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The regulatory role of cancer stem cell marker gene CXCR4 in
the growth and metastasis of gastric cancer
Hongying Zhao1✉, Rongke Jiang1, Chunmei Zhang2, Zhijing Feng2 and Xue Wang1

Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (bulk RNA-seq) are increasingly used for screening genes
involved in carcinogenesis due to their capacity for dissecting cellular heterogeneity. This study aims to reveal the molecular
mechanism of the cancer stem cells (CSCs) marker gene CXCR4 in gastric cancer (GC) growth and metastasis through scRNA-seq
combined with bulk RNA-seq. GC-related scRNA-seq data were downloaded from the GEO database, followed by UMAP cluster
analysis. Non-malignant cells were excluded by the K-means algorithm. Bulk RNA-seq data and clinical sample information were
downloaded from the UCSC Xena database. GO and KEGG pathway analyses validated the correlation between genes and
pathways. In vitro and in vivo functional assays were used to examine the effect of perturbed CXCR4 on malignant phenotypes,
tumorigenesis, and liver metastasis. A large number of highly variable genes were identified in GC tissue samples. The top 20
principal components were selected, and the cells were clustered into 6 cell types. The C4 cell cluster from malignant epithelial cells
might be CSCs. CXCR4 was singled out as a marker gene of CSCs. GC patients with high CXCR4 expression had poor survival.
Knockdown of CXCR4 inhibited the malignant phenotypes of CSCs in vitro and curtailed tumorigenesis and liver metastasis in nude
mice. CSC marker gene CXCR4 may be a key gene facilitating malignant phenotypes of CSCs, which thus promotes tumor growth
and liver metastasis of GC.
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INTRODUCTION
Gastric cancer (GC) is highly heterogeneous, molecularly, and
phenotypically1–3. GC manifests rapid development, distant
metastasis, and chemotherapy resistance, in which its tumor
heterogeneity exerts an important function3,4. Cancer stem cells
(CSCs) are tumor cell subpopulations that can induce tumor
initiation and lead to relapses5, and characterization of CSCs is
important for cancer diagnosis, treatment, and prognosis6. The
participation of gastric CSCs has been suggested to affect the
metastasis and recurrence of GC7. Indeed, CSCs play unique roles
in cancer initiation, progression, metastasis, and chemotherapy
resistance8. CSCs could generate new tumors by self-renewal and
producing differentiated cancer progeny, thereby re-initiating the
tumorigenic process. In addition, CSCs are highly invasive and
have metastatic potential, mediating epithelial-mesenchymal
transition (EMT). In the CSC microenvironment, cytokines such as
TGFβ secreted by immune cells such as MSCs, CAFs, TAMs, and
MDSCs play important roles in EMT-mediated CSC invasion9. CSCs
could also mediate chemotherapy resistance, leading to treatment
failure and decreased survival rates for cancer patients10. The
mechanism is related to the deactivation of compounds by
overexpression of ATP-binding cassette (ABC) transporters and
detoxifying enzymes such as aldehyde dehydrogenases
(ALDHs)11,12 or through the overexpression of survival-
promoting factor BCL2 to resist apoptosis13, as well as by efficient
DNA repair mechanisms and slower cell division or dormancy
rates that result in drug resistance14,15.
Heterogeneity in cell populations poses a significant challenge

in understanding complex cell biological processes. The analysis of
cells at the single-cell level, especially single-cell RNA sequencing
(scRNA-seq), has enabled comprehensive dissection of cellular
heterogeneity16. scRNA-seq is becoming an important strategy to

detect cellular transcriptional activity17. Interestingly, scRNA-seq
can be applied in analysis for GC, such as revealing active cell
subtypes and their collaboration in tumor microenvironments18.
Furthermore, averaging artifacts related to traditional bulk RNA-
seq data can be avoided by scRNA-seq19. Finally, it should be
noted that the scRNA-seq, in combination with bulk RNA-seq
performed in the current study, screened C-X-C chemokine
receptor type 4 (CXCR4) as a key gene in the growth and
metastasis of GC. CXCR4 is identified as a chemokine receptor that
is involved in multiple pathological conditions such as immune
diseases and cancer20. In addition, CXCR4 is one of the CSC marker
genes21.
Interestingly, the mRNA level of CXCR4 could be increased by

cancer stem-like cells22. Increased CXCR4 expression by DC-SIGNR
was previously reported to augment the liver metastasis of GC23.
The activated CXCR4 signaling by collagen triple helix repeat
containing 1 promoted GC metastasis, involved with the regula-
tion of HIF-1α24. CXCR4 expression was also unfolded to share a
correlation with the worse prognosis of GC patients and function
as a promising prognostic biomarker25. Taking the aforemen-
tioned reports into account, we thus intend to explore the
possible involvement of CXCR4 in GC using scRNA-seq combined
with bulk RNA-seq to identify potential genes for treating GC.

