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Seasonal-to-decadal prediction of El Niño–Southern
Oscillation and Pacific Decadal Oscillation
Jung Choi 1 and Seok-Woo Son 1✉

The growing demand for skillful near-term climate prediction encourages an improved prediction of low-frequency sea surface
temperature (SST) variabilities such as the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). This study
assesses their seasonal-to-decadal prediction skills using large ensembles of the Coupled Model Intercomparison Project phases 5
and 6 retrospective decadal predictions. A multi-model ensemble reforecast successfully predicts ENSO over a year in advance.
While its seasonal prediction skill in the following spring and summer is achieved by multi-model ensemble averaging of relatively
smaller ensemble members, the multi-year prediction of winter ENSO needs a larger ensemble size. The PDO is significantly
predicted at a lead time of five-to-nine years but such a long-lead prediction is sourced from external radiative forcing instead of
initialization, as evidenced from uninitialized historical simulations. The effect of model initialization lasts only two years. These
results confirm that both the model initialization and the proper estimate of near-term radiative forcing are required to improve the
seasonal-to-decadal prediction in the Pacific Basin.
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INTRODUCTION
Near-term climate predictions that incorporate seasonal-to-
decadal (S2D) time scales have recently received much attention
from policymakers, stakeholders, and the climate science com-
munity in the context of climate risk management. International
effort to address the demand for skillful climate prediction in the
forthcoming decade has elevated1. It is now well documented that
near-term climate predictions are influenced not only by
boundary conditions (mainly greenhouse gases and aerosol
concentrations) but also by initial conditions (mainly the ocean
state)2. The initialized prediction systems have shown a promise in
improving the S2D prediction skill3,4,5. The multi-model ensembles
initialized with observations, subject to bias adjustment, have
reproduced more reliable climate predictions compared with
uninitialized climate projections6,7,8.
The primary source of S2D prediction skill is the low-frequency

variability of sea surface temperature (SST), such as the El Niño-
Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and
Atlantic Multidecadal Oscillation (AMO)8. In this context, S2D
predictions have often been examined to ascertain their ability to
predict SST variability in each ocean basin9,10,11,12. For instance, a
set of retrospective decadal predictions (or hindcasts) from the
Coupled Model Intercomparison Project phase 5 (CMIP5)13 and
phase 6 (CMIP6)14 were recently utilized to quantify the multi-
decadal predictability in the North Atlantic15,16. However, skill in
predicting low-frequency SST variability in the Pacific that is
characterized by ENSO and PDO has not been reported for the
latest decadal hindcasts thus far.
Given the importance of ENSO on global climate variability,

various approaches have been adopted to improve its prediction
skill17,18. It has been reported that the state-of-the-art dynamical
models have high skill in predicting ENSO up to 12-month lead
times19. Ham et al.17 demonstrated that ENSO could be predicted
18 months in advance when incorporating a machine learning
technique. This prediction skill is higher than that of the dynamical
forecasting systems. Most studies have focused on ENSO

prediction with a maximum lead time of one or one-and-a-half
years. The multi-year ENSO prediction, albeit with a great societal
need, has been considered only in a few studies18,20,21,22,23. These
studies have focused only on extreme ENSO events or employed a
single forecasting system to evaluate the multi-year ENSO
prediction skill.
As the leading mode of decadal SST variability in the North

Pacific, the PDO has been treated as a prominent source of
decadal climate prediction in the pan-Pacific region24. The PDO is
driven not simply by internal ocean variability but by various
nonlinear processes that span tropical and extratropical ocean-
atmosphere interactions25. Owing to this complexity, its prediction
skill has typically been evaluated using ensemble forecasts. It has
been reported that the PDO can be predicted several years in
advance26,27,28. However, this result is based on a limited number
of models because of the enormous computing resource
requirement. Kim et al.9 assessed the