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One of the great drivers of biological research in the twenti-
eth century was the desire to understand how information 
encoded in an organism’s genome gives rise to its physical 

and behavioral phenotypes, which are collectively referred to as its 
phenome1. However, the phenotype of an organism is not merely 
a reflection of its genes, but the integrated product of its geno-
type interacting with the environmental conditions and stochastic 
effects to which the individual is exposed before observation2,3. 
Consequently, an organism’s phenome contains a large, multidi-
mensional set of observable characteristics, and the phenospace in a 
population of individuals is vast. Understanding the specific contri-
bution of the genome, environment and stochastic processes to the 
position of an individual in the phenospace is a formidable techni-
cal challenge. Fortunately, technological innovation is beginning to 
provide the tools necessary for quantifying these multidimensional 
characteristics and their underlying causes, opening up a new exper-
imental paradigm known as deep phenotyping4. Considering that 
it is fairly new, the term deep phenotyping is broadly used within 
the scientific literature. In this Review, we define deep phenotyping 
as the coupling of high-throughput experimental techniques with 
computational analyses to enable the generation, examination and 
interpretation of high-dimensional biological data.

C. elegans has many attributes that make this organism an ideal 
model system for deep-phenotyping studies. The worm is a small 
poikilotherm with an adult body length of approximately 1 mm that 
feeds on bacteria; it has a rapid life cycle, developing from egg to 
reproductive adult in approximately 3 days at 20 °C, and it has a 
deterministic developmental lineage5. In addition, the worm pri-
marily reproduces as a self-fertilizing hermaphrodite, which means 
that large, near-isogenic populations can be grown in highly con-
trolled environmental conditions. Additionally, because at least 38% 
of the protein-coding genes in the worm genome have a human 
ortholog6, insights gained from worm studies can inform us about 
human biology. Genes involved in apoptosis7 and axonal migra-
tion8,9, microRNAs10,11, and RNA interference (RNAi)12, for instance, 

were all initially identified in C. elegans and have since been shown 
to have roles in human disease13–15.

In this Review, we outline the technological and analytical devel-
opments that have enabled deep-phenotyping studies in C. elegans. 
We then examine with several examples how these tools have yielded 
greater insight into the biology of complex phenotypes. Finally, 
we offer a prospective outlook on the future of deep-phenotyping 
experiments in C. elegans and in other systems.

Tools and techniques for deep phenotyping
Historically, the phenotypic analysis of C. elegans involved the man-
ual measurement of morphometric or behavioral features such as 
changes in body shape or defects in movement16. However, modern 
biological techniques have now dramatically expanded the defini-
tion of phenotype1. RNA sequencing and mass spectrometry, for 
example, have become more widely available and less cost prohibi-
tive, enabling the transcriptomic and proteomic characterization of 
individuals. Similarly, advancements in both hardware and compu-
tational tools have increased both the throughput and informational 
content of experiments. In this section, we examine in three specific 
areas the developments that have enabled deep-phenotyping studies 
of the worm.

Manipulating the genome. A sophisticated set of techniques, 
including both forward and reverse genetic approaches, can be used 
to manipulate the worm genome and elicit phenotypes5. RNAi of 
gene expression can be achieved by feeding worms bacteria engi-
neered to express double-stranded RNA corresponding to a gene 
of interest17,18. This technique has enabled multiple reverse-genetic 
screens to identify phenotypes associated with various gene inacti-
vations19,20. More recently, several research groups have introduced 
CRISPR-Cas9 gene editing methods optimized for manipulation of 
the C. elegans genome21,22. These methods allow rapid and efficient 
knockout of genes or introduction of fluorescent markers of gene or 
protein activity.
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Hardware for deep phenotyping. Two different types of hardware 
development have enabled deep-phenotyping studies in worms. 
The first is improvement in devices for handling worms and the 
second is improvement in the imaging technology that records the 
output of an experiment. Both developments have substantially 
reduced component costs and produced many designs and proof-
of-principle experiments, which increases the accessibility of hard-
ware needed for deep-phenotyping experiments.

