breast cancer molecular
subtypes.

Fibroblast nuclear morphology is associated with survival and
gene expression patterns in breast cancer
The interplay between fibroblasts and cancer cells is complex and
prognostically relevant, as associations between cancer-associated
fibroblasts (CAFs) and cancer progression have been recently
described29–32. Notably, in breast cancer, CAFs have been shown to
contribute to prognosis33, while CAF subset heterogeneity correlates
with metastasis34. We therefore hypothesized that fibroblast nuHIFs
in BRCA would be clinically prognostic, independent of further
molecular testing. We sought to identify fibroblast nuHIFs that are
associated with progression-free (PFS) and/or overall survival (OS).
We performed regression between each fibroblast nuHIF and PFS and
OS using Cox proportional hazards models with patient age and
ordinal cancer stage as regression covariates. After FDR correction,
multiple fibroblast nuHIFs were significantly prognostic of PFS
(Supplementary Table 5) and OS (Supplementary Table 6). Features
quantifying the same general attribute, e.g. nuclear area and nuclear
axis length as measures of size, were indeed found to be
correlated with one another (mean pairwise Pearson r = 0.90 for
fibroblast nuclear area, major axis length, minor axis length, and
perimeter). We selected the mean fibroblast nucleus area
(“MEAN[FIBROBLAST_NUCLEUS_AREA]_H & E”) for further
evaluation, and show Kaplan–Meier survival curves for PFS and OS
for the population binarized by this feature median value. High

Fig. 2 | Example of model performance. Repre-
sentativeWSI patches frommesothelioma, head and
neck squamous cell carcinoma (HNSCC), and sto-
mach adenocarcinoma stained with H&E are shown
in the left-most panel. Ground truth nuclei identi-
fied manually and nuclei predicted by the model are
shown in the middle and right-most panels,
respectively. Each color represents a nucleus
instance.
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nuclear area was prognostic of worse outcomes (Fig. 7, PFSHR = 1.81,
95% CI [1.32–2.48], p = 0.0002; OS HR = 1.77, 95% CI [1.22,
2.56], p = 0.002).

Having identified this relationship between fibroblast nuclear size and
prognosis, we sought to assess whether mean fibroblast nuclear area was
associated with differences in bulk gene expression in breast cancer. We
computed the rank-based (Spearman) correlation between fibroblast mean
nuclear area and each gene in TCGA bulk gene expression to identify genes
associated with this nuHIF (see “Methods” for details). Fibroblast nuclear
area was significantly, albeit weakly (absolute r > 0.15), associated with
expression of numerous individual genes (Supplementary Table 7). In
contrast to the weak associations observed at the individual gene level, gene
set enrichment analysis performed on the genes associated with morphol-
ogy revealed significant relationships between fibroblast nuclear size and
levels of several previously identified expression pathways. Notably, larger
fibroblast nuclear size showed positive association with gene expression in
pathways associated with degradation and remodeling of the extracellular
matrix (Supplementary Table 8) indicating higher fibroblast activity.
Meanwhile, larger fibroblast nuclear size showed negative association with
the expression of genes in pathways relating to immune response to the
tumor, such as B cell receptor signaling and lymphoid cell interactions with
non-lymphoid cells (Supplementary Table 9). Taken together, these results
suggest that fibroblast nuclear morphology is indicative of underlying pat-
terns of gene expression and is thus biologically grounded.

Discussion
In this study, we have presented a pan-tissue approach for nucleus seg-
mentation, classification, and featurization on entire whole-slide pathology
images. This method enabled the construction of predictivemodels and the
identification of features linking nuclear morphology with quantitative
biomarkers across BRCA, PRAD, and LUAD. These results highlight the
potential of ML-enabled quantification of nuclear morphometry as a
prognostic feature of many cancer types and a potential biomarker to be
used by pathologists. Furthermore, this approach enables the quantitative
testing of hypotheses and numerical quantification of histological rela-
tionships proposed by pathologists (e.g., by establishing a numerical rela-
tionship between nuclear atypia and disease metrics). In addition, our
approach enables the data-driven identification of sub-visual changes that
may be clinically meaningful.

One particular strength of our approach is the ability to not only
measure morphologic features associated with nuclei in a cancer specimen,
but to assign a cell class to eachnucleus, aswell. Toour knowledge, thiswork
provides the first characterization of nuclear morphologies of specific cell
types indifferent cancers at scale.As such,wewerenotonly able to assess the
associations of cancer cell nuclear morphology with clinically-relevant
metrics, but we were also able to examine these relationships using nuclear
features of fibroblasts and lymphocytes. For example, fibroblast nuHIFs
provided a clear separation of cancer types in both unsupervised and
supervised analyses, indicating that the nuclear morphologies of fibroblasts

TCGA BRCA TCGA PRADTCGA LUAD
a cb

d fe

g ih

Cancer epithelial cell Lymphocyte Fibroblast Macrophage

Plasma cell Granulocyte Other cell

Segmentation Color Scheme:

Fig. 3 | Nuclear segmentation and cell-type identification in multiple
cancer types. Representative H&E images of (a) breast cancer (TCGA BRCA), (b)
lung adenocarcinoma (TCGA LUAD), and (c) prostate adenocarcinoma (TCGA
PRAD) are shown at ×40 magnification. d–f Nuclear segmentation and cell-type

identification masks are overlaid onto H&E images shown in (a–c). h, i High-
magnification images of BRCA (g), LUAD (h), and PRAD (i). Magnified regions are
indicated by dashed boxes in (d–f). Scale bars indicate a distance of 50 μm.

