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North Atlantic Oscillation impact on the Atlantic Meridional
Overturning Circulation shaped by the mean state
Hyo-Jeong Kim 1, Soon-Il An 2,3,4✉, Jae-Heung Park 4, Mi-Kyung Sung 5, Daehyun Kim 6, Yeonju Choi 3 and Jin-Soo Kim 1

Accurate representation of the Atlantic Meridional Overturning Circulation (AMOC) in global climate models is crucial for reliable
future climate predictions and projections. In this study, we used 42 coupled atmosphere–ocean global climate models to analyze
low-frequency variability of the AMOC driven by the North Atlantic Oscillation (NAO). Our results showed that the influence of the
simulated NAO on the AMOC differs significantly between the models. We showed that the large intermodel diversity originates
from the diverse oceanic mean state, especially over the subpolar North Atlantic (SPNA), where deep water formation of the AMOC
occurs. For some models, the climatological sea ice extent covers a wide area of the SPNA and restrains efficient air–sea
interactions, making the AMOC less sensitive to the NAO. In the models without the sea-ice-covered SPNA, the upper-ocean mean
stratification critically affects the relationship between the NAO and AMOC by regulating the AMOC sensitivity to surface buoyancy
forcing. Our results pinpoint the oceanic mean state as an aspect of climate model simulations that must be improved for an
accurate understanding of the AMOC.
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INTRODUCTION
The Atlantic Meridional Overturning Circulation (AMOC) is one of
the key drivers of global climate variability and change, owing to
its significant role in global heat redistribution. Studies have
shown that a strengthening of the AMOC leads to warming and
cooling in the northern and southern hemispheres, respec-
tively1–6, with such changes further shaping various aspects of
the surface climate, such as the European summer temperatures7,
Atlantic hurricane activity8,9, mid-latitude jet intensity10,11, latitude
of the Intertropical Convergence Zone12–15, and African/Asian/
Indian monsoons16–19. Due to its wide-ranging climatic influence,
the AMOC also has significant socioeconomic impacts, affecting
harvest and fisheries20–23. Therefore, an accurate prediction of
future AMOC change is required to minimize climate risk for the
sake of socioeconomics.
Generating accurate and reliable future predictions and

projections of the AMOC requires a full understanding of its: (i)
response to various external forcing (e.g., orbital configurations,
meltwater flux from ice sheets, and greenhouse gas concentra-
tion) and (ii) internal dynamics. The former has been intensively
studied in the context of increasing greenhouse gas concentra-
tions, leading to the current consensus that the mean AMOC
intensity will weaken in response to greenhouse gas-induced
warming24–30. This is because greenhouse warming is likely to
enhance the stratification of the ocean in the North Atlantic,
through increases in surface heat31,32 and freshwater33,34 fluxes
(i.e., precipitation–evaporation and runoff). However, the internal
dynamics of the AMOC are not yet fully understood35, despite
being considered a crucial factor for decadal-scale climate
predictions as a slow-varying component of the climate
system36,37.
Because direct observations of the AMOC are limited, research-

ers have used climate models as a tool to improve knowledge of

the variability of the AMOC; using model-based approaches,
various mechanisms explaining the AMOC variability have been
proposed. Some studies suggested that oceanic processes such as
freshwater supply from the Arctic38 and the interaction between
sea surface temperature (SST) variability and density-driven
circulation anomalies39–42 are key processes underlying its
variability. Other studies have stressed the role of the atmosphere
by considering AMOC variability as an atmospheric noise-driven
linear oscillator43 or an air–sea coupled mode at the interdecadal
timescale44–46.
The North Atlantic Oscillation (NAO) is a widely known

atmospheric factor that contributes to changes seen in the
AMOC36,45,47–55. Although the NAO has been better recognized for
its sub-seasonal variability, which is much shorter compared to the
timescale at which ocean circulation varies56, observations show
that it also exhibits annual and longer timescale variabilities36,57,58.
These variabilities could physically influence the decadal and
longer variability of the AMOC. For example, the NAO can
modulate the AMOC intensity through changes in surface
buoyancy fluxes in the deep water formation regions59–64; that
is, the Labrador65–68 and Irminger Seas, Iceland basin69,70 (we shall
refer the above regions as the subpolar North Atlantic [SPNA]),
and Nordic Seas68,71. In ocean-only models, in which atmospheric
NAO forcing is prescribed, the AMOC changes driven by the NAO
are consistently simulated where it is often portrayed as positive
peaks when the NAO precedes48,53,55 in lagged correlations
between smoothed NAO and AMOC indices. However,
ocean–atmosphere coupled global climate models (CGCMs) show
a wide range in the magnitude of the correlation and the time lag
in which maximum correlation appears, with many models
underestimating the correlation compared to ocean-only mod-
els36,55,72. Such large uncertainty in the NAO–AMOC relationship in
CGCMs could be attributed to various factors. For example,
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previous studies pointed out that the variability of the NAO is
often underestimated in coupled climate models36,72,73 and the
heat flux forcing from the NAO to the sea surface may not be well-
represented over the deep water formation region55. Also, the
influence of the NAO on the AMOC via the Nordic Sea deep water
formation can depend on the model’s ability to represent the
Nordic Sea–Atlantic Ocean exchange (e.g., through the
Greenland–Scotland ridge overflow)64,74. Yet, the source of the
intermodel diversity in the NAO–AMOC relationship has not yet
been fully understood. In particular, the roles of oceanic processes
and mean states have not been examined.
To understand why the decadal variability of the AMOC

associated with the NAO differs widely in the coupled models,
we analyzed preindustrial runs made with state-of-the-art CGCMs
that participated in Coupled Model Intercomparison Project phase
6 (CMIP6; Table 1). Specifically, we thoroughly examined possible
physical factors that could be responsible for different
NAO–AMOC relationships between models, such as differences
in NAO forcing or AMOC responsiveness. We show that the diverse
NAO–AMOC relationships in the CGCMs are primarily shaped by
oceanic mean states, which determine the sensitivity of the AMOC
response to the surface buoyancy forcing induced by the NAO.