Manual handling of worms is labor intensive and limits the scale 
and scope of an experiment. Fortunately, the small size of the worm 
makes it very easy to manipulate with microfluidics23,24. In the past 
decade, microfluidic devices used by the C. elegans research com-
munity have been fabricated mostly from polydimethylsiloxane 
(PDMS). PDMS is nontoxic to worms, and fabrication of devices 
with this material is relatively cheap and straightforward. PDMS is 
also optically transparent and is therefore compatible with many 
types of microscopy used to study the worm. Many microfluidic 
devices include on-chip valves that take advantage of the elas-
tic properties of PDMS to control the flow of fluid containing the 
worms. This design enables automation of animal handling and 
higher sample throughput23,25–27. In addition, microfluidics can be 
used to tightly control the microenvironment surrounding the worm 
within the device, which is hard to do on an agar plate. Device and 
system designs widely used for worm experiments include arena or 
multi-chamber arrays28–31, imaging and sorting devices24,27,32–37, and 
devices enabling more complex manipulations38–41 (Fig. 1).

C. elegans has proven to be amenable to multiple imaging 
modalities. Because the worm is optically transparent, early in vivo 
studies of worm development used Nomarski optics to provide suf-
ficient contrast to observe individual cell nuclei42,43. Various types 
of electron microscopy have been used for ultrastructural studies 
of C. elegans44. High-throughput experiments typically require the 
use of automated imaging systems that can quantify the intensity 
of fluorescent reporters. The demonstration that fluorescent pro-
tein reporters can be expressed and imaged in C. elegans paved the 

way for new types of fluorescence microscopy that are compatible 
with high-throughput experimentation45. Examples include the use 
of light-sheet and lattice light-sheet microscopy (LLSM) platforms 
to study embryogenesis46–49 as well as protein dynamics in adult 
worms50. In the past year, a new form of LLSM with adaptive optics 
has been used for highly detailed imaging of cell movements during 
vulva development51. Several new microscopy platforms, including 
two-photon-based52 and light-field53,54 systems, have enabled fast 
volumetric whole-brain imaging of Ca2+ dynamics in C. elegans.  
A new form of volumetric flow cytometry using line excitation 
array detection has been used to monitor protein aggregation in 
worm models of Huntington’s disease55. Several super-resolution 
microscopy systems have also been used to study embryogenesis56,57, 
muscle structure58 and the distribution of glutamate receptors59  
in C. elegans.

Unlike imaging techniques used to examine cellular structures or 
activities, many high-content behavioral studies utilize dark-field or 
transmission imaging to enhance the contrast of transparent worms 
and allow longitudinal tracking and quantification of whole-animal 
phenotypes60,61. The hardware needed for such systems is becom-
ing cheaper and more readily available62–65. Behavior-tracking sys-
tems have also been integrated into microscopy systems that use 
targeted illumination of specific cells for optogenetic experiments 
in worms66,67. Such systems have been used to determine how the 
mechanosensory system of the worm encodes spatial and tem-
poral information about stimuli to ensure appropriate behavioral 
responses68,69. The greater availability of these systems has been cen-
tral to the rapid increase in behavioral deep-phenotyping studies.

Computational software for high-content phenotypic infor-
mation. Due to the hardware-related gains in throughput, many 
experimentalists now face a dramatic increase in the amount of 
data produced from experiments. Making sense of these data can be 
beyond the analytical capability of human vision or comprehension. 
Therefore, extracting useful information from large volumes of data 
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Fig. 1 | Microfluidics enables high-throughput experimentation in C. elegans. Examples of microfluidic devices routinely used in worm deep-phenotyping 
studies. a, Multi-chamber arrays for simultaneously studying large numbers of individual worms. b, Sorting devices used to rapidly isolate worms with 
specific characteristics. c, Arena devices for behavioral assays. Panel a adapted from ref. 29; panel b adapted from ref. 24; panel c adapted from ref. 28.
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requires workflows that can parse the content efficiently and in an 
interpretable manner. For image-based data, the typical structure of a 
deep-phenotyping workflow includes a segmentation step to identify 
objects of interest within each image70,71. This step is then followed 
by feature extraction and classification, which provides a quantita-
tive breakdown of the differences between images and allows the 
assignment of phenotypic profiles70,71. Open-source image analysis 
platforms such as ImageJ72,73 and CellProfiler74, both of which have  
C. elegans-specific plugins75–77, conveniently offer many of the com-
putational tools required to analyze high-content data.

Several different segmentation algorithms have been applied 
in C. elegans imaging informatics. These include algorithms 
that segment fluorescently labeled nuclei, which have been used 
for cell identification and tracking during embryonic develop-
ment78–81 or within the context of a digital atlas of the L1-stage 
larva82,83, as well as for tracking Ca2+ transients across neurons in 
whole-brain imaging data84,85. Algorithms also exist for segment-
ing fluorescently labeled synapses to study synaptogenesis32,86 and 
for automatically tracing fluorescently labeled neurites87 in the 
worm. Bright-field images can also be automatically segmented to 
calculate various size-related metrics of worms using the ImageJ 
plug-in WormSizer88.