RESULTS
Analysis of scRNA-seq data identified a large number of highly
variable genes in GC tissues
First, seven GC-related scRNA-seq data from GSE163558, including
three in situ tumor samples, two lymph node metastasis tumor
samples, and two liver metastatic tumor samples, were down-
loaded through the GEO database, with the R package “Seurat” for
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scRNA-seq data analysis. Then, after quality control and standar-
dization of the scRNA-seq data, low-quality cells were filtered out
(filtering threshold: nFeature_RNA > 500 & nCount_RNA > 1000 &
nCount_RNA < 20,000 & percent.mt <10) (Supplementary Fig. 1A).
The correlation coefficient (r) between nCount and percent.mt was
0.18, and that between nCount and nFeature was 0.91 (Supple-
mentary Fig. 1B), which indicated that the filtered cell quality
was good.
Then, highly variable genes in GC were identified from the

filtered cells, and a total of 24,924 genes were included for gene
expression variance analysis to identify the highly variable genes.
The top 2000 highly variable genes regarding variance were finally
selected for downstream analysis (Supplementary Fig. 1C).

PCA of scRNA-seq data of GC tissue samples
Next, we further performed a dimensionality reduction analysis of
the GC tissue samples. We used the RunPCA function to reduce
the PCA dimension of the top 2000 highly variable genes and
found no significant batch effect among the 7 tissue samples
(Supplementary Fig. 2A). We used the JackStraw program for
heuristic resampling testing: a part of the data was randomly
replaced (by default, 1%), and then the PCA was re-run to
construct a “zero distribution” of feature scores. We identified the
“important” PCs with abundant low p values. JackStrawPlot
function was used to visualize the top 20 principal components,
followed by comparing the distribution of each PC relative to the
mean distribution. The “important” PCs usually had a small p-value
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Fig. 1 UMAP clustering analysis and cell annotation of scRNA-seq data from GC tissue samples. A UMAP clustering analysis grouped cells
into 19 cell clusters; B UMAP plot shows similarities and differences among cells from different sources; C–D UMAP plot separately shows
similarities and differences among cells from different sources; E 19 cell clusters are annotated into 6 cell types; F the proportion of each cell
type in 7 GC tissue samples; G Heatmap of the top 10 marker gene expression in each cell cluster, with boxes of different colors representing
differentially expressed genes between different cell types.
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(in the solid line above the dotted line), fully reflecting the
information of highly variable genes (Supplementary Fig. 2B).
Combined use with the ElbowPlot function showed that the
inflection point occurred around the 10th PC, and the change
gradually reduced after the 20th (Supplementary Fig. 2C). Here, we
selectively displayed the major component genes in the first six
PCs (Supplementary Fig. 2D) and drew their heatmap (Supple-
mentary Fig. 2E), indicating that these PCs had distinct DEGs
distinguished from other PCs.
To conclude, we selected the top 20 PCs for subsequent UMAP

analysis.

Cells in the GC tissues had obvious heterogeneity
Cell heterogeneity in GC tissues was further investigated by UMAP
analysis. UMAP combines dimension reduction (such as PCA) with
a random walk on the nearest neighbor network to map high-
dimensional data to a two-dimensional space while preserving the
local distance between cells. Compared with PCA, UMAP is a
stochastic algorithm, meaning that multiple methods run on the
same dataset will yield different graphs26. After analysis by the
UMAP method, all the cells were clustered into 19 cell clusters
(Fig. 1A). By further correcting the data, we found no significant
difference between the different sample sources, but the
proportion of the cell clusters was different (Fig. 1B). In addition,
we showed the similarities and differences in the cell types based
on the data sources (Fig. 1C, D).
We annotated 19 cell clusters based on marker genes from the

CellMarker database: T cells (CD8A, CD3D, and CD3E), B cells
(CD19, CD79A, and MS4A1), Myeloid cells (CD14 and CD163),
Epithelial cells (EPCAM, KRT18, and KRT19), NK cells (KLRD1 and
IL2RB), and Stromal cells (THY1, ENG, and VWF). Based on these
markers, we finally annotated 6 types of cells, with immune cells
accounting for 93.8% (Figs. 1E and 2 & Supplementary Table 1).
Subsequently, we analyzed the proportion of each type of cell in
the GC samples, as shown in Fig. 1F. The proportions of each cell
type varied greatly among different GC samples, with epithelial
cells, myeloid cells, and stromal cells mainly originating from the
primary lesion, while T cells, B cells, and NK cells mainly originating
from the metastatic lesion. In addition, we further plotted the
expression profile of the top 10 cell-specific marker genes in GC
tumor tissue (Fig. 1G).