https://doi.org/10.1038/s41698-024-00623-9 Article

npj Precision Oncology |           (2024) 8:134 5



−1.0 −0.5 0.0 0.5 1.0
nuHIF Median Z-Score:

Cancer Cell
Nuclear Features

Fibroblast
Nuclear Features

Lymphocyte
Nuclear Features

BRCA LUAD PRAD

BRCA LUAD PRAD

BRCA LUAD PRAD

Slide-level mean of the area of each cancer cell nucleus 
Slide-level mean of the minor axis length of each cancer cell nucleus 
Slide-level mean of the eccentricity of each cancer cell nucleus
Slide-level mean of the major axis length of each cancer cell nucleus 
Slide-level mean of the perimeter length of each cancer cell nucleus
Slide-level standard deviation of the perimeter length of each cancer cell nucleus
Slide-level mean of the mean saturation value in HSV colorspace of each cancer cell nucleus
Slide-level mean of the mean A value in LAB colorspace of each cancer cell nucleus
Slide-level standard deviation of the area of each cancer cell nucleus
Slide-level standard deviation of the major axis length of each cancer cell nucleus
Slide-level mean of the solidity of each cancer cell nucleus
Slide-level standard deviation of the mean A value in LAB colorspace of each cancer cell nucleus
Slide-level mean of the mean B value in LAB colorspace of each cancer cell nucleus
Slide-level standard deviation of the minor axis length of each cancer cell nucleus
Slide-level standard deviation of the eccentricity of each cancer cell nucleus
Slide-level standard deviation of the solidity of each cancer cell nucleus
Slide-level standard deviation of the mean grayscale intensity value of each cancer cell nucleus
Slide-level mean of the standard deviation of the grayscale intensity value of each cancer cell nucleus
Slide-level mean of the standard deviation of the saturation value in HSV colorspace of each cancer cell nucleus
Slide-level mean of the circularity of each cancer cell nucleus
Slide-level mean of the mean grayscale intensity value of each cancer cell nucleus
Slide-level mean of the standard deviation of the B value in LAB colorspace of each cancer cell nucleus
Slide-level standard deviation of the mean saturation value in HSV colorspace of each cancer cell nucleus
Slide-level standard deviation of the standard deviation of the grayscale intensity value of each cancer cell nucleus
Slide-level standard deviation of the standard deviation of the saturation value in HSV colorspace of each cancer cell nucleus
Slide-level standard deviation of the circularity of each cancer cell nucleus
Slide-level standard deviation of the mean B value in LAB colorspace of each cancer cell nucleus
Slide-level standard deviation of the standard deviation of the A value in LAB colorspace of each cancer cell nucleus
Slide-level mean of the standard deviation of the A value in LAB colorspace of each cancer cell nucleus
Slide-level standard deviation of the standard deviation of the B value in LAB colorspace of each cancer cell nucleus

0.0 0.5 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

−1.0 −0.5 0.0 0.5 1.0
nuHIF Median Z-Score:

Cancer = 0.998
Fibroblast = 0.994
Lymphocyte = 0.971

0.0 0.5 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Cancer = 0.889
Fibroblast = 0.982
Lymphocyte = 0.961

0.0 0.5 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Cancer = 0.997
Fibroblast = 1.0
Lymphocyte = 0.977

Slide-level standard deviation of the mean B value in LAB colorspace of each fibroblast nucleus
Slide-level standard deviation of the solidity of each fibroblast nucleus
Slide-level standard deviation of the circularity of each fibroblast nucleus
Slide-level standard deviation of the major axis length of each fibroblast nucleus
Slide-level standard deviation of the perimeter length of each fibroblast nucleus
Slide-level mean of the solidity of each fibroblast nucleus
Slide-level mean of the mean saturation value in HSV colorspace of each fibroblast nucleus
Slide-level mean of the mean A value in LAB colorspace of each fibroblast nucleus
Slide-level mean of the circularity of each fibroblast nucleus
Slide-level standard deviation of the eccentricity of each fibroblast nucleus
Slide-level standard deviation of the standard deviation of the A value in LAB colorspace of each fibroblast nucleus
Slide-level mean of the standard deviation of the A value in LAB colorspace of each fibroblast nucleus
Slide-level standard deviation of the standard deviation of the B value in LAB colorspace of each fibroblast nucleus
Slide-level standard deviation of the standard deviation of the saturation value in HSV colorspace of each fibroblast nucleus
Slide-level mean of the mean B value in LAB colorspace of each fibroblast nucleus
Slide-level standard deviation of the mean A value in LAB colorspace of each fibroblast nucleus
Slide-level standard deviation of the mean grayscale intensity value of each fibroblast nucleus
Slide-level mean of the mean grayscale intensity value of each fibroblast nucleus
Slide-level standard deviation of the area of each fibroblast nucleus
Slide-level mean of the standard deviation of the grayscale intensity value of each fibroblast nucleus
Slide-level standard deviation of the standard deviation of the grayscale intensity value of each fibroblast nucleus
Slide-level mean of the standard deviation of the B value in LAB colorspace of each fibroblast nucleus
Slide-level standard deviation of the mean saturation value in HSV colorspace of each fibroblast nucleus
Slide-level mean of the eccentricity of each fibroblast nucleus
Slide-level mean of the minor axis length of each fibroblast nucleus
Slide-level mean of the standard deviation of the saturation value in HSV colorspace of each fibroblast nucleus
Slide-level mean of the area of each fibroblast nucleus
Slide-level standard deviation of the minor axis length of each fibroblast nucleus
Slide-level mean of the major axis length of each fibroblast nucleus
Slide-level mean of the perimeter length of each fibroblast nucleus