Machine learning is increasingly used to automate segmenta-
tion, feature extraction and classification of images in high-content 
workflows70,89. DevStaR is a machine learning-based platform that 
has been developed to score phenotypes automatically in worms90. 
This system can segment bright-field images and count animals 
belonging to different developmental stages in a mixed population. 
Zhan and colleagues have used a modular image-processing pipe-
line for the rapid development of custom supervised learning-based 
support-vector machines (SVM) classifiers32,91. This pipeline has 
been used to train a classifier to identify the head of the worm in 
bright-field images91, as well as to train classifiers to identify neu-
rons and differentiate between ASI and ASJ neurons91 and between 
ASI, ADF and NSM neurons92 in fluorescence microscopy images. 
WorMachine is another modular pipeline that can automatically 
score a wide range of phenotypes using trained classifiers93. This 
system can identify the sex of the animal as well as quantify com-
plex, partially penetrant phenotypes or intracellular protein aggre-
gation in a group of worms93. The development of these image 
analysis pipelines allows researchers without machine-vision exper-
tise to design and perform deep-phenotyping studies in C. elegans. 
Additional examples of machine learning in imaging informatics 
and behavioral classification are provided below.

Applications of deep phenotyping
With the development of hardware and computational tools, deep 
phenotyping is now commonly used in multiple areas of worm  
biology. Examples of such studies are reviewed below.

Embryogenesis and lineage tracing. C. elegans is one of the few 
metazoans for which the entire somatic cell lineage can be traced 
from single-cell embryo to adult42,43. However, tracing cell lineage 
in the developing worm embryo is exceptionally challenging given 
the rapidity of cell division and morphological similarity across 
different cell types94. Because it is more complicated to identify 
phenotypic aberrations in the embryonic lineage than in post-
embryonic cells, the mechanisms governing embryonic cell divi-
sion and differentiation have been harder to elucidate. The advent 
of 4D imaging systems95,96 removed the need for manual observa-
tion of embryogenesis but not for curation of the resultant images 
into lineages.

Deep phenotyping can be done with manually curated data. 
As an example, a whole-genome RNAi screen identified 661 
genes involved in early embryogenesis97, and a subsequent 
study integrated transcriptional, protein interaction and visual  

phenotypic data for these 661 genes to create predictive models 
of cellular events during embryogenesis98 (Fig. 2a). The use of 
transgenic worms that ubiquitously express fluorescently tagged 
histone proteins has enabled the development of automated trac-
ing algorithms that track embryonic lineages up to the 350-cell 
stage47,79,80,99–101 (Fig. 2b).

Automated image collection and curation allows researchers to 
examine different aspects of embryonic cell division. Several studies 
have used automated lineage tracing to identify the precise cellular 
expression patterns of known embryonic genes102–104. This approach 
has allowed the construction of a single-cell-resolution atlas of gene 
expression, revealing when and where transcription factors are 
expressed in the developing embryo103,104.

It is now also possible to investigate how different genetic per-
turbations affect embryogenesis. Early studies, for example, have 
identified the subtle roles of a single transcription factor105 and the 
distinct roles of highly related and recently duplicated genes106 in 
defining an embryonic lineage. More recent studies have demon-
strated the roles of several hundred genes in cell fate choice107,108 
and in the regulation of asynchronous cell division109. A specific 
screen of chromatin regulators has also revealed distinct roles for 
several chromatin-modifying complexes during embryogenesis110. 
Together these studies are revealing the genetic programs and 
molecular mechanisms that specify how a single fertilized oocyte 
becomes an embryo containing a complex collection of differenti-
ated cell types.

Whereas tools are available for deep phenotyping of embryonic 
development, high-throughput lineaging of post-embryonic worms 
has been lagging, mainly due to technical challenges imposed by 
the need to immobilize animals prior to imaging. However, in 2017, 
Keil and colleagues presented a microfluidic device that allows 
long-term culturing of larvae and routine immobilization of the 
animals, enabling high-resolution imaging with a variety of micros-
copy techniques111. Using this platform, the investigators imaged 
animals from the L1 larval stage through to reproductive adulthood 
and examined vulva precursor cell development, apoptosis dur-
ing larval molting, neuron differentiation and neurite outgrowth. 
The emergence of new technologies such as this type of platform, 
coupled with future developments in post-embryonic phenotyping, 
is likely to lead to a complete description of the biological events 
involved in the development of a multicellular animal.