RESULTS
Large intermodel diversity of the NAO–AMOC relationship in
CMIP6
The influence of the NAO on ocean circulation manifests itself
through surface fluxes. During the positive phase of the NAO,
anomalous westerly winds recurring in the SPNA provide a
negative surface heat and freshwater fluxes to the ocean surface;
these winds yield increases in seawater density and the
strengthening of deep water formation in the SPNA, which is
known to be closely related to the AMOC intensity75–78. Thus, a
positive NAO tends to be followed by a strong AMOC. This
relationship is evaluated using lagged regression coefficients
between smoothed NAO and AMOC indices (βτ where τ indicates
lag). The observed NAO index can be measured as the difference
between zonally averaged sea level pressure (SLP) at two latitudes
during winter, with the SLP normalized at each latitude before
subtracting36 (Methods). In Fig. 1a (inset), its temporal relationship
with various AMOC indicators, which are derived from the SST,
salinity, and subsurface temperature28,79–82 (for details, see
Methods and Supplementary Fig. 1), is assessed. Although these
indirect indicators do not directly represent the AMOC intensity
and bear some uncertainties, being influenced by other local/
remote factors83–87, the consistency among them suggests a
significant lead of the NAO over the AMOC. Previous study88 has
also reported a similar relationship in the observation where a
positive NAO leads warm North Atlantic SST at the decadal
timescale, which is thought to be made via heat transport of the
AMOC. With the AMOC index for climate models defined as the
maximum streamfunction at 40°N (Methods), most models except
for 13 out of 42 reproduced a similar temporal relationship
between the smoothed NAO and AMOC indices with a positive
peak occurring at negative lags (‘+NAO leading +AMOC’ in Table
1; see Supplementary Fig. 2). The time lag is generally shorter in
models compared to what is inferred from AMOC proxies. This
could partly be attributed to the underestimation of the
characteristic timescale of the NAO, indicated by significant peaks
of power spectrums of the observed and simulated NAO indices
(not shown). Another notable feature in the proxy-based relation-
ship (Fig. 1a, inset) is significant negative peaks that tend to occur
at positive lags, which is not simulated in CMIP6 models
(discussed later). While the qualitative feature of a positive
relationship where the NAO leads are largely consistent, the
sensitivity of the AMOC to the NAO, which is assessed by the peak

magnitude of βτ (hereafter, β, the value assessed within lag −10 to
0 years), differs greatly between the models (Fig. 1a). This shows
that in CMIP6, significant intermodel diversity exists. Such diverse
patterns have also been found in the coupled models of the CMIP
phase 5 (CMIP5) generation55. However, for ocean-only models
with the prescribed atmospheric forcing, the NAO’s influence on
the AMOC was robustly simulated across models55.

Strong mean state-dependency of β
Figure 1b shows that the sensitivity of the AMOC to NAO (β)
strongly depends on the mean characteristics of the SPNA
(65°W–0°, 45°–63°N; hatched area in Fig. 2b), especially on the
mixed layer depth (MLD) averaged over the strong-convection
(FMA) season. Here, although both SPNA and Nordic Seas are
known to be major deep water formation regions, in this study, we
focus on the SPNA only because the NAO’s influence on each
region is known to be different64 and the detailed physical
processes in the Nordic Seas may be significantly model-
dependent under the influence of overflows64,74. Among the 42
CMIP6 models, 39 (except INM-CM4–8, INM-CM5-0, and MIROC-
ES2L) provided the MLD as an output variable, and it was found
that the larger AMOC response tended to be induced by the NAO
when the SPNA MLD was deeper on average. The correlation
between the two is remarkably high (r= 0.76, black line),
indicating that the mean SPNA MLD explains 58% of the variability
of β. Although this high correlation value is to some extent
attributable to the two models with the deepest mean MLD (GISS
family), the correlation when excluding these two models
(r= 0.51) still remains statistically significant at the 95% con-
fidence level, indicating a robust relationship between the mean
MLD and β. In other words, the diverse NAO–AMOC relationships
in the CMIP6 models are closely related to diversity in the mean
state of the SPNA. Note that no such relationship was found when
the same analyze was conducted for the Nordic Seas (20°W–10°E,
65°–80°N, Supplementary Fig. 3).

Physical relationship between MLD and β

To understand the physical factors underlying the strong MLD
dependency in the NAO–AMOC relationship in CMIP6, we first
examined wintertime sea ice concentration (SIC) over the SPNA. In
Fig. 2a, the mean SICs for each model are shown in descending
order. Here, we divided the CMIP6 models into three groups based
on this result (i.e., Groups 1, 2 and 3 in Fig. 2a). The criterion for
dividing Group 1 and 2 is 15%, which is the value conventionally
used when defining the sea ice extent (SIE). Group 3 was defined
due to data availability, not for a physical reason, so we do not
conduct separate analysis on Group 3. For Group 1, the sea ice
during winter extends so far southeast that it covers a wide area in
the SPNA (Fig. 2b). As this sea ice cap prevents surface flux
anomalies from being delivered to the ocean, the mean MLD
remains shallow, and the sensitivity of the AMOC to the NAO also
decreases. Therefore, the Group 1 models are in the regime of
shallow mean MLD and low β in Fig. 1b (open circles). Note that
the eleven models in Group 1 do not necessarily share the same
ocean component (ICON-O for ICON-ESM-LR, NEMO3.4.1 for the
CanESM family, MPAS-Ocean for the E3SM family, and NEMO3.6
for the EC-Earth3 family and IPSL-CM6A-LR; Table 1). Although the
mean SIE is rather large in Group 1 models, we cannot conclude
that this is unrealistic, since the simulated mean field in this study
represent the preindustrial condition whose atmospheric green-
house gas concentration was lower. In fact, some of Group 1
models (E3SM-1-0, EC-Earth3-Veg, and CanESM5) have a relatively
high climate sensitivity compared to others89, which could have
contributed to the colder mean state in the North Atlantic in the
preindustrial simulation.
The second group consisted of the models that simulated

smaller sea ice extent. While the cause of the low β in Group 1 can
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Table 1. CMIP6 model configurations and classification based on the temporal relationship between the NAO and AMOC.