GC samples-derived epithelial cells could be further classified
into both malignant and non-malignant epithelial cells
GC originates mainly from the glandular epithelium of the gastric
mucosa27, and we thus further classified the epithelial cells into
both malignant and non-malignant cells. Using Myeloid cells as a
control, we used the “inferCNV” package to detect the large-scale
cell copy number variation. The results displayed that most of the
CNV occurred in the epithelial cells (Fig. 3A). Subsequently, normal
and epithelial cells in “Observation” were clustered into six classes,
which showed that classes 3 and 4 contained all normal cells with
the lowest CNV score, with 1314 malignant epithelial cells
subsequently obtained after excluding classes 3 and 4 (Fig. 3B–D).
The resulting malignant epithelial cells were further clustered

into 4 classes and named C1, C2, C3, and C4, respectively (Fig. 3E).
analysis of the source of the C1–C4 GC samples revealed that each
GC sample was distributed in the C1–C4 cell cluster (Fig. 3F).
Furthermore, we plotted the top 10 cell-specific marker expression
profiles genes in clusters C1–C4. We showed the expression of
these specific marker genes, namely S100A6, KRT8, and TPM1 in
C1, BASP1, TCL1A, and RGS13 in C2, CCR7, KLF2, and GRASP in C3,
and RGCC, CXCR4, and RGS1 in C4 (Fig. 4A, B).

The C4 cell cluster in malignant epithelial cells might be CSCs
It has been documented that CSCs may be the key drivers of GC
growth and metastasis28. Therefore, we first extracted CSCs from
malignant epithelial cells. Then, we used the “Monocle2” package
for the cell trajectory analysis of the C1–C4 malignant epithelium.
Figure 5A, B showed the dynamic characteristics and hetero-
geneity of the malignant epithelial cells, with the C4 cells located
almost entirely at the beginning of the pseudotime trajectory axis.
Subsequently, we scored the stemness of C1–C4 cells based on
the expression of CSCs markers (TFRC, CXCR4, and JAG1,
etc.)6,29,30. The results showed that the stemness fraction of C4
cells significantly differed from that of C1–C3 cells (Fig. 5C, D).
In addition, we separately analyzed the expression of the gastric

CSCs marker CD44 in the C1–C4 cell clusters and showed that C4
cell clusters had more highly expressed CD44 than the C1–C3 cell
clusters (Fig. 5E, F). In addition, cell migration and invasion were
strongly correlated with EMT; therefore, we further calculated the
correlation between CD44 expression and EMT marker genes
according to the ssGSEA algorithm, and the results showed a
significant positive correlation (Fig. 5G).

CSCs marker gene CXCR4 could be used as a molecular marker
for prognostic prediction in GC patients
Next, the marker genes of CSCs associated with the prognosis of
GC patients were further screened. The 200 marker genes of CSCs
were subjected to GO and KEGG functional enrichment analyses.
The results found that they were mainly involved in biological
processes such as nuclear division, organelle fission, mitotic
nuclear division, and chromosome segregation, as well as the TNF
signaling pathway and NOD-like receptor signaling pathway
(Fig. 6A, B).
As shown in Fig. 6C, screening of the DEGs in GC from the

TCGA-STAD combined with the GTEx database, these DEGs were
then intersected with the 200 marker genes of the C4 cell cluster,
which obtained 84 DEGs (Fig. 6D). Further survival prognosis
analysis was conducted on these 84 genes, and 10 genes that
were significantly associated with survival prognosis were
identified, namely RGS2, CXCR4, KIF11, CLSPN, KIF20B, ZNF331,
TFRC, UBE2T, CKS2, and EZH2. Among these 10 genes, only CXCR4
showed consistency between the prognosis and expression
results, with CXCR4 significantly overexpressed in GC (Fig. 6E)
and high CXCR4 expression indicating poor prognosis (Fig. 6F).
Therefore, we selected CXCR4 for further study. In addition, the
correlation between CXCR4 expression and EMT marker genes was
further calculated, and the results showed a significant positive
correlation between CXCR4 expression and EMT marker gene
expression (Fig. 6G).