Slide-level standard deviation of the mean grayscale intensity value of each lymphocyte nucleus
Slide-level mean of the eccentricity of each lymphocyte nucleus
Slide-level standard deviation of the circularity of each lymphocyte nucleus
Slide-level standard deviation of the solidity of each lymphocyte nucleus
Slide-level mean of the circularity of each lymphocyte nucleus
Slide-level mean of the solidity of each lymphocyte nucleus
Slide-level mean of the mean saturation value in HSV colorspace of each lymphocyte nucleus
Slide-level mean of the mean A value in LAB colorspace of each lymphocyte nucleus
Slide-level mean of the major axis length of each lymphocyte nucleus
Slide-level mean of the mean B value in LAB colorspace of each lymphocyte nucleus
Slide-level mean of the minor axis length of each lymphocyte nucleus
Slide-level standard deviation of the eccentricity of each lymphocyte nucleus
Slide-level mean of the area of each lymphocyte nucleus
Slide-level mean of the perimeter length of each lymphocyte nucleus
Slide-level standard deviation of the mean saturation value in HSV colorspace of each lymphocyte nucleus
Slide-level standard deviation of the major axis length of each lymphocyte nucleus
Slide-level standard deviation of the perimeter length of each lymphocyte nucleus
Slide-level standard deviation of the area of each lymphocyte nucleus
Slide-level mean of the mean grayscale intensity value of each lymphocyte nucleus
Slide-level mean of the standard deviation of the B value in LAB colorspace of each lymphocyte nucleus
Slide-level standard deviation of the minor axis length of each lymphocyte nucleus
Slide-level mean of the standard deviation of the grayscale intensity value of each lymphocyte nucleus
Slide-level standard deviation of the standard deviation of the grayscale intensity value of each lymphocyte nucleus
Slide-level standard deviation of the standard deviation of the A value in LAB colorspace of each lymphocyte nucleus
Slide-level standard deviation of the standard deviation of the saturation value in HSV colorspace of each lymphocyte nucleus
Slide-level mean of the standard deviation of the saturation value in HSV colorspace of eachlymphocyte nucleus
Slide-level standard deviation of the mean A value in LAB colorspace of each lymphocyte nucleus
Slide-level standard deviation of the standard deviation of the B value in LAB colorspace of each lymphocyte nucleus
Slide-level mean of the standard deviation of the A value in LAB colorspace of each lymphocyte nucleus
Slide-level standard deviation of the mean B value in LAB colorspace of each lymphocyte nucleus

BRCA LUAD PRAD

BRCA LUAD PRAD

BRCA LUAD PRAD

−1.0 −0.5 0.0 0.5 1.0
nuHIF Median Z-Score:

−1.0 −0.5 0.0 0.5 1.0
nuHIF Median Z-Score:

BRCA (0)LUAD (1) vs. PRAD (1) vs. BRCA (0) LUAD (0)PRAD (1) vs.

a

b

c

d

Fig. 4 | nuHIFs show variation within and between cancer types. Uniform
manifold approximation and projection (UMAP) visualization of BRCA, LUAD,
and PRADdefined by nuclear human interpretable feature (HIF) for (a) cancer cells,
(b) fibroblasts, and (c) tumor-infiltrating lymphocytes. Clustered heatmaps of
median Z-scores for all 30 nuHIFs are shown for each cell type. d Receiver operating
characteristic (ROC) curves for binary classification between paired cancer types

using nuHIFs from each of cancer, fibroblast, or lymphocyte nuclei. ROCs are shown
for the five held-out validation splits andmean area under ROC (AUROC) is shown
for each classification problem. In particular, fibroblast and lymphocyte nuclear
features are highly able to differentiate between cancer types. Mean AUROC is
shown for each class of nuclear HIF.
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differ in breast, lung, and prostate cancers. Given recent observations that
CAFs can be classified into multiple functional subtypes based on gene
expression35, the distinctive nuclear morphologies seen in fibroblasts of
breast, lung, and prostate cancers suggests that fibroblastsmay contribute to
cancer progression differently in these three cancer types. Importantly, we
cannot distinguish between the multiple known subtypes of intratumoral
fibroblasts using the approach described herein. This caveat is particularly
relevant to the associations of fibroblast nuclear morphology with gene
expression in breast cancer. Increased nuclear size was positively associated
with an extracellular matrix remodeling gene expression profile and nega-
tively associatedwith the expressionof genes relating to anti-tumor immune
response (Supplementary Tables 4 and 5). Interestingly, single-cell analysis

of fibroblasts in breast cancer has revealed several disparate populations,
including an immunosuppressive population characterized by the expres-
sion of genes involved in collagen production and extracellular matrix
remodeling and a separate class with an inflammatory gene expression
profile36. While our model cannot directly predict the presence of these
fibroblast sub-populations, given the prognostic associations of nuclear
morphology in our dataset and sc-RNAseq expression36, it will be of interest
to test whether specific nuclear features of CAFs associate with functional
subtypes.