NAO–AMOC temporal
relationship

Model Atmospheric
resolution

Oceanic
resolution

Ocean
component

Data
length (yr)

Reference

+NAO leading+ AMOC ACCESS-CM2 1.9° × 1.3° 1° × 1° MOM5 500 Dix et al.121

ACCESS-ESM1-5 1.9° × 1.2° 1° × 1° MOM5 900 Ziehn et al.122

CMCC-ESM2 1.3° × 0.9° 1° × 0.6° NEMO3.6 250 Lovato et al.123

CMCC-CM2-SR5 1.3° × 0.9° 1° × 0.6° NEMO3.6 500 Lovato et al.124

CNRM-CM6-1 1.4° × 1.4° 1° × 0.6° NEMO3.6 500 Voldoire125

CNRM-CM6-1-HR 0.5° × 0.5° 0.25° × 0.17° NEMO3.6 300 Voldoire126

CESM2 1.3° × 0.9° 1° × 1° POP2 1200 Danabasoglu et al.127

CESM2-FV2 1.9° × 2.5° 1° × 1° POP2 500 Danabasoglu et al.128

CESM2-WACCM 1.3° × 0.9° 1° × 1° POP2 499 Danabasoglu et al.129

CESM2-WACCM-
FV2

1.9° × 2.5° 1° × 1° POP2 500 Danabasoglu et al.130

E3SM-1-0 1° × 1° 1° × 1° MPAS-Ocean 500 Bader et al.131

E3SM-1-1 1° × 1° 1° × 1° MPAS-Ocean 165 Bader et al.132

FGOALS-g3 1° × 0.8° 1° × 1° LICOM3 500 Li et al.133

GISS-E2-1-G 2.5° × 2° 1.25° × 1° GISS Ocean 345 NASA/GISS134

GISS-E2-2-G 2.5° × 2° 1.25° × 1° GISS Ocean 151 NASA/GISS135

HadGEM3-GC31-
LL

1.9° × 1.3° 1° × 0.5° NEMO3.6 500 Ridley et al.136

HadGEM3-GC31-
MM

0.8° × 0.5° 0.3° × 0.1° NEMO3.6 500 Ridley et al.137

IPSL-CM6A-LR 2.5° × 1.25° 1° × 0.5° NEMO3.6 800 Boucher et al.138

MIROC6 1.4° × 1.4° 1° × 1° COCO4.9 500 Tatebe and
Watanabe139

MIROC-ES2L* 2.8° × 2.8° 1° × 1° COCO4.9 500 Hajima et al.140

MPI-ESM-1-2-
HAM

1.9° × 1.9° 1.5° × 1.5° MPIOM1.6.3 780 Neubauer et al.141

MPI-ESM1-2-HR 0.9° × 0.9° 0.4° × 0.4° MPIOM1.6.3 500 Jungclaus et al.142

MPI-ESM1-2-LR 1.9° × 1.9° 1.5° × 1.5° MPIOM1.6.3 1000 Wieners et al.143

MRI-ESM2-0 1.1° × 1.1° 1° × 0.5° MRI.COM4.4 701 Yukimoto et al.144

NorCPM1 1.9° × 1.9° 1° × 1° MICOM 500 Bethke et al.145

NorESM2-LM 2.5° × 1.9° 1° × 1° MICOM 501 Seland et al.146

NorESM2-MM 1.25° × 0.9° 1° × 1° MICOM 500 Bentsen et al.147

UKESM1-0-LL 1.9° × 1.3° 1° × 0.5° NEMO3.6 1880 Tang et al.148

UKESM1-1-LL 1.9° × 1.3° 1° × 0.5° NEMO3.6 462 Mulcahy et al.149

+NAO co-occurring
with+ AMOC

CanESM5 2.8° × 2.8° 1° × 1° NEMO3.4.1 1000 Swart et al.150

CanESM5-CanOE 2.8° × 2.8° 1° × 0.6° NEMO3.4.1 501 Swart et al.151

EC-Earth3-LR 1.1° × 1.1° 1° × 0.6° NEMO3.6 201 EC-Earth
Consortium152

ICON-ESM-LR 1.9° × 1.9° 0.4° × 0.4° ICON-O 500 Lorenz et al.153

INM-CM4-8* 2° × 1.5° 1° × 1° INM-OM5 531 Volodin et al.154

INM-CM5-0* 2° × 1.5° 0.5° × 0.25° INM-OM5 1201 Volodin et al.155

Statistically not distinguished
from zeroa

CNRM-ESM2-1 1.4° × 1.4° 1° × 0.6° NEMO3.6 500 Seferian156

E3SM-1-1-ECA 1° × 1° 1° × 1° MPAS-Ocean 165 Bader et al.157

EC-Earth3 0.7° × 0.7° 1° × 0.6° NEMO3.6 501 EC-Earth
Consortium158

EC-Earth3-
AerChem

0.7° × 0.7° 1° × 0.6° NEMO3.6 501 EC-Earth
Consortium159

EC-Earth3-CC 0.7° × 0.7° 1° × 0.6° NEMO3.6 505 EC-Earth
Consortium160

EC-Earth3-Veg 0.7° × 0.7° 1° × 0.6° NEMO3.6 500 EC-Earth
Consortium161

EC-Earth3-Veg-
LR

1.1° × 1.1° 1° × 0.6° NEMO3.6 501 EC-Earth
Consortium162

Asterisk (*) represents models for which the MLD variable was not available at the time of analysis.
aWith ‘zero’ referring to the lagged regression coefficient between the NAO and AMOC (Supplementary Fig. 2).
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be easily understood through the sea ice cover effect, it is not
straightforward why β is proportional to the mean MLD within
Group 2 (r= 0.80, red line in Fig. 1b). The low sea ice
concentrations and open sea surface in SPNA during winter in
Group 2 (Fig. 2c and Supplementary Fig. 4) are a prerequisite for
high β, but not a direct cause. The mean SIC is significantly
correlated with the magnitude of β in Group 2 (r=−0.47).
However, this relationship becomes insignificant when excluding
one outlier of GISS-E2-1-G (r=−0.31). Thus, the strong propor-
tionality between the MLD and β within Group 2 indicates that
factors other than the sea-ice cap affect the NAO–AMOC
relationship. Considering that Group 3 models (Fig. 1b, cross
marks) lie well within the range where Group 2 models are located
and tend to have larger β as the mean MLD is deeper, it is also
likely that the same underlying physical mechanism may be
applicable for Group 3.
Given that the MLD is defined based on the vertical density

gradient, the ocean stratification is a possible candidate for why
the MLD and β are closely related. A relatively shallow average
MLD in a model indicates strong stratification. The high vertical
stability in the strongly stratified models inhibits the cross-
isopycnal exchange of seawater, making the lower layer
insensitive to surface processes. In contrast, models with a deeper
average MLD, by definition, tend to be weakly stratified.
Presumably, the weak vertical stability in these models easily
permits deep sinking when surface water is densified, producing a
deeper water mass. In other words, under the same buoyancy loss
at the surface, deep water formation is induced more effectively
by convection as the ocean column is more weakly stratified65,90.
Thus, when negative buoyancy forcing is applied over the SPNA
surface in association with a positive NAO, AMOC strengthening
can be more effectively induced in weakly stratified models.
In Fig. 3a, b, we evaluate the relationship between the mean

stratification and the sensitivity of the deep water formation to the