Inhibition of CXCR4 expression suppressed malignant
phenotypes of CSCs and retarded tumorigenesis and liver
metastasis in vivo
First, CD44+ and CD44- MKN45 cells were sorted by flow
cytometry (Fig. 7A) and cultured under serum-free conditions.
Subsequently, RT-qPCR was performed on the CD44+ and CD44-
MKN45 cells, showing that the expression of CXCR4 in
CD44+MKN45 cells was significantly higher than in CD44-
MKN45 cells (Fig. 7B).
Then, CXCR4 expression was knocked down in CD44+MKN45

cells, and the results showed that both sh-CXCR4-1 and sh-CXCR4-
2 could significantly reduce the expression of CXCR4 in
CD44+MKN45 cells, with sh-CXCR4-2 (sh-CXCR4) having a higher
knockdown efficiency, which was used in subsequent experiments
(Fig. 7C, D). Colony formation and Transwell assays showed that
compared with the sh-NC group, the proliferation, migration, and
invasion abilities of CD44+MKN45 cells were significantly
reduced in the sh-CXCR4 group (Fig. 7E, F).
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Next, CD44+MKN45 cells transfected with sh-NC or sh-CXCR4
were injected subcutaneously or into the tail vein of nude mice to
observe tumor growth and liver metastasis. Macroscopically
visible tumors were observed in all nude mice, and all survived
during the study. The results of tumor growth and weight
measurement showed that compared to the sh-NC group, the
tumor growth rate in the sh-CXCR4 group of nude mice was
significantly reduced, and the tumor weight and volume were
significantly smaller, with a significant increase in nude mice
weight (Fig. 8A–C). H&E staining was further used to observe the
liver metastasis, and the number of metastatic liver nodules was

counted. The results showed that compared to the sh-NC group,
the number of metastatic liver nodules in the sh-CXCR4 group of
nude mice was significantly increased (Fig. 8D–F).

DISCUSSION
GC is a lethal malignancy with disease heterogeneity and poor
prognosis31. Herein, we set out to reveal the molecular mechanism
of CSC marker gene CXCR4 in GC growth and metastasis by
scRNA-seq and bulk RNA-seq and demonstrated CXCR4 as an
oncogene in spite.

0

1

2

3

4
Ex

pr
es

si
on

 L
ev

el

T cells
Myeloid cells
B cells
Epithelial cells
NK cells
Stromal cells

CD8A

0

1

2

3

4

Ex
pr

es
si

on
 L

ev
el

T cells
Myeloid cells
B cells
Epithelial cells
NK cells
Stromal cells

CD14

0

1

2

3

4

Ex
pr

es
si

on
 L

ev
el

T cells
Myeloid cells
B cells
Epithelial cells
NK cells
Stromal cells

CD19

0

1

2

3

4

Ex
pr

es
si

on
 L

ev
el

T cells
Myeloid cells
B cells
Epithelial cells
NK cells
Stromal cells

ENG

0

1

2

3

4

Ex
pr

es
si

on
 L

ev
el

T cells
Myeloid cells
B cells
Epithelial cells
NK cells
Stromal cells

EPCAM

CD19CD8A
T cells B cells

CD14
Myeloid cells

EPCAM
Epithelial cells

ENG KLRD1

Stromal cells NK cells

A)

B)

−2

0

2

4 T cells
Myeloid cells
B cells
Epithelial cells
NK cells
Stromal cells

Ex
pr

es
si

on
 L

ev
el KLRD1

−2

0

2

4
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genes in different cell types.
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In the first place, scRNA-seq data analysis conducted in our
study found many highly variable genes in GC tissues. Further-
more, we revealed that the cells in GC tissue had obvious
heterogeneity. Traditional RNA-seq allows the determination of
gene expression variations between multiple cell populations
through differential analysis but fails to discover genes contribut-
ing to cell-to-cell differences; scRNA-seq enables the determina-
tion of highly variable genes within homogeneous cells32. scRNA-
seq was applied in a previous study, where heterogeneity of
tumor cells in GC was dissected33. Similarly, prior research using
scRNA-seq unfolded the organ-specific metastasis transcriptional