Automated high-throughput genetic screens. One of the most 
useful aspects of C. elegans as a model system has been that it allows 
forward-genetic screens to identify mutations affecting all elements 
of a gene, such as its promoter, exons, introns and other regulatory 
elements. However, most genetic screens rely on visually identifi-
able phenotypic differences from the control, which inherently lim-
its the ability to identify mutations that have weak or non-obvious 
phenotypes but that still provide valuable information about the 
function of a gene. The power of deep phenotyping for identify-
ing subtle mutants that might be missed by visual inspection has 
been demonstrated in automated screens to find mutations affect-
ing synaptogenesis32,86,112. Using a microfluidic sorting system32  
(Fig. 1b), hundreds to thousands of worms were continuously 
imaged, processed and sorted in real time. An online SVM-based 
image-processing algorithm that had been developed to classify 
multidimensional features of fluorescently labeled synapses in the 
fly was used to process the images32,86. Clustering of multidimen-
sional features for all the worms revealed the phenospace of the 
entire mutational spectrum32,86 (Fig. 2c). The clusters indicate where 
each new mutant resides in the phenospace, allowing inference of 
their potential genetic relationships. This study is an example of 
how deep phenotyping integrates high-throughput hardware with 
computational tools to provide mechanistic insights that would not 
have been possible for a human observer.
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Measuring aging and age-related decline. Over the past 30 years, 
scientists have made a concerted effort to understand the biology 
of aging. C. elegans is the premier model organism for the study 
of longevity because of its short lifespan and powerful genetics113. 
The majority of lifespan studies in worms are performed manually; 
animals maintained on agar plates are periodically examined under 
a stereomicroscope for either spontaneous or stimulated move-
ment114. These manual experiments constrain the types of pheno-
typic data and the scale of demographic data that a human observer 
can obtain. Deep-phenotyping technologies offer more efficient and 
cost-effective collection of high-throughput and high-temporal-
resolution lifespan data.

The first automated aging studies in worms used scanners to cap-
ture time-lapse data showing worm movement on agar plates115,116. 
In these systems, death is defined as a persistent absence of move-
ment, as the worms cannot be stimulated to test for induced move-
ment. Stroustrup and colleagues have used their automated system, 
termed the lifespan machine116, to examine the demographic fea-
tures of large populations117. At the population level, in groups 
that had very different lifespans after exposure to factors such as 
changes in ambient temperature or chemically induced stress, aging 
appeared to scale temporally; plots of survival against time for 

worms in different conditions could be superimposed by rescaling 
the time axis. This scaling implies that a single effective constant 
rate governs aging in C. elegans and that interventions that altered 
longevity did so by changing this rate117.

These scanner-based lifespan studies cannot gather data at the 
level of the individual because their temporal resolution does not 
allow tracking of each worm until it dies116. As a result, these systems 
cannot assess inter-individual variation in lifespan within a popula-
tion, which can be large even for isogenic worms raised in identical 
conditions118. In the past 3 years, two groups have achieved robust 
high-throughput automated acquisition of lifespan data from indi-
vidual animals30,31,119. Pittman and colleagues used a polyethylene 
glycol (PEG) hydrogel substrate seeded with spots of Escherichia coli 
as a food source for developing C. elegans embryos, each of which 
is individually placed in a single spot; once the embryos are depos-
ited, the substrate is sealed using a layer of PDMS31. The PDMS 
acts as a barrier confining each animal upon hatching to its local 
spot of E. coli. The PEG substrate can then be imaged using a wide 
array of microscopy platforms, allowing researchers to track mul-
tiple features of the development and lifespan of each worm indi-
vidually. Zhang and colleagues have used this system to show that 
when tracked at the level of the individual, aging does not display 
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temporal scaling, with long-lived animals showing an extended 
decrepitude phase—termed twilight—compared with short-lived 
individuals119. The WorMotel platform30,62 can record both sponta-
neous and stimulated movement; stimulated movement is evoked 
by a brief pulse of blue light to assess whether a worm is alive or not. 
Using this system, Churgin and colleagues have also demonstrated 
that short-lived and long-lived individual lifespans from an isogenic 
population do not temporally scale30. The differences seen between 
population-level measures of longevity and measures that account 
for inter-individual variability demonstrate the increasing power of 
deep-phenotyping technologies to study biological processes.