surface flux in CMIP6. In particular, given that deep convection by
buoyancy loss of the surface water is a key process in maintaining
the AMOC, we focus on the role of the surface buoyancy flux (i.e.,
heat and freshwater fluxes; Methods). The sensitivity of the deep
water formation rate to the buoyancy flux (γ) was quantified for
wintertime as the regression slope of anomalous MLD on the
surface buoyancy flux, namely, on the effect of heat flux (γH) and
freshwater flux (γF), separately. Here, among the components that
constitute freshwater flux into the SPNA, that from runoff tends to
be one order smaller in its magnitude compared to the net
precipitation (precipitation minus evaporation [P−E]; not shown),
so we do not consider the runoff effect. For the same reason and
the sake of simplicity, we do not take sea ice effect into account,
although its close location to the deep water formation region
may have some role. Figure 3a, b show that in Group 2 (red
slopes), when the model has a deeper climatological mean MLD,
the magnitude of γ tends to become larger for both types of
surface buoyancy forcing, indicating that the effect of the NAO
can be better transmitted to the AMOC (i.e., a higher β for larger
negative γ; Fig. 3c, d and schematically shown in Fig. 5). At first
glance, both the mean MLD and β seem more strongly linked to γH
than to γF, judging by their correlation coefficients (for example,
the correlation of the MLD with γH is r=−0.75 for Group 2, which
is larger in its magnitude than r=−0.61 of that with γF). However,
we find no statistically significant difference, making it difficult to
conclude the relative importance of heat and freshwater fluxes in
shaping the intermodel diversity.

The role of NAO forcing
Now, we examine the possible contributions of NAO forcing to the
wide intermodel spread of β. In previous studies, it has been
considered that the inherent characteristics of the NAO in each
model, such as the magnitude of its amplitude36,72 or how the

Fig. 1 Simulated/Estimated NAO–AMOC relationships and their mean state dependency. a The maximum regression coefficients (β; unit:
Sv; 1 Sv = 106 m3 s−1) when the NAO leads the AMOC by less than 10 years for each model (both 5-year filtered; see Methods and
Supplementary Fig. 2). The inset shows lagged regression coefficients (βτ; unitless) of various AMOC indicators on the observed NAO index
where τ indicates a lag (Methods). b A scatterplot of FMA-season climatological mean SPNA MLD (unit: m) and β. Color code for individual
models follows that of (a). Regression slope for all available models is shown in black, and red is for Group 2 (closed circles) only. Open circles
and crosses are for Group 1 and 3. The equations at the top left correspond to each regression line that has the same color. In the parenthesis,
the goodness of fit (R2; in %) and the Pearson correlation coefficient (r) are shown. The range of observed/observation-constrained MLD
(Methods) is shown by vertical solid line with a 95% confidence interval (shaded). Based on the established relationship from CMIP6 (black line
and equation), β is estimated for the observed MLD (dashed line and hatched area); gray for EN4 and pink for ECCO datasets. The bold dots in
the inset of (a) and the asterisk symbol ‘**’ in (b) indicate statistically significant values at the 95% confidence level, which was evaluated using
a two-tailed Student’s t test. In the inset, the effective sample size was considered (Methods).
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associated surface flux pattern is simulated55 are related to the
different NAO–AMOC relationships in CGCMs. If the NAO
amplitude is a critical factor in shaping the NAO–AMOC relation-
ship in climate models, the larger the amplitude of the NAO
forcing, the stronger its influence on the AMOC (i.e., higher β). To
examine whether such relationship exists for CMIP6 models, we
measure the NAO amplitude as the contrast of between maximum
and minimum pressure anomalies that is induced by the NAO in
the North Atlantic (see Methods). However, Fig. 4a shows that
there was no significant relationship between β and NAO
amplitude at the decadal timescale. Similar analysis was repeated
with unsmoothed NAO index (Supplementary Fig. 5) and again, no
significant contribution of the NAO amplitude to β was found. We
also investigated a different definition of the NAO amplitude: the
standard deviation of the zonal mean SLP differences at each
latitude (without normalizing). In this case as well, the interannual
or low-frequency variability of the NAO was not a good predictor
for β (r=−0.21 and −0.25, respectively, both not statistically
significant). Thus, we conclude that the NAO amplitude is unlikely
to be a major factor in shaping different NAO–AMOC relationships
between CMIP6 models. It is also worth discussing that in Fig. 4a,
20 out of 42 models simulated the decadal variability of the NAO
close to the observed value (8.415, the bias being less than 5%),
which is located exactly at median (i.e., 21 models simulate smaller
values than the observation, and 21 models simulate larger
values). This differs from previous studies that reported under-
estimation of low-frequency variability of the NAO in climate