heterogeneity in GC, in which stromal cells showed cellular
heterogeneity and created a pro-tumoral microenvironment34.
Bulk RNA-seq of GC tissues was employed to evaluate the tumor
microenvironment in GC35. Combining scRNA-seq and bulk RNA-
seq was also utilized to unveil the heterogeneity of malignant
epithelial cells and prognosis signatures in GC36. These studies
illustrate the feasibility of using scRNA-seq for screening key genes
involved in GC progression. In our study, we classified the
epithelial cells from GC samples into malignant and non-
malignant epithelial cells.
Further, we found that the C4 cell cluster in the malignant

epithelial cells might be CSCs. Gastric CSCs can function as
fundamental players in the development of GC and lead to
heterogeneity of this malignancy37. Of note, targeting gastric CSCs
has been highlighted to be effective for the therapy of GC, and
genes are pivotal regulatory factors in CSCs38. Therefore, we
further explored important CSC marker genes involved in GC.
Subsequently, we found in the present study that the CSCs

marker gene CXCR4 could be used as a molecular marker to
predict the prognosis of GC patients and that CXCR4 knockdown
suppressed malignant phenotypes of CSCs. Up-regulatedUp-
regulated CXCR4 due to HER2 interaction with CD44 diminished
miR-139 expression in GC cells, aiding in the promotion of
progression and metastasis of GC39. It was also revealed that
activation of CXCR4 could promote GC metastasis and that
overexpressed CXCR4 indicated poor survival of GC patients40.
Besides, up-regulatedup-regulated CXCR4 displayed unfavorable
prognostic significance for GC, and CXCR4 was positively
associated with tumor-associated macrophages41. To our acknowl-
edgment, the regulation of CXCR4 on gastric CSCs has been
increasingly reported. Invasive gastric CSCs were found to be
CXCR4 positive and shared a correlation with enhanced metastatic
ability42. The downregulated CSC marker CXCR4 by MAD2
facilitated stemness and tumorigenesis in GC43. Xue et al. used
vincristine preconditioning to obtain CSCs from the gastric cancer
cell line SGC 790122. These CSCs had self-renewal and differentia-
tion properties, formed 3D structures similar but distinct from the
tumor in vitro differentiation assays, and exhibited resistance to
multi-drugs and down-regulation of epithelial markers. Fujita et al.
found a new marker CXCR4, which induced highly metastatic
gastric cancer cells to grow anchorage independently and
produce differentiated daughter cells. They were enhanced by
using transforming growth factor-β treatment44. The results of
these studies suggest that identifying and analyzing CSCs in
gastric cancer is important for its treatment. These existing reports
can support our results about the oncogenic role of CXCR4 in GC.
In our study, we provide a more comprehensive view of the
transcription profile of primary gastric cancer cells from patients
using single-cell RNA-seq and bulk RNA-seq, which helps identify
more relevant and diverse cell types present in the tumor
microenvironment. Moreover, scRNA-seq can identify heteroge-
neity in the tumor population and help identify specific cell
subgroups, including stem-cell-like cells expressing CXCR4.
In conclusion, the results obtained in the current study

demonstrated that cells were significantly heterogeneous in GC
samples, and the CSC marker gene CXCR4 might be a key gene
affecting the growth and metastasis of GC. CXCR4 enhanced the
malignant phenotypes of CSCs, thus promoting GC growth and
metastasis (Fig. 9). This study may provide a new rationale for
screening the CSC marker gene for prognosis, clinical diagnosis,
and treatment of GC. Furthermore, CSCs could generate new
tumors by self-renewal and producing differentiated cancer
progeny, thereby re-initiating the tumorigenic process8. CSCs
could also generate chemotherapy resistance by deactivating
compounds, maintaining a low proliferation rate, resisting
apoptosis, and initiating efficient DNA repair mechanisms10.
Therefore, future studies need to further explore whether CXCR4
mediates gastric cancer occurrence and chemotherapy resistance.
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Fig. 4 The expression heatmap of the top 10 C1–C4 cell-specific
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METHODS
Data collection
We downloaded the single-cell RNA sequencing (scRNA-seq)
dataset GSE163558, containing seven gastric cancer (GC) tumor

samples (including 3 in situ tumor samples, 2 lymph node
metastasis tumor samples, and 2 liver metastasis tumor samples)
from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). We also downloaded the bulk
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RNA-seq data and clinical information of the GC (TCGA-STAD)
cohort as well as RNA-seq data from normal samples of the GTEx
database from the UCSC Xena database (https://xenabrowser.net/),
which included 375 tumor samples and 32 normal samples in
TCGA-STAD, 370 tumor samples in clinical information analysis, and
174 normal samples in GTEx.