Dietary restriction (DR) has been shown to extend robustly 
lifespan in an evolutionarily conserved manner120. There is consid-
erable interest, from researchers in both academia and the pharma-
ceutical industry, in finding drugs that can induce the phenotypic 
effects of DR in humans without the concomitant need for dras-
tic diet change. Using the lifespan machine116, Lucanic and col-
leagues designed a high-throughput screen to identify potential 
DR mimetics in C. elegans121. The investigators screened a library 
of 30,000 small molecules, identifying 57 compounds that repeat-
edly extended the lifespan of treated animals compared with control 
worms. Several of these compounds were structurally related and 
contained a nitrophenyl piperazine moiety; further analysis of the 
most effective of the nitrophenyl piperazine compounds, NP1, sug-
gested that it extended longevity by inducing DR-like effects121.

One of the reasons for the rising interest in the study of aging is 
that the incidence of both cognitive impairment and neurodegen-
erative disease increases with old age, which imposes a substantial 
societal cost as the proportion of elderly individuals relative to those 
of working age continues to grow in the general population122. The 
research community seeks to develop treatments that can counteract 
the debilitating neurological effects of aging. C. elegans also displays 
age-related declines in cognitive ability and in the morphological 
structure of its nervous system123. Bazopoulou and colleagues have 
developed a microfluidic platform to monitor the Ca2+ responses 
of a specific polymodal neuron, ASH, as it ages124. They used this 
system to conduct a pilot screen to identify small molecules that 
could delay the age-related decline of ASH activity. Several mol-
ecules from a panel of 107 FDA-approved compounds delayed the 
decline of Ca2+ responses in ASH during aging; the most effective of 
these compounds were tiagabine and honokiol124. This study dem-
onstrates that deep-phenotyping technologies can acquire dynamic 
readouts, such as neural activity, in a high-content manner.

Drug discovery and small-molecule biology. Deep phenotyp-
ing is increasingly being embraced by researchers in the field of 
drug discovery because it allows rapid screening of the pleiotro-
pic effects of different molecules. Due to its ease of culture and 
amenability to high-throughput experimentation, the worm has 
been used to model many different human diseases125,126. Although 
many researchers are developing methodologies to speed up drug 
discovery using worm models of disease, these platforms do not 
fit our definition of deep phenotyping as they tend to analyze sin-
gle and relatively simple phenotypes. However, we review these 
methodologies here because they may suggest how newer deep-
phenotyping platforms will transform drug discovery screens in 
model organisms.

The phenotype of diseased hepatocytes has been replicated in a 
worm model of cirrhosis expressing a mutant human α1-antitrypsin 
(ATZ) fused to green fluorescent protein (GFP) that aggre-
gates within the endoplasmic reticulum of intestinal cells126. A 
plate reader-based screen of a commercially available compound 
library yielded 33 compounds that decreased the rate of GFP 
aggregation within this worm’s intestinal cells126. More recently, a  
high-throughput genome-scale RNAi screen of ATZ model worms 
was performed to find gene inactivations that alter intestinal GFP 

aggregation; the study identified 100 genes whose inactivation 
decreased GFP aggregation in the ATZ worms. Using an in silico 
approach, the investigators identified drugs known to target the 
mammalian orthologs of the worm genes and tested them for rescue 
of the GFP-aggregation phenotype127.

Polyglutamine expansion (polyQ) diseases, such as Huntington’s 
disease, are another example of protein-aggregation disorders that 
have been modeled successfully in worms128. A 2016 study unveiled 
a high-resolution microfluidic system for high-throughput drug 
discovery using a worm polyQ model as a demonstration of the 
platform’s potential129. With this platform, Mondal and colleagues 
rapidly screened around 100,000 worms to test 983 FDA-approved 
compounds for their ability to reduce yellow fluorescent protein 
(YFP) aggregation in a high-polyQ strain129. The screen identified 
four compounds that induced a significant reduction in protein 
aggregation. Another high-resolution microfluidic system has been 
developed to identify compounds that affect axon regeneration in 
C. elegans130. This platform was used to perform high-throughput 
laser microsurgery specifically on the axons of the PLM neuron and 
then move the axotomized worms into media containing differ-
ent compounds to test the effects on neurite regrowth. This screen 
revealed that the compounds staurosporine and prostratin could, 
respectively, inhibit and promote axonal regeneration130.