Furthermore, nuclear features derived fromourmodel were associated
with PFS andOS in breast cancer. It is worth noting that this analysis, while
incorporating patient age and clinical stage as regression covariates, was
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Fig. 5 | Variation in cancer nuclear size correlates with metrics of genomic
instability. Standard deviation of cancer cell nuclear area was compared to (a)
aneuploidy score and (b) homologous recombination deficiency (HRD) score for
BRCA, LUAD, and PRAD. c Receiver operating characteristic (ROC) curves for

prediction of whole-genome doublings in BRCA, LUAD, and PRAD. ROCs are
shown for the five held-out validation splits; mean AUROC is shown for each
cancer type.
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conducted on a large cohort of patients across study sites for whom relevant
clinical information (e.g., treatment history) was not readily available.
Therefore, while our result linking fibroblast nuclear morphology to prog-
nosis in breast cancer is intriguing, further study in more controlled patient
cohorts is needed to confirm this observation.

Herein,weobserved thatnuclearmorphologydifferedbetweencancers
as assessedusingnucleus segmentationmodels. This resultwasobservednot
only for cancer epithelial cells and fibroblasts, but also, surprisingly, for
lymphocytes. However, caution is warranted in interpretation—it is plau-
sible that batch effects between slides from different tumor groups could
drive variation in nuclear presentation, especially due to differences in pre-

analytic variables such as slide preparation and staining. However, it is also
plausible that this finding reflects the differences in genetic and epigenetic
landscapes between tumor types, levels of genomic instability, and overall
differences in cancer evolution between these cancer types that may man-
ifest as disparate nuclear morphologies.

The observed relationship between greater variation in cancer nuclear
area and genomic instability was consistent across cancer types, indicating a
quantitative link between nuclear pleomorphism and genomic instability
pertinent to numerous cancer histologies. Prior analyses have noted an
association between increased variation in nuclear size and whole genome
doubling, suggesting a direct link between variation in nuclear size and
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Fig. 6 | Cell-type-specific nuclear morphology enables classification of breast
cancer molecular subtypes. One-vs.-all binary classification of breast cancer
molecular subtypes (luminal A, luminal B, HER2-like, basal-like, and normal-like)46

was performed using random forest classification onnuHIFs derived from (a) cancer

cells, (b) fibroblasts, (c) lymphocytes, and (d) aggregated cell types. Five-fold stra-
tified cross-validation was used, and mean AUROC for each of the iteratively held-
out test sets is reported here.
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genomic instability19,20. Additional work has noted a correlation between
nuclear morphology and HDR in luminal and triple-negative breast
cancer37. Given that nuclear size reflects DNA content, variation in nuclear
size features between cells may be linked to underlying genomic instability.
Similarly, recentwork identified ahistologic signature basedonvariability in
nuclear morphology in pancreatic cancer cells that was associated with
improved response to gemcitabine but was not associated with a previously
defined gene expression-based disease subtype24. Pancreatic cancer patients
with BRCA1/2mutations, associatedwith increased genomic instability, are
known to respond more favorably to therapy regimens involving
gemcitabine38; thus, our result that nuclear variation is associated with
genomic instability may explain this recent finding. To this end, our
observation that variability in nuclear size (measured here by standard
deviation of cancer cell nuclear area) is consistent with these prior
hypotheses and allows for them tobe tested on a larger scale for each case (all
cells for each cell type in theWSI).While the biological result linkingnuclear
morphology with genomic instability is not novel, the observation of this
expected result through the analyses of our novel model-derived nuclear
features indicates that our approach supports the technical robustness and
biological applicability of our approach.

One mitigation to potential batch effects is to analyze nuclear mor-
phology within a single cancer type, and additionally to focus on size and
shape features that are more likely to be robust to tissue preparation vari-
abilities. For example, in breast cancer, we observed a clear relationship
between fibroblast nuclear size, prognosis, and gene expression patterns. In
breast cancer, increased fibroblast nuclear area was positively correlated
with gene expression in extracellular matrix remodeling pathways and
negatively correlated with genes in anti-tumor immune response pathways.
The CAF subtypes present in a breast cancer sample may impact the tumor
immune microenvironment35. While it would be interesting to posit that
fibroblast nuclear morphology could reflect these subtypes, the ability to
explore this is precluded by the use of bulk RNAseq data, since fibroblast
nuclear features and thebulk expressionprofiling reflect a summarizationof
a whole slide. However, because nuclearmorphology is quantified at single-
cell resolution, this approach could be tied directly to single-cell expression
analysis. Further work is necessary to delineate the functional relevance of
nuclear morphology changes in fibroblasts in cancer.