scRNA-seq analysis
We used the Read10X function in the Seurat package (https://
CRAN.R-project.org/package=Seurat) to read the raw expression
values of the scRNA-seq dataset GSE163558. We then used the
CreateSeuratObject function (with parameters min. cells= 3 and
min. features= 200) to process the single-cell data and create an
object, which retained genes detected in 3 or more cells and cells
detecting over 200 genes, automatically calculating the number of
genes (nFeature) and RNA molecules (nCount). The Percentage-
FeatureSet function was used to calculate the mitochondrial genes
in cells. Quality control measures were applied to remove
potential doublets and low-quality cells. Cells were filtered out if
nFeature <200 and nCount <1000 or >20000, while cells with
percent.mt >10% were filtered out as well. The FeatureScatter
function was used to analyze the correlation between nCount and
nFeature.
Then, canonical correlation analysis (CCA) in the Seurat package

was applied to remove batch effects. After normalization using the
LogNormalize function, highly variable genes were calculated by
the FindVariableFeatures function. The RunPCA function was used
for principal component analysis (PCA) on the top 2000 highly

variable genes. The first 20 PCs were selected for uniform manifold
approximation and projection (UMAP) clustering analysis to
visualize cellular subtypes using the JackStrawPlot and ElbowPlot
functions. CellMarker database (http://xteam.xbio.top/CellMarker/)
was used for cell annotation, and marker genes of each cell cluster
were obtained using the FindAllMarkers function and the
Wilcoxon rank sum test algorithm (with parameters min.pct= 0.3,
logFC > 0.25, and FDR < 0.05). Finally, scatter plots and violin plots
were generated by the FeaturePlot and VlnPlot functions to
visualize gene expression in different cell types.
Subsequently, we extracted the epithelial cells using the subset

function, performed CNV analysis on these cells using the
inferCNV package (https://bioconductor.org/packages/infercnv/),
and used the K-means algorithm to remove non-malignant cells
from the epithelial cells. The malignant cells were then analyzed
using UMAP clustering. Monocle2 package (https://
bioconductor.org/packages/monocle) was used for pseudo-time
analysis, data dimensionality reduction using DDRTree, and cell
ordering based on gene expression trends. Finally, the AddMo-
duleScore function was utilized for scoring cellular stemness.

Correlation analysis of the genes and pathways
Genes in the epithelial-mesenchymal transition (EMT) pathway in
TCGA were collected. Single-sample gene set enrichment analysis
(ssGSEA) was performed using the “GSVA” software package
(https://bioconductor.org/packages/GSVA/), and Spearman’s cor-
relation analyzed the correlation between genes and pathway
scores.
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Gene functional enrichment analyses
GO and KEGG enrichment analyses of candidate genes were
performed with the clusterProfiler package (https://
bioconductor.org/packages/clusterProfiler/). The bubble diagram
of the enrichment results of biological processes, cell components,
and molecular function in GO and the bars of the KEGG
enrichment analysis results were drawn using the enrichplot
package.

Differential expression analysis and intersection gene
acquisition
Differentially expressed genes (DEGs) in TCGA-STAD were
screened by limma package (https://bioconductor.org/packages/
limma) in R language with p < 0.05 and |logFC | > 1 as the
thresholds. Volcano plots of DEGs were drawn using the ggplot2
package (https://CRAN.R-project.org/package=ggplot2) in R lan-
guage. Marker genes of the C4 cell cluster in scRNA-seq were
intersected with the DEGs, and a Venn plot was drawn to obtain
key genes.

Survival analysis
The survival analysis of the target genes was conducted through the
“survival” package (https://CRAN.R-project.org/package=survival) in R
software.

Cell culture
Human embryonic kidney cells HEK-293T (Procell, Wuhan, China)
and GC cells MKN45 (Procell) were cultured with RPMI-1640
medium (Thermo Fisher Scientific, Rockford, IL) containing 10%
FBS and 1% penicillin-streptomycin sulfate (Thermo Fisher
Scientific) in an incubator with 5% CO2 at 37 °C.