The use of deep-phenotyping technologies might also enable 
cost-effective studies of widespread but often neglected diseases. 
Parasitic nematodes, for example, are thought to infect a billion 
people worldwide and are also a substantial source of infection in 
many animals and plants that humans depend on for their food and 
livelihoods. However, the development of anthelmintic drugs has 
not kept pace with the acquisition of drug resistance by these nema-
todes, and therefore new therapeutics are urgently needed131,132. 
Since parasitic nematodes are difficult to work with directly because 
they need to grow in a host system, C. elegans has become a model 
system for anthelmintic toxicology. The WormScan platform can 
simultaneously measure the mobility, brood size, body size and 
lifespan of worms either on agar plates or in liquid culture115,131. This 
system was used to screen 26,000 compounds, resulting in the iden-
tification of 14 potential anthelmintic compounds. The Invertebrate 
Automated Phenotyping Platform (INVAPP) also utilizes a 96-well-
plate format for culturing worms in liquid. However, the automated 
image capture relies on a high-frame-rate camera instead of a scan-
ner, giving this system increased sensitivity in the detection of drug-
induced motility defects132. A proof-of-concept drug screen using 
INVAPP with a 400-compound library identified 14 molecules that 
impaired worm growth132. A separate compound-library screen 
against the parasitic nematode Trichuris muris using the INVAPP 
platform and the Paragon algorithm uncovered an entirely new 
class of promising anthelmintics133. Such deep-phenotyping studies 
of C. elegans allow researchers to rapidly identify potential anthel-
minthic drugs and their modes of action without performing the 
complex in-host assays required to study parasitic worms.

Small-molecule screens are not only a tool to identify therapeu-
tic chemicals; they can also be used to study the biology of genetic 
pathways. The gene skn-1 encodes a transcription factor that reg-
ulates the worm’s response to oxidative and xenobiotic stress134. 
Leung and colleagues performed a plate reader-based screen for 
small-molecule activators of the protein skinhead-1 (SKN-1) by 
measuring the induction of a GFP-based transcriptional reporter 
of the skn-1 target gene gst-4135. The investigators then performed 
an ultra-high-throughput screen for inhibitors of SKN-1 in a com-
pound library containing >364,000 small molecules136. This screen 
identified 125 molecules that specifically lowered the fluorescence 
signal of the gst-4::gfp reporter compared with a control, suggest-
ing that these molecules are SKN-1 inhibitors136. A similar strategy 
was used to study the male-specific linker cell, which undergoes 
cell death just after the molt between the fourth larval stage and 
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adulthood137. The death of this cell is independent of caspases, 
therefore non-apoptotic, and shares many morphological features 
with other non-apoptotic cell death observed in vertebrate develop-
ment137. Schwendeman and Shaham performed a proof-of-concept 
small-molecule screen to identify potential inhibitors of linker-cell 
death that might shed further light on the biology of this phenom-
enon138. A screen of 23,797 compounds using a laser-scanning 
cytometer identified six compounds that caused persistence of the 
linker cell by inducing some form of global developmental delay in 
the worms that was rescuable upon removal of the worms from the 
drug138. Together these studies demonstrate how the use of deep-
phenotyping technologies might enable quantitative measurement 
of multiple morphometric traits to gain new insight into biology.

Behavioral analyses of freely moving worms. One of the original 
motivations that drove the development of C. elegans as a model 
system was the desire to understand how the nervous system of an 
animal gives rise to its behaviors16. The history and biological signif-
icance of behavioral studies of C. elegans were extensively reviewed 
by McDiarmid and colleagues in 201761. In this Review, we briefly 
discuss improvements in worm-tracking hardware and software in 
the past 20 years and show how deep-phenotyping studies might 
reveal mechanisms underlying emergent behaviors.

The rapidity of behavior changes in freely moving worms makes 
it nearly impossible for a human observer to record all events in real 
time. Therefore, the majority of behavioral studies use some form 
of automated imaging. The earliest tracking systems could record 
the spatial position, speed and turning rate of individual worms139. 
Newer tracking platforms offer more comprehensive descriptions of 
worm behavior. Worm-tracking systems fall into two categories: sin-
gle-worm trackers for high-resolution analysis of individual behav-
ior140–143 and multi-worm systems for population-level studies65,144–149 
(Fig. 3). These systems have elucidated the behavioral genetics of 
several sensory modalities. Explicit analyses of different behavioral 
features of thousands of animals from 239 genotypes uncovered 87 

genes involved in locomotion, including components of the Gαq 
signaling pathway, and predicted 370 specific genetic interactions 
among them150. Similar studies have identified genes involved in 
thermotaxis151, chemotaxis144,152 and mechanosensation144. Most of 
these studies were performed on agar plates. However, the develop-
ment of microfluidic arenas now allows for precise spatiotemporal 
control of the chemical environment, revealing behaviors that are 
not observable in plate-based experiments28.