Asnoted, batch effects have thepotential to influence the interpretation
of model outputs due to data that are aggregated across different sites,

sources, and preparation laboratories. Pixel size variability, due to slide
scanning with different MPP resolution, is one aspect of how these differ-
ences may manifest, but there are others to consider as well: differences in
stain reagents, sample preparation, sample storage, or other pre-analytical
variables. For the analyses described herein, the median MPP values were
highly similar across the three indications, with the BRCA MPP slightly
lower than that of LUAD and PRAD (Supplementary Fig. S4). That said, to
further ensure against differences in pixel dimension contributing to bias,
the size-related features of the nuclei are reported here in units ofmicrons or
square microns, which is created by multiplying the size of the mask by the
appropriate MPP conversion factor. Thus, differences in the MPP should
not propagate into length-features, and the slide scan characteristics should
not bias the features. Furthermore, we measured the Pearson correlation
between nuclear size (using major axis length as a representative feature)
and MPP for each cell type within BRCA, LUAD, and PRAD datasets
individually to eliminate the potential effect of possible inter-cancer-type
variation in nuclear size (Supplementary Fig. 6). While the within-cancer-
type variation inmean nuclear major axis length between slides at the same
MPP is large, themagnitude of the within-cancer-type Pearson correlations
is low, although some rise to the level of significance (likely due to the high
power of the large datasets). Lastly, it is worth noting that cancer-type
differences in nuclear size appear to be an outlier of relatively larger mag-
nitude than expected if MPP bias was the primary driving factor (Supple-
mentary Fig. 5). Thus, we are confident that the observations noted in this
study regarding nuclear size features are not biased by scan-specificmetrics.

The approach that we undertook for nucleus segmentation and mor-
phometry analysis in this paper has several key strengths. First, the ability to
compute human-interpretable nuclear features at scale enables testing
quantitative biological hypotheses, rather than relying on by-eye estimation
of parameters such as variation in nuclear morphology. The ability to
perform these analyses on WSIs of H&E-stained cancer tissue additionally
obviates the need to hand-select regions of interest, whichmay contribute to
biased analyses. In addition, we were able to train and deploy ourmodel on
tissues from diverse cancer types, suggesting that the model can be readily
deployed on samples from varied cancer indications39.

A particular strength of this approach is the interpretability of the
predictions made. While HIF-based predictive clinical models are inher-
ently less flexible than end-to-end black-box approaches (and, thus, can
yield lower performance), they benefit from the lower dimensionality of

Fig. 7 | Association between fibroblast nuclear area and survival in breast cancer. Increased fibroblast nuclear area (≥50th percentile) corresponds to poor PFS
(HR = 1.8163, 95% CI [1.3119–2.4823], p = 0.0002) and OS (HR = 1.7753, 95% CI [1.2206, 2.5620], p = 0.0022).
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features as amethod of regularization, as the HIFs used herein directly map
to low-dimensional representations of the tissue image. Furthermore, HIF-
basedmodels allow researchers and clinicians to learn from the features and
generate novel hypotheses without discarding the wealth of known biology.

Although our results point to the potential of nuclear segmentation,
classification, and feature analysis as a clinical screening tool, our study is
limited in that our biomarker analysis was focused on academically curated
datasets. These datasets were selected due to their size, completeness, and
rich genomic and transcriptomic profiling data. Construction and valida-
tion of generalizable predictive machine-learning models requires the
inclusion of a broad range of training and validation data, and future efforts
should focus on validating these hypotheses in additional cohorts. The
technical approaches we describe here have been validated by their appli-
cation to other clinical datasets, showing their generalizability of this
methodology and robustness of these models (data not shown).

In sum, this work highlights the power of ML-driven quantitative
nuclear morphometry in multiple cancer types. The models and resulting
features described herein have the potential not only to aid pathologists and
research teams in discerning novel biomarkers but to provide meaningful
prognostic information for cancer patients. The ability to measure these
features robustly and consistently at scale may enable the development of
improved clinical tools for advancing precision medicine.

Methods
Study design
Manually collected annotations were used to train and validate an object
detection and segmentationmodel to detect and segment nuclei fromH&E-
stained tissue slides. Training data variation and number of annotations
were selected to exceed previously used standards in the field27 and exhibit
wide variation in tissue morphology as subjectively assessed by study
pathologists (MGDand LY). Thismodel was deployed onwhole-slideH&E
images from The Cancer Genome Atlas (TCGA) to extract features from
eachnucleus in each slide, and the resulting featureswereused to analyze the
relationship between nuclear morphology and underlying molecular mar-
kers of cancer, and patient outcomes. Inclusion of TCGA slides was per-
formed in accordance with literature norms (e.g. as by Saltz et al.40): TCGA
slides were selected to be theDX1 (primary diagnostic) slide for each case in
TCGA and no outlier exclusion was performed, to conservatively reflect
real-world conditions where same-case replicates may not be available.
Wheremultiple hypotheseswere tested, all reported statisticswere corrected
to control false discovery rate as described below.

Dataset description and annotation collection
Over 29,000 manual annotations of cell nuclei were collected from H&E
images from 21 tumor types at ×40 and ×20 magnification from TCGA41.
Additional H&E-stained tissue biopsies of skin, liver non-alcoholic steato-
hepatitis, colon inflammatory bowel disease, and kidney lupus were also
utilized. These samples were commercially acquired from Precision for
Medicine (Frederick, Maryland) or Inform Diagnostics (formerly Miraca
Life Sciences, Irving, Texas) or were generously provided by Dr. Fabio
Tavora (Argos Laboratory, Sao Paolo, Brazil) or Dr. Robert Najarian
(University Gastroenterology, Portsmouth, RI). Samples were provided by
Drs. Tavora and Najarian under sample acquisition agreements approved
by the Institutional Review Board, Independent Ethics Committee, or
equivalent authority at Argos Laboratory and University Gastroenterology,
respectively. Board-certified pathologists (MGD and LY) selected
1000 × 1000 pixel patches that were exemplary of varied tissue and nuclear
morphology from the training slides and trained collaborators to perform
exhaustive manual annotation of nuclei in the patches. Annotations were
checked for quality, adjusted, and confirmed byMGD and LY. This process
resulted in 67WSI patches exhaustively annotated for nuclei. These patches
were split into training, validation, and held-out test datasets to ensure
distribution of tissue types (Table 1).