Lentiviral transduction
The lentiviral vectors harboring short hairpin RNA targeting CXCR4
(sh-CXCR4) or its negative control (sh-NC) were packaged into
HEK-293T cells (the final concentration of the shRNA [short hairpin
RNA]: 100 nM) using a lentiviral packaging kit (Invitrogen,
Carlsbad, CA). The supernatant of the virus was collected after
48 h, and the virus concentration was completed by Genechem
(Shanghai, China). Upon about 50% confluence, the MKN45 cells
were infected with lentiviral vectors harboring sh-CXCR4
(CXCR4 shRNA) or sh-NC (1 × 10 8 TU/mL) and screened with
10 μg/mL puromycin (Beyotime, Shanghai, China). After 48 h of
lentivirus infection, the selection was performed with puromycin,
and stable transfection cells was maintained for at least 1 week.
The sequences are indicated in Supplementary Table 2.

RNA extraction and real-time quantitative polymerase chain
reaction (RT-qPCR)
According to the manufacturer’s instructions, total RNA was extracted
from cells using TRIzol reagent (15596026, Invitrogen, Carlsbad, CA,
USA)45. The concentration and purity of the extracted total RNA were
detected using a Nanodrop 2000 spectrophotometer (1011U,
nanodrop, USA, https://www.thermofisher.cn/cn/zh/home.html).
Next, 1 µg of total RNA was reverse transcribed into cDNA using
the PrimeScriptTM RT reagent kit (RR047A, TaKaRa, Japan). Finally,
real-time fluorescent quantitative PCR was performed using the
SYBR® Premix Ex Taq II kit (RR820A, TaKaRa, Japan) on the
StepOnePlus real-time PCR system (Applied Biosystems). The reaction
conditions were: pre-denaturation at 95 °C for 10min, denaturation
at 95 °C for 10 s, annealing at 60 °C for 20 s, and extension at 72 °C for
34 s. There were 40 cycles, and PCR product melting curve analysis
was conducted between 65 °C and 95 °C. GAPDH was used as the
internal reference primer. The relative transcription level of the target
gene was calculated by the 2-ΔΔCT method: ΔΔCt=ΔCt experimental
group - ΔCt control group, ΔCt= Ct (target gene) - Ct (internal
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reference), and the relative transcription level of the target gene
mRNA was 2-ΔΔCt46. The experiment was repeated three times. PCR
primers are listed in Supplementary Table 3.

Western blot
Add RIPA lysis buffer containing PMSF (P0013B, Beyotime,
Shanghai, China) to lyse cells and extract total protein. The
protein extraction kit (P0028, Beyotime, Shanghai, China) was
used for protein extraction according to the instructions. The
supernatant was taken, and the total protein concentration of
each sample was determined using the BCA assay kit (P0011,
Beyotime, Shanghai, China). The protein concentration was
adjusted to 1 μg/μL, and each sample volume was set to 100 μL.
The samples were boiled at 100 °C for 10 min to denature the
proteins and then stored at −80 °C until use.
An 8%–12% SDS gel was prepared based on the target protein

band size. Protein samples were loaded onto the gel using a
micropipette equal to the volume of each lane and separated by
electrophoresis. The separated proteins were transferred onto a
PVDF membrane (1620177, BIO-RAD, USA). The membrane was
blocked with 5% skim milk or 5% BSA at room temperature for 1 h
and then incubated with rabbit anti-GAPDH (5174 S, 1:5000, Cell
Signaling Technology, USA) and rabbit anti-CXCR4 (ab181020,
1:1000, Abcam, UK) at 4 °C overnight. The membrane was then
washed thrice with 1 × TBST for 5 min at room temperature.
Finally, the membrane was incubated with goat anti-rabbit IgG-
HRP secondary antibody (ab6721, 1:5000, Abcam, UK) at room
temperature for 1 h.
The membrane was washed three times with 1 × TBST buffer for

5 min at room temperature. The membrane was immersed in ECL
reaction solution (32109, Thermo Fisher, USA) at room tempera-
ture for 1 mi, and then the liquid was removed. The membrane
was covered with plastic film and exposed using Image Quant LAS
4000 C gel imaging system (GE, USA) to obtain the band images.
GAPDH was used as an internal control for total cellular protein,
and the ratio of the grayscale value of the target band to the
reference band was used as the relative expression level of the
protein47. The protein expression level was detected, and the
experiment was repeated three times.