In addition to the improvements in worm-tracker hardware, the 
development of new algorithms has led to a more comprehensive 
description of worm behaviors. For example, principal component 
analysis has been used to decompose the postural space of worms 
into eigenvectors referred to as eigenworms153. Surprisingly, the 
study showed that the postural space of locomoting worms on agar 
plates is low dimensional and that the superposition of just four 
eigenworms is sufficient to describe the majority of the worm’s 
locomotory postures. This analysis, which dramatically reduces the 
complexity of quantifying behavioral patterns, has been built into 
many worm-tracking systems141,144,153,154. The approach has enabled 
deep-phenotyping studies of behavioral dynamics, such as the cre-
ation of a dictionary of behavioral motifs curated from both wild-
type and 307 mutant strains154. Similarly, an extensive phenotypic 
database of locomotory behaviors for a large number of strains was 
compiled through comprehensive behavioral recording for multiple 
alleles of the same gene as well as some double and triple mutants141. 
These dictionaries154 and databases141 uncover subtle behavioral 
phenotypes that cannot be discerned by manual observation, 
underscoring the importance of deep-phenotyping pipelines.

There is still limited understanding of how behaviors emerge 
from the integration of information from the external environ-
ment and the worm’s internal state. This problem has been stud-
ied extensively in food-related behaviors155. The behavioral state 
transitions that a worm undergoes while foraging, as well as the 
informational value of the food it encounters, can be modeled 
mathematically156–158, and these models can be used to predict the 
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worm’s response to food156,158. We anticipate that the integration of 
such predictive models into deep-phenotyping studies will lead to 
greater mechanistic insight into the genetics of foraging behavior. 
Increasing experimental throughput is also essential to achieve 
deep phenotyping of foraging behavior. WorMotel allows for highly 
parallelized monitoring of individual worms under uniformly con-
trolled environmental conditions30,62. This platform has been used 
to examine the relationship between food abundance and roam-
ing (active) or dwelling (sedentary) behaviors159,160. These studies 
reveal the biological complexity of foraging behaviors. For example, 
serotonin produced by ADF neurons promotes roaming, whereas 
serotonin produced by NSM neurons promotes dwelling160. Other 
biological amines such as dopamine promote dwelling159, whereas 
octopamine is involved in roaming behaviors160.

Similar experimental parallelization has been performed in 
plate-based foraging assays with the use of multiple cheap cam-
eras161. Stern and colleagues examined roaming and dwelling 
behaviors in individual worms continuously across their develop-
ment161. The pattern of behaviors varied reproducibly across dif-
ferent developmental stages as well as between the onset and exit 
phases of each larval stage. The study showed that a suite of neu-
romodulators is responsible for the regulation of these behavioral 
patterns161. Interestingly, by tracking individual worms throughout 
their development, the investigators also identified striking inter-
individual variation in roaming behavior. Even though the worms 
were derived from isogenic populations, some animals consistently 
roamed less across all developmental stages, whereas others consis-
tently roamed more161. Quantifying this type of stochastic variation 
in any phenotype and understanding its biological origins is chal-
lenging given the large numbers of individuals that must be sur-
veyed. Deep phenotyping offers a way to integrate high-throughput 
experimentation with comprehensive behavioral analysis.

Whole-brain imaging: the next frontier in deep phenotyping. 
How the nervous system encodes external environmental informa-
tion to modulate animal behavior is the subject of intense exami-
nation in biology. This question becomes even more challenging 
to answer in natural habitats, where the environment contains a 
myriad of conflicting cues that an animal must successfully inte-
grate to perform behaviors that maximize its chance of survival. In  
C. elegans, the nervous system is essentially divided into three layers: 
sensory neurons that detect external stimuli, interneurons that inte-
grate information from sensory neurons, and motor neurons that 
control the behavior of the worm, with a few polymodal neurons 
that perform several of these functions162. It is a complex problem 
to understand how the different layers receive and process infor-
mation and communicate with one another to ensure the appro-
priate outcome. For example, the aversive chemotactic response to 
isoamyl alcohol exposure is stochastic, even though the chemosen-
sory neuron that detects the stimulant depolarizes in a determin-
istic way163. The behavioral stochasticity of this chemotaxis circuit 
is generated at the level of interneurons via their collective activ-
ity163. The development of genetically encoded Ca2+ indicators has 
allowed imaging of neuronal activity in the worm, ranging from a 
single neuron all the way up to the entire brain164. This develop-
ment, in turn, has paved the way for whole-brain imaging platforms 
for long-term observation and analysis of large numbers of neurons. 
The goal of these systems is to dissect neuronal activity and identify 
not only neural circuits associated with specific behaviors, but also 
global states that reflect the functional architecture of the brain.