Following model training and initial testing, an additional two data
sources were used to collect additional annotations for model testing. H&E-

stained slides of ulcerative colitis were obtained from BioIVT (Westbury,
NY), and H&E-stained breast cancer slides were generously provided by
Cleveland Clinic Foundation (CCF; Cleveland, OH) under a data licensing
arrangement approved by the CCF Institutional Review Board. An addi-
tional 14 512 × 512 pixel patches were identified from these data sources
(seven patches from each source), and an additional 2647 manual, exhaus-
tive nucleus annotations were collected for model evaluation (Table 2).

This work complied with all relevant ethical regulations, including the
Declaration of Helsinki. Samples utilized for this study were procured from
clinical sources, public databases, or biobanks. For all cohorts used herein,
patients provided informed consent for their tissue being used for research
purposes, with few exceptions: in some instances, the consent for patients
whose tissues were obtained from biobanks were considered “waived” due
to the length of time that had passed since the tissue was collected.

Nuclear segmentation model architecture
AMask-RCNN-style architecture was selected for nuclear segmentation. A
ResNet50 backbone pretrained on the ImageNet dataset was used to pro-
duce the feature pyramid network. The first two of five modules that
comprise ResNet50 were frozen during training to preserve the pretrained
weights of early layers. Model development was performed using the
PyTorch library42.

Nuclear segmentation model training
The manually-collected annotations were used to train the model for
detecting and segmenting cellular nuclei (Fig. 1a). During training, the
annotated patches were augmented by crops, flips, rotations, and affine
deformations.

Cell classification
Following nuclear segmentation, the cell class of each nucleus was assigned
usingPathExploreTM (PathAI,Boston,MA)43models specific tobreast cancer
(BRCA), lung adenocarcinoma (LUAD), and prostate adenocarcinoma
(PRAD); PathExplore is for research use only and is not for use in diagnostic
procedures. Cancer epithelial cells, fibroblasts, macrophages, lymphocytes
andplasmacellswerepredicted for all three cancer types,while additional cell
classes were predicted for LUAD (granulocytes and normal cells) andPRAD
(smooth muscle cells, endothelial cells, and normal epithelial cells). Model
performance for the prediction of cell types was assessed by comparing
model predictions to pathologist annotations in nested pairwise fashion44.
Model performance metrics for BRCA, LUAD, and PRAD are shown in
Supplementary Figs. 1–3, respectively, and Supplementary Tables 1 and 2.
Example prediction results are shown in Fig. 3. The five pan-indication cell
classes (cancer epithelial cells, fibroblasts, macrophages, lymphocytes, and
plasma cells) were used for analyses assessing the biological implications of
nuclear feature differences in BRCA, LUAD, and PRAD.

Deployment dataset and feature extraction
The nuclear segmentationmodelwas deployed on publicly available images
of H&E slides from the BRCA (N = 886), PRAD (N = 392), and LUAD
(N = 426) TCGA cohorts; a summary of clinicopathologic features of each
cohort is shown inTable 3.Model performancewas qualitatively assessed by
board-certified pathologists and determined to be consistent with perfor-
mance on the held-out test dataset. The features computed for each indi-
vidual nucleus were: area, circularity, eccentricity, major and minor axis
length, perimeter, solidity, and the mean and standard deviation of pixel
grayscale intensity, pixel saturation, and pixel A and B channels in LAB
colorspace. The mean and standard deviation of each feature from each
nucleus class on the slides were used to summarize the nuclearmorphology
on each slide. This yielded 30 slide-level nuHIFs for each cell type, e.g. the
mean area of cancer nuclei, the standard deviation of fibroblast nuclear
eccentricity, or the mean pixel grayscale intensity of lymphocyte nuclei.
Attributes and features described by nuHIFs are included in Fig. 1b. Thus,
the total number of features summarizing themorphology on each slidewas
30 times the number of cell classes.
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Exploring cancer type and nuclear morphology
To compare the nuHIFs quantifying cancer cell, fibroblast, and lymphocyte
morphology, uniform manifold approximation and projection (UMAP)
analysis was performed. Nuclear HIFs were z-scored across all cancer types
for standardization. UMAP was parameterized with 100 neighbors, an
embedding dimension of 2, and the Euclidean distance metric. Features
characteristic of each cancer type were evaluated by averaging each feature
across the samples of each cancer type and z-scoring for visualization;
hierarchical clustering (using Euclidean distance with average linkage)
identified features that varied across cancer types.

Classifying cancer type from nuclear morphology
Random forest (RF) binary classification models were trained and
applied to each cell-type-specific nuHIF set to differentiate between
pairs of cancer types. RF classification models were trained using 5-fold
stratified cross-validation with balanced class weighting. The perfor-
mance of each model was assessed using the area under the receiver

operating characteristic curve (AUROC) on each held-out validation
split. The mean AUROC on the held-out validation splits is reported. RF
model training was performed in scikit-learn with default hyperpara-
meters (100 trees)45.