Flow cytometry analysis and fluorescence-activated cell
sorting
Approximately 80% of the confluent cells in the cell plate were
detached using trypsin-free EDTA and centrifuged at 4 °C. The cell
precipitates were re-suspended in HBSS (Gibco, Carlsbad, CA)
containing 1mM HEPES (Gibco) and 2% FBS and filtered with a 40-
μm mesh filter. Cells were stained with diluted anti-CD44-FITC (BD
Biosciences, Franklin Lakes, NJ) and cultured with 5% CO2 at 37 °C
for 30 min. Cells were then re-suspended in HBSS containing 1mM
HEPES, 2% FBS, and 1% penicillin-streptomycin sulfate. The
MKN45 cells were immediately analyzed and sorted by
fluorescence-activated cell sorting using the FACS™ Sample Prep
Assistant III (BD Biosciences). The experiment was repeated
three times.

Colony formation assay
200 MKN45 cells were seeded in 24-well plates and cultured in a
humidified incubator at 37 °C with 5% CO2 for 2 weeks. After that,
adherent cells were fixed with 4% paraformaldehyde and stained
with 0.5% crystal violet for 10 min. A cell cluster of over 50 cells
was considered a colony. The experiment was repeated
three times.

Transwell assay
Transwell assay was performed as previously described48. For the
migration assay, 5 × 104 MKN45 cells suspended in 200 μL of
serum-free medium were seeded in the apical chamber, and the
basolateral chamber was supplemented with 800 μL medium
containing 20% FBS. After incubation at 37 °C for 16 h, cells were
stained with 0.1% crystal violet for 30min, observed, photo-
graphed, and counted under an inverted microscope. For the
invasion assay, Matrigel (356234, BD Biosciences; preserved at
−80 °C; 50 μL/well) was supplemented to the chamber before the
addition of the cells, followed by culture for 24 h. Other steps were
the same as those in the migration assay. The experiment was
repeated three times.

Tumor xenograft in nude mouse and construction of liver
metastasis model
Twenty-four 5-6-week male immunodeficient nude mice (BALB/c,
nu/nu, Vital River, Beijing, China) were separately caged in a

Proliferation
Migration
InvasionscRNA-seq

Gastric cancer

Bulk RNA-seq

CXCR4

CXCR4

Fig. 9 The combination of single-cell RNA sequencing and bulk RNA sequencing analysis reveals the regulatory role of cancer stem cell
marker gene CXCR4 in the growth and metastasis of gastric cancer. The cells in GC samples are significantly heterogeneous, and the CSC
marker gene CXCR4 may be a key gene enhancing the malignant phenotypes of CSCs, thus promoting GC growth and metastasis.
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specific-pathogen-free animal laboratory (humidity of 60% ~ 65%
and temperature of 22–25 °C), with free access to food and water
under 12 h light/dark cycles. In addition, the mice were
acclimatized for one week before the experiment.
In a subcutaneous tumor model, 1 × 106 CD44+ MKN45 cells

were injected subcutaneously into the left shoulder of nude mice.
In a nude mouse model of liver metastasis, 1 × 106 CD44+ MKN45
cells were injected into nude mice via the tail vein. In both models,
mice were randomly injected with CD44+ MKN45 cells infected
with lentiviral vectors harboring sh-NC or sh-CXCR4 (n= 6) after
sorting CD44+ MKN45 cells. After 22 days, all nude mice were
sacrificed with CO2. Asphyxiation and the tumor and liver tissues
were removed for subsequent experiments.

H&E staining
Hematoxylin and eosin were used for staining the liver tissues49.
Liver tissue sections were stained with hematoxylin for 5 min,
differentiated with 1% ethanol hydrochloride for 3 s, and stained
with 5% eosin for about 2 min. Tissue sections were visualized
under a microscope.

Statistical analysis
All data were statistically analyzed using GraphPad Prism 8.0
(GraphPad Software, La Jolla, CA), and all experiments were
repeated at least three times. Measurement data are expressed as
mean ± standard deviation. Data between the cancer tissues and
normal tissues were compared using a paired t-test, and an
unpaired t-test was used to compare the other two groups. Data
among multiple groups were compared by one-way ANOVA and
those at different time points by two-way ANOVA or repeated
measures ANOVA, followed by Tukey’s post hoc tests. Using the
log-rank method, the Kaplan-Meier survival curve analysis was
performed for statistical tests. p < 0.05, p < 0.01, and p < 0.001
indicated statistically significant differences.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The data supporting this study’s findings are available in the methods and/or
supplementary material of this article. Further requests are available from the
corresponding author.
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