Several studies have successfully characterized whole-brain 
dynamics under various experimental conditions. Kato and  
colleagues used a microfluidic imaging platform to carry out whole-
brain recordings from immobilized worms, which revealed that the 
time evolution of network dynamics among neurons is directional 
and cyclical165. Different phases in this cyclical activity regulate 

motor commands that drive certain locomotory behaviors. Using 
a spinning-disk confocal system, Venkatachalam and colleagues 
developed a whole-brain imaging platform and studied representa-
tions of sensory input and motor output of individual neurons upon 
thermosensory stimulus in freely moving worms166. Similarly, using 
a simultaneous worm-tracking and whole-brain imaging system, 
Nguyen and colleagues recorded whole-brain activity of freely mov-
ing worms without stimulation85,167; in a related effort, Nguyen and 
colleagues used machine learning to track neurons in the freely mov-
ing heads of worms, which is an important step toward robustly and 
automatically analyzing such large sets of dynamical data85. More 
recently, Nichols and colleagues investigated global brain dynamics 
during lethargus, a sleep-like state in the worm168. The study showed 
that global brain activity becomes quiescent during lethargus; how-
ever, specific neurons remain active as these cells promote the estab-
lishment of the quiescence. By examining whole-brain dynamics, 
this work demonstrated that the transition to the wakeful state is 
carried out via reestablishment of activity in specific neurons that 
drives global brain dynamics back to the aroused state168.

The examples reviewed above show the benefit of studying the 
entire nervous system rather than analyzing specific subsets of neu-
rons, given that researchers have not identified all the neurons or 
functional connections in circuits governing various sensorimotor 
behaviors. These examples also point to opportunities for future tech-
nological and theoretical developments in analyzing and understand-
ing such complex and dynamical systems. For instance, the field still 
needs better imaging systems that allow coupling of other experimen-
tal techniques such as optogenetics. Automatic identification of neu-
rons is also needed, along with new tracking algorithms that are more 
accurate, faster or both. Furthermore, better theories might be needed 
in the future for interpreting large volumes of curated data and mak-
ing sense of how the brain processes information and makes decisions.

Future outlook
In this Review, we have highlighted many recent conceptual 
and methodological developments for deep phenotyping using  
C. elegans as a model system. The success of these studies clearly 
indicates that by measuring many aspects of the morphology, func-
tional output and behavior of cells, as well as circuits, tissues and 
individual animals, we can expand the scope of biological studies. 
Furthermore, by using appropriate mathematical and statistical 
tools, we can better understand the mechanisms underlying many 
biological processes. We believe that these approaches will become 
more ubiquitous as improved microscopy and other experimental 
tools as well as analytical pipelines using advanced computational 
and theoretical techniques become more accessible.

Although many of the tools discussed above were used in a  
C. elegans-specific context, they are applicable to a broad range of 
biological systems. For example, microfluidics is widely used in the 
analysis of single cells, with platforms such as DropMap providing 
high-content, single-cell-resolution analysis of IgG-secreting cells169. 
Substantial progress has also been made in developing automated ani-
mal handling and tracking systems that can work with diverse organ-
isms. The MAPLE robotic system and its derivatives can perform 
deep-phenotyping experiments on Saccharomyces cerevisiae, Physarum 
polycephalum, Bombus impatiens and Drosophila melanogaster  
in addition to C. elegans65,170. Several studies have also demonstrated 
the feasibility of deep phenotyping in the vertebrate model system 
Danio rerio. High-throughput optical-projection tomography has 
been used to measure gene expression changes across the brains of 
different mutants of zebrafish171. Similarly, micron-scale tomogra-
phy172 has been used to study the determinants of skeletal develop-
ment in zebrafish173. We predict that the future integration of efforts in 
different disciplines such as biology, engineering and computational 
sciences will considerably accelerate progress in linking phenotypes 
to genotypes, environmental conditions and stochasticity.
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