Classifying breast cancer subtype from nuclear morphology
Characteristics of breast cancer molecular subtypes (luminal A, N = 457;
luminal B,N = 159;HER-2,N = 66; normal-like,N = 31; basal-like,N = 161)
were obtained from a prior study by Berger et al.46. Random forest (RF)
binary classification models were trained and applied to each cell-type-
specific nuHIF set to differentiate between subtypes in a one-vs.-all manner.
RF classification models and cross-validation schemes were identical to
cancer-type classification.

Statistical analysis
Spearman (rank-based) correlationwas used tofind the association between
variation in cancer nuclear morphology and metrics of genomic instability.

Table 1 | Samples used for training and evaluating the segmentation model

Source # Frames Magnification Microns per pixel (MPP) Indication Dataset

TCGA-A2-A3XS-01Z-00-DX1 3 ×40 0.2456 Breast, Infiltrating ductal carcinoma Train

TCGA-XF-AAMJ-01Z-00-DX1 2 ×40 0.2527 Bladder, Urothelial carcinoma Train

TCGA-UW-A72Q-01Z-00-DX1 3 ×40 0.2472 Liver, Hepatocellular carcinoma Train

TCGA-G3-A7M6-01Z-00-DX1 2 ×40 0.2527 Liver, Hepatocellular carcinoma Train

TCGA-KM-A7QL-01Z-00-DX1 1 ×40 0.2525 Kidney, Renal cell carcinoma Train

TCGA-CV-A6JD-01Z-00-DX1 1 ×40 0.2527 Head and neck squamous cell carcinoma Train

TCGA-02-0009-01Z-00-DX1 1 ×20 0.5015 Brain, Glioblastoma Train

TCGA-LB-A8F3-01Z-00-DX1 3 ×40 0.2527 Pancreas, Pancreatic adenocarcinoma Train

TCGA-36-2547-01A-01-TS1 1 ×20 0.5015 Ovary, Ovarian serous cystadenocarcinoma Train

TCGA-W5-AA30-01Z-00-DX1 3 ×40 0.2529 Bile duct, Cholangiocarcinoma Train

TCGA-86-7701-01Z-00-DX1 2 ×40 0.252 Lung, Lung adenocarcinoma Train

TCGA-B0-4823-01Z-00-DX1 3 ×40 0.252 Kidney, Renal clear cell carcinoma Train

TCGA-02-0009-01Z-00-DX1 1 ×20 0.5015 Brain, Glioblastoma multiforme Train

TCGA-2G-AAKO-05Z-00-DX1 1 ×40 0.2277 Testicle, Acute myeloid leukemia Train

PathAI 3 ×40 0.2511 Liver, Hepatitis B Train

PathAI 3 ×40 0.2522 Liver, Non-alcoholic steatohepatitis Train

PathAI 3 ×40 0.2522 Kidney, Lupus Train

PathAI 1 ×40 0.2522 Colon, Inflammatory Bowel disease Train

PathAI 2 ×20 0.5023 Small intestine, Carcinoid Train

PathAI 1 ×40 0.2522 Prostate, Prostate adenocarcinoma Train

TCGA-EJ-5495-01Z-00-DX1 2 ×40 0.252 Prostate, Prostate adenocarcinoma Validation

TCGA-IG-A3YA-01Z-00-DX1 2 ×40 0.2465 Esophagus, Esophageal carcinoma Validation

TCGA-GS-A9U3-01Z-00-DX1 2 ×40 0.2525 Lymph, Diffuse large B cell lymphoma Validation

TCGA-LL-A5YM-01Z-00-DX1 2 ×40 0.2456 Breast, Invasive ductal carcinoma Validation

TCGA-P4-AAVO-01Z-00-DX1 3 ×40 0.2526 Kidney, Renal papillary cell carcinoma Validation

PathAI 2 ×40 0.2522 Liver, Non-alcoholic steatohepatitis Validation

PathAI 1 ×20 0.5023 Colon, Human papillomavirus Validation

PathAI 2 ×40 0.2511 Brain, Glioma Validation

PathAI 2 ×40 0.2522 Skin, Normal Validation

TCGA-VQ-A8DV-01Z-00-DX1 1 ×40 0.2525 Stomach, Stomach adenocarcinoma Test

TCGA-CV-6934-01Z-00-DX1 2 ×40 0.2525 Head and neck squamous cell carcinoma Test

TCGA-MQ-A6BR-01Z-00-DX1 1 ×40 0.2465 Lung, Mesothelioma Test

TCGA-OR-A5J8-01Z-00-DX1 1 ×40 0.2527 Adrenal, Adrenal cortical carcinoma Test

PathAI 1 ×40 0.2522 Colon, Inflammatory Bowel disease Test

PathAI 1 ×20 0.5023 Breast, Invasive ductal carcinoma Test

PathAI 2 ×40 0.2522 Prostate, Prostate adenocarcinoma Test
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Variation in size was captured by the nuHIF “standard deviation of cancer
cell nuclear area” for each slide. For metrics of genomic instability, pre-
viouslypublishedmetricswere selected: aneuploidy score47 andhomologous
recombination deficiency (HRD) score48. RF binary classification models
were trained in scikit-learn with default hyperparameters45 using 5-fold
stratified cross-validation with balanced class weighting, and applied to the
cancer nuHIF set from each cancer type to predict binarizedwhole-genome
doubling (WGD; 1-2 doublings = 1; no doublings = 0). The performance of
each model was evaluated using AUROC on each held-out validation split,
and the mean AUROC is reported. The mean RF Gini importance (also
called themean decrease in impurity) of the top five features for each cancer
type across thefive splits are reported.Coxproportional hazardmodelswere
utilized to explore the relationship between BRCA fibroblast nuHIFs and
overall and progression-free survival (OS and PFS, respectively). Ordinal
tumor stage (1–4) and patient age were included as clinical covariates;
17 subjects missing tumor stage and the one missing survival data were
excluded. Robust z-scoring (i.e. using the median and scaled interquartile