models36,72,73, which may be attributed to differences in a
generation of models (i.e., CMIP5 and CMIP6) and/or a definition
of the NAO amplitude.
Another possible contributor to diverse NAO–AMOC relation-

ships is the spatial pattern of the surface flux forcing induced by
the NAO. Although CMIP6 models generally well-reproduce the
dipole structure of the NAO (Supplementary Fig. 6), the detailed
spatial feature somewhat differs between models, being consis-
tent with a previous study that used the CMIP5 models91. It further
leads to different surface flux forcing patterns to the SPNA surface
(Supplementary Figs. 7, 8). Xu et al.55 showed that in a coupled
model in which the NAO does not induce significant heat flux
anomalies in the deep water formation region, the NAO–AMOC
relationship is not well-simulated. We also found that in Group 1,
the region where the NAO induced significant heat and freshwater
flux anomalies tended to be inconsistent with the climatological
deep-convection site (Supplementary Figs. 7, 8). Thus, the spatial
pattern of NAO forcing, in addition to the insulation created by the
sea ice, contributed to the weak influence of the NAO on the
AMOC in Group 1. Similarly, in the three models in Group 2
(ACCESS-CM2, ACCESS-ESM-1-5, and CNRM-ESM2-1) that simulate
low β, the NAO forcing region does not match the deep water
formation region well. However, in most of the Group 2 models
(22 out of 25), the regions of significant NAO forcing and that of
deep water formation are generally co-localized. Therefore, how
well the surface flux pattern is overlapped with the deep water

Fig. 2 FMA-mean characteristics in the SPNA and the North Atlantic. a Sea ice concentration (SIC; unit: %) averaged over the SPNA region
(hatched area in b) for each model where color code for individual models follows that of Fig. 1a. Models are arranged by descending order of
the SPNA-averaged SIC. Gray vertical line divides each group. For three models in Group 3, the SIC variable was not available (N/A).
b, c Ensemble mean of FMA-mean mixed layer depth (shaded; unit: m) and SIE outline (dark blue line) for each group. The number of models
used for each group is shown as N. Here, SIE was defined as the boundary of the region where the sea ice concentration is maintained larger
than 15%. Individual model results are shown in Supplementary Fig. 4.
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formation region can explain the diverse NAO–AMOC relation-
ships only in a limited manner, particularly for models with low β.
Furthermore, we quantitatively examined the effect of the

NAO’s efficiency in inducing the buoyancy flux anomaly in the
SPNA, as the regression slope (α) of the SPNA-averaged buoyancy
flux anomalies onto the NAO index. Again, both heat and
freshwater fluxes were considered by αH and αF. The relationships
between α and β (Fig. 4b, c) suggest that the stronger the surface
buoyancy flux induced by the NAO (large negative α), the greater
the sensitivity of the AMOC to the NAO (high β) when all models
are considered (black lines). This relationship partly depends on
the small α and low β of Group 1 (open circles), which arise from
the sea ice cover effect. The relationship between α and β within
Group 2 is rather weak (red lines) and substantially affected by a
single extreme case (GISS-E2-1-G). Without GISS-E2-1-G, neither αH
nor αF significantly contributes to the β diversity (r=−0.15 and
r=−0.24, respectively). Therefore, we conclude that the β
diversity is to some extent physically related to the synchronicity
between the NAO forcing and deep water formation regions and
the surface forcing efficiency of the NAO, but they are not likely to
be a direct factor to determine β, particularly in Group 2.

DISCUSSION
Through the analyses above, it has been shown that the spread of
β in CMIP6 is strongly linked to how the mean climate states are
simulated; if the sea ice extends too far to cover the SPNA or the
upper-level ocean stratification in the SPNA is strong, the surface

forcing caused by the NAO does not effectively lead to AMOC
change. On the other hand, if the SPNA surface remains open
during winter and the oceanic stratification is relatively weak, the
NAO forcing easily perturbs the deep water formation rate of the
AMOC, yielding a positive relationship where the NAO leads the
AMOC. This implies that if the average oceanic state is similar
between the models, the influence of the NAO on the AMOC
variability is also expected to be similar. Indeed, for ocean-only
models whose mean states are less diverse (e.g., comparing Fig. 13
of Danabasoglu et al.92 and Supplementary Fig. 4), the relationship
where the NAO leads the AMOC is consistent among these
models55. The small diversity in ocean models further suggests
that differences in model configurations (e.g., parameterization
schemes for vertical mixing) have a relatively minor effect on the
intermodel spread when they are not coupled to atmospheric
models. That is, the atmosphere–ocean feedback processes in
CGCMs are likely the key factor that enables small biases to grow
and constitute the different oceanic mean states in the SPNA
across models, and hence, the NAO–AMOC relationship. In ocean-
only models, as the prescribed atmospheric field lowers the
degree of freedom, prohibiting the two-way interaction between
the atmosphere and ocean, oceanic states appear less diverse.
So far, the influence of the NAO on the AMOC has been

investigated for a decadal and longer timescale, from which a
further question may be raised: where does atmospheric low-
frequency (annual and longer) variability come from? Previous
studies have proposed evidence of oceanic influence on the
Atlantic atmospheric variability based on climate models. For