range) of each nuHIF before modeling was performed for simple inter-
pretation of the hazard ratios (HRs). The p values associated with each
nuHIF were corrected for false discovery rate (FDR) by the
Benjamini–Hochberg procedure. Survival analyses were performed using
the Lifelines library49. Gene expression datawas acquired from theGenomic
Data Commons (GDC)-processed TCGABRCA cohort (release 18.0) from
the UCSCXena data portal50. Gene expression samples were paired to case-
matched slides in our dataset, yielding 868 expression-nuHIF pairs.
Spearman (rank-based) correlation was used to quantify the association
between bulk RNAseq expression and the mean fibroblast nucleus area
nuHIF for each gene and corrected for FDR via Benjamini–Hochberg
procedure. Genes with corrected p < 0.05 and Spearman correlation greater
than 0.15 or less than −0.15 were selected to comprise the significant
positively and negatively associated gene sets, respectively, for gene set
enrichment analysis (GSEA). GSEA51 was performed using the Molecular
Signatures Database (MSigDB)52 and the REACTOME pathway database53,
and the tenmost significant pathway overlaps, with FDR-corrected p < 0.05,
are reported.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Histopathology images from the Cancer GenomeAtlas dataset are available
at https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga. Images and annotations of nuclei from the training set,
validation set, test set, OOD-2 dataset, and TCGA datasets can be found at
https://github.com/Path-AI/nuclear-features. Images and annotations of
nuclei from the OOD-1 dataset will be shared upon written request. Access
to feature tables, cell-, tissue-, and nuclei-type heatmaps, as well as usage of
cell- and tissue-type classification models, are available upon reasonable
request to academic investigators without relevant conflicts of interest for
non-commercial use who agree not to distribute the data. Access requests
can be made to publications@pathai.com.

Code availability
Model parameters for nuclei, cell, and tissue models, and codes model
training, inference, and feature extractions arenot disclosed.Access requests
for such a code will not be considered to safeguard PathAI’s intellectual
property. All source code for reproducing correlational analyses and
molecular predictions can be found at https://github.com/Path-AI/nuclear-
features.

Table 2 | Samples used for out-of-distribution (OOD) evaluation of model performance

Slide identifier # Frames Magnification Microns per pixel (MPP) Indication Dataset

581805 1 ×40 0.2518 Colon, Ulcerative colitis OOD-Test 1

581720 1 ×40 0.2518 Colon, Ulcerative colitis OOD-Test-1

581810 1 ×40 0.2518 Colon, Ulcerative colitis OOD-Test-1

581875 1 ×40 0.2518 Colon, Ulcerative colitis OOD-Test-1

591979 1 ×40 0.2518 Colon, Ulcerative colitis OOD-Test-1

581916 1 ×40 0.2518 Colon, Ulcerative colitis OOD-Test-1

581956 1 ×40 0.2518 Colon, Ulcerative colitis OOD-Test-1

591275 1 ×40 0.2521 Breast, Breast cancer OOD-Test-2

591351 1 ×40 0.262385 Breast, Breast cancer OOD-Test-2

591347 1 ×40 0.262385 Breast, Breast cancer OOD-Test-2

592506 1 ×40 0.2521 Breast, Breast cancer OOD-Test-2

592559 1 ×40 0.262125 Breast, Breast cancer OOD-Test-2

597204 1 ×40 0.262125 Breast, Breast cancer OOD-Test-2

597271 1 ×40 0.262125 Breast, Breast cancer OOD-Test-2

Table 3 | Characteristics of patients in TCGA cohorts

TCGA BRCA
N = 886

TCGA LUAD
N = 426

TCGA PRAD
N = 392

Age at initial pathologic
diagnosis (median, range)

58 (26–90) 66 (33–88) 61 (41–77)

Sex (male), n (%) 10 (1.1%) 191 (44.8%) 392 (100%)

American Joint Committee
on Cancer (AJCC) tumor
stage (n)

Stage I: 77
Stage IA: 76
Stage IB: 5
Stage II: 6
Stage IIA: 286
Stage IIB: 207
Stage III: 2
Stage IIIA: 128
Stage IIIB: 18
Stage IIIC: 51
Stage IV: 13
Unknown: 17

Stage I: 5
Stage IA: 122
Stage IB: 108
Stage II: 1
Stage IIA: 47
Stage IIB: 58
Stage IIIA: 50
Stage IIIB: 5
Stage IV: 22
Unknown: 8

Unknown:
392 (100%)

Whole genome
doublings (WGD)

0: 435, 56.8%
1: 298, 38.5%
2: 37, 4.8%
Unknown: 116

0: 168, 41.9%
1: 193, 48.1%
2: 40, 10.0%
Unknown: 25

0: 337, 92.1%
1: 29, 7.9%
Unknown: 26

Progression-free survival
(PFS, median)

122.3 months 29.3 months 116.7 months

Overall survival
(OS, median)

131.4 months 48.5 months Not reached
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