Fig. 3 Effect of mean stratification on γ and β. a, b Scatterplots of FMA climatological mean SPNA MLD (unit: m) and γ (a measure of the
sensitivity of the deep water formation rate to each surface flux) with color code for individual models following that of Fig. 1a; (a) for
buoyancy flux by heat (γH; unit: kg m−2 s−1), and (b) for buoyancy flux by freshwater (γF; unit: kg m−2 s−1). (c) and (d) show γH and γF against β.
Without an outlier (GISS-E2-1-G) in (c), the correlation is −0.35, which is significant at the 95% confidence level. The notation of lines and
equations follows that of Fig. 1b. Among 42 CMIP6 models, 36 models provided all variables required for (a) and (c) (MLD, heat flux, SLP, and
oceanic streamfunction) except CMCC-ESM2, CMCC-CM2-SR5, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, and MIROC-ES2L. For (b) and (d) where
freshwater flux is required, 32 models were used except CNRM-CM6-1, E3SM-1-1-ECA, FGOALS-g3, and MIROC6 in addition to the above.
Asterisk symbols ‘*’ and ‘**’ indicate statistically significant values at the 90% and 95% confidence level, respectively.
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example, Wen et al.54 and Gastineau and Frankignoul93 suggested
that changes in the NAO could be driven by the internal variability
of ocean circulation. Msadek and Frankignoul94 and Sun et al.45

suggested a coupled atmosphere–ocean variability, where the
atmosphere-induced AMOC change feeds back the atmosphere
through meridional heat transport and sea surface warming using
IPSL-CM4 and CCSM3 climate models, respectively. For the
estimated result for the observation (Fig. 1, inset), the negative
peaks of the NAO–AMOC relationship, when the AMOC proxies
lead the NAO, imply the possibility for such a coupled mode to
operate in situ. In CMIP6, on the other hand, the AMOC influence
on the NAO (i.e., correlations when the AMOC leads) is somewhat
unclear and depends on the model (Supplementary Fig. 2),
suggesting that the feedback from the AMOC to the NAO is weak
or absent in most models. Since fast response of the atmosphere
to the ocean forcing may be more notable at the interannual
timescale (i.e., without applying a low-pass filter), we also
investigated the influence of the AMOC on the NAO using raw
annual time series. However, no clear evidence of coupled mode
was found (not shown). Therefore, further investigation at an
individual model level is required to identify how NAO variability is
affected by oceanic processes in the CMIP6 models.

SUMMARY AND IMPLICATIONS
It is thought that to improve climatic predictions in the Northern
Hemisphere, climate models should be capable of simulating the
NAO–AMOC relationship36. This is because the AMOC fluctuation,
which significantly modulates the North Atlantic surface tempera-
ture, can be driven by changes in the NAO. The NAO–AMOC
relationship was robustly simulated in ocean-only models when
NAO-type atmospheric forcing was prescribed; however, this was
not the case in fully coupled models where the models were
allowed to resolve two-way air–sea feedback. This study thus
attempted to determine what causes inconsistent, different
NAO–AMOC relationships in coupled models based on a
quantitative comparison, and to provide hints for a better
simulation of AMOC variability. As a result, we found that models
with a deep SPNA MLD tend to simulate the high sensitivity of the
AMOC to the NAO. This relationship is related to two important
factors: (i) the sea-ice cover effect in shallow-MLD models and (ii)
the high sensitivity of deep convection to surface buoyancy
forcing in deep-MLD models. Judging from the difference
between ocean-only models and coupled models, the diverse
mean MLDs in the SPNA can further be attributed to the two-way
interaction between the atmospheric and oceanic fields. The
above processes are schematically illustrated in Fig. 5.
These results provide valuable insights into decadal climate

predictions. First, they emphasized that the key to improving the
NAO-related AMOC variability in climate models (ultimately, to
help improving the predictability of the northern hemisphere
surface climate) might lie in the intermediate process by which
the NAO signal is delivered to the AMOC, and it may eventually be
achieved by reducing biases in the mean state. This result is
different from ones brought forth by previous studies that focused
more on the role of NAO forcing. Nevertheless, our results do not
completely rule out this established viewpoint, as the NAO forcing
pattern and efficiency also contribute to the β diversity to some
extent. Second, the strong mean-state dependency of β provides
some potential for using the observed NAO index to estimate
AMOC strength for the next decade. Here, while β itself does not
provide detailed information of time lag (which instead, can be
inferred from the relationship between the observed NAO and
AMOC proxies in Fig. 1a, inset), it can be used to estimate the
magnitude of the AMOC change. The CMIP6-based regressive
relationship implies an AMOC sensitivity of 0.53 (0.47) Sv per unit
NAO change for the observed MLD of 450.30 (402.44) m in the
EN4 (ECCO) dataset (Fig. 1b and Methods). It is also noteworthy

Fig. 4 Role of the NAO forcing in β diversity. a Scatterplot of the
amplitude (unit: hPa; see Methods for the definition) of decadal NAO
forcing and β (unit: Sv) with color code for individual models
following that of Fig. 1a. b, c: as in (a), but for αH (unit: W m−2) and αF
(unit: mm day−1) on the x-axis. αH and αF are used as a measure of
the NAO efficiency to induce surface heat and freshwater flux at
decadal timescale, respectively. The notation of lines and equations
follows that of Fig. 1b. The qualitative results are insensitive to the
window length. Among 42 CMIP6 models, 36 models provided all
variables required for (a) and (b) (heat flux, SLP, and oceanic
streamfunction) except CMCC-ESM2, CMCC-CM2-SR5, INM-CM4-8,
INM-CM5-0, IPSL-CM6A-LR, and MIROC-ES2L. For (c) where fresh-
water flux is required, 32 models were used except CNRM-CM6-1,
E3SM-1-1-ECA, FGOALS-g3, and MIROC6, and MIROC-ES2L. Asterisk
symbols ‘*’ and ‘**’ indicate statistically significant values at the 90%
and 95% confidence levels, respectively.
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that CMIP6 models tend to underestimate the NAO influence on
AMOC variability, given that the majority of the models (37 out of
42 models) underestimated the mean MLD. Finally, according to
climate models, anthropogenic greenhouse gas warming is
expected to strengthen oceanic stratification through surface
heat and/or freshwater fluxes, shoaling the MLD32,95–97. Overall,
this study suggests that the future AMOC is likely to be less
sensitive to NAO change, providing important insights for decadal
prediction under climate change. Indeed, Ma et al.98 has reported
a diminished relationship between the NAO and the AMOC in a
greenhouse gas-forced simulation compared to the preindustrial,
although a positive NAO induced negative AMOC in their study
due presumably to the model-specific deep water formation site.
It should also be noted that climate change modulates
characteristics of the NAO and AMOC as well, such as their
amplitude, frequency, and mean intensity26,98–101, which will
affect future NAO–AMOC interactions.

METHODS
Observational dataset
We used the Hadley Centre’s monthly historical mean SLP
dataset102 (HadSLP2) for the NAO index and the monthly
Extended Reconstructed Sea Surface Temperature version 4103

(ERSST v4) for the SST-based AMOC indices for the period
1854–2015. For one of the salinity-based AMOC indices, the
Hadley Centre EN4 dataset104 (EN4) for the period 1950–2019. The
other salinity-based index was obtained from a combination of
two datasets, ISHII105 and Scripps106,107 (1945–2019) where the

ISHII data was used for the period before 2012, and the Scripps
data for the subsequent period.
The MLD was retrieved from two datasets. One was derived

using the oceanic temperature and salinity obtained from EN4.
Because the vertical grid spacing becomes relatively coarse below
100m, linear interpolation was first applied to the temperature
and salinity at a 5-m interval. The potential density was then
calculated, and the MLD was defined as the depth at which the
potential density differed from the surface value by 0.125 kgm−3.
The other is the ECCO Version 4, Release 4 (v4r4)108, which is a
general circulation model (MITgcm) result constrained by satellite
and in situ observations for the period 1992–2017. In this dataset,
the MLD is defined using a different criterion; the depth at which
the temperature differed from the surface value by 0.8 °C. Since no
significant trend over time was found in the MLD derived from
EN4 (which has a longer data length), we assume that the
regression model obtained from CMIP6 preindustrial runs (Fig. 1b)
can be employed for the more recent observation.
All observational data were linearly detrended at the beginning

of any calculation to eliminate the effect of anthropogenic forcing
and to focus on the natural variability.

Index definition
For the CMIP6 models, the AMOC index was defined as the
maximum streamfunction at 40°N and below 500m in the Atlantic
basin80. A latitude of 40°N was chosen to focus on the specific
process associated with the AMOC: sinking at high latitudes by
deep water formation. It is also known that the AMOC definitions
at lower latitudes tend to vary coherently with that at 40°N with
time lag109–111.

Fig. 5 Schematic representation of NAO influence on the AMOC for each group. This schematic illustrates why coupled climate models
simulate different sensitivities of the AMOC to the NAO (β). Colored box indicates a group of models that share the similar background states;
pink for Group 1 and blue for Group 2. ‘SIE’ means sea ice extent and ‘DWF’ represents deep water formation. See Text for more detailed
illustration.
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To estimate the observed AMOC intensity, five indirect AMOC
indices were used because the data obtained via direct observa-
tion is insufficient (Supplementary Fig. 1 and inset of Fig. 1). The
SST-based index of Ramhstorf et al.28 (AMOC_SST_R2015) is
defined as the difference of SST between the subpolar gyre region
and the Northern Hemisphere by subtracting the latter from the
former. By this, the temperature in the subpolar area, where
changes in the ocean circulation leave their characteristic footprint
on the sea surface79, is isolated from the anthropogenically-
induced large-scale temperature changes (represented by the
Northern Hemisphere mean temperature). The subpolar gyre
region was selected as the area whose linear trend of the SST is
negative during the period 1880–2015112. The AMOC_SST_C2018
index is a modified version of AMOC_SST_R2015, developed by
Caesar et al.79 It is defined as the subpolar North Atlantic SST
minus global mean SST during wintertime (November to May).
The third and fourth indirect indices are derived from the salinity,
using the same definition but different datasets. Based on the fact
that the AMOC transports salty water from the subtropics to the
subpolar region, they are defined as the integrated salinity in
0–1500 m and 45–65° N in the Atlantic81. The EN4 dataset
(1950–2019) and ISHII and Scripps dataset (1945–2019) were used
for AMOC_salt_EN4 and AMOC_salt_I+ S, respectively. Finally, the
fingerprint index of Zhang80 (AMOC_Tsub_Z2008) is obtained
from the first principal component of the leading mode of the
annual mean subsurface (400 m) temperature using the EN4
temperature. This index reflects the realignment of the oceanic
current system that involves northern recirculation gyre and
western boundary currents with changes in the AMOC strength.
All proxies are normalized to indicate whether the AMOC is in an
anomalously strong or weak state (i.e. qualitative feature of
temporal evolution of the AMOC) and to be compared with each
other (Supplementary Fig. 1). Although these indirect AMOC
indices were developed upon physical basis, it should be borne in
mind that the SST and salinity as well as the subsurface
temperature in the North Atlantic can also be modulated by
other sources than the AMOC, such as external forcings83,84,113–116

or forcings from other areas85–87.
The observed/modeled NAO index was defined as follows. First,

correlations of zonally averaged sea level pressure (SLP; where X
indicates the zonal mean of X) in the Atlantic basin (80°W–30°E)
between any two latitudes were calculated; then, the two latitudes
with the largest negative correlations were identified in each
model or observation. The difference in the normalized SLP
between those two latitudes was defined as the NAO index36. It
represents the SLP contrast between the Subtropical (Azores) High
and the Subpolar Low, and it is similar to the conventional station-
based definition which is more widely used, except that the
former is defined as the difference between two latitudes and the
latter as the difference between the two points (Lisbon, Portugal
and Stykkisholmur/Reykjavik, Iceland)117. The major difference in
physical meaning is that the NAO definition used here considers
the spatial structure of the NAO, which could depend on the
individual model, instead of using fixed station points.
As NAO variability is known to be most pronounced during

boreal winter, DJF-mean values are taken for all variables when
conducting the regression analysis related to the NAO forcing.

NAO amplitude
The amplitude of a climate variability is often measured as the
standard deviation of its index time series. However, since the
above definition of the NAO index requires normalization at each
latitude as a preprocess, the standard deviation of the final index
does not appropriately represent the magnitude of variability of
the NAO. Thus, as an alternative, we normalize the NAO index and
regress the SLP anomalies at each grid point to it so that the
regression slope represents the SLP anomaly (in hPa) induced by a

unit NAO index change. Then, the difference between maximum
and minimum SLPs in the North Atlantic, which are detected at
the cores of high and low pressures systems, is defined as the NAO
amplitude.

Quantitative evaluation of α, β, and γ

All variables were linearly detrended before the following analysis
to avoid being affected by any model drift. The AMOC sensitivity to
NAO (β) was measured based on linear regression analysis using

AMOC tð Þ ¼ bτ þ βτ � NAO t þ τð Þ (1)

where τ represents the time lag (years), and bτ and βτ indicate the
y-intercept and slope corresponding to lag τ, respectively. To
reflect the intrinsic timescale of the AMOC associated with its large
inertia, the NAO and AMOC indices were smoothed using a 5-year
low-pass Lanczos filter before calculating βτ. The qualitative result
(i.e., strong dependency of the NAO–AMOC relationship on the
mean MLD; see Text) is not sensitive to the choice of window
length or cutoff period. The results of βτ for each model are shown
in Supplementary Fig. 2 for a lag τ between −20 and 20 years (a
negative value indicates that the NAO leads).
In general, there is qualitative agreement in CMIP6 models that

a positive peak appears when the NAO leads or co-occurs with the
AMOC, namely, between lag −10 and 0 (Supplementary Fig. 2).
Considering that the AMOC index represents a basin-wide large-
scale circulation rather than a local process, the exact locations of
the peaks may depend on the model. Therefore, for a quantitative
comparison between models, AMOC sensitivity to NAO (β) was
defined as the maximum βτ between lag −10 and 0. The results in
Fig. 1a reveal a difference between the smallest (−0.029 Sv for EC-
Earth3-CC) and the largest (1.273 Sv for GISS-E2-1-G) cases by two
orders of magnitude.
Similarly, α and γ are measured as the regression slope as

follows:

Flux tð Þ ¼ aþ α � NAO tð Þ (2)

and

MLD tð Þ ¼ c þ γ � Flux tð Þ (3)

Here, Flux is the surface heat or freshwater flux from the
atmosphere to the ocean, and a and c are the y-intercepts. The
time lag is not considered when measuring α and γ, because
interactions between the NAO and the surface fluxes and between
the surface fluxes and the MLD are most efficient at lag 0.

Effective sample size of auto-correlated data
For the temporal correlated data such as low-pass filtered NAO/
AMOC index in this study, its ‘effective’ sample size is less than the
number of individual sample measurements (i.e., the number of
time steps in time series). When evaluating the statistical
significance of the correlation/regression coefficients between
such auto-correlated two datasets with a raw sample size of N, the
effective sample size (Neff) can be taken into account by using the
following formula36,50,118:

1
Neff

� 1
N
þ 2
N

XN

j¼1

N � j
N

ρxx jð Þρyy jð Þ (4)

where ρxx(j) and ρyy(j) are the autocorrelations at lag j for each
data x and y. With this effective sample size, we evaluated the
statistical significance of regression slopes (α, β, and γ) using the
two-tailed Student’s t-test.

Buoyancy flux by heat and freshwater
To facilitate direct comparison of heat and freshwater effects on
MLD deepening, we derived surface buoyancy flux by heat (Bh)
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and by freshwater (Bw) using bulk formula119 so that Bh and Bw
have the same unit (kg m−2 s−1). Bh and Bw are then substituted
into Flux(t) when calculating γ. Bh is obtained from

Bh ¼ αhQnet

Cp
(5)

where αh and Cp are the thermal expansion coefficient (10−4 K−1)
and specific heat of the seawater (4000 J K−1 kg−1)120, assumed to
be constants for the sake of simplicity. Qnet is the net surface
heat flux.
The buoyancy flux by freshwater flux (Bw) is given by

Bw ¼ βwρS P � Eð Þ (6)

Similarly, the haline contraction coefficient (βw= 8.0 × 10−4

psu−1), water density (ρ= 1022.4 kg m−3), and the sea surface
salinity (S= 35 psu)120 are regarded as constants. P and E
represent precipitation and evaporation, respectively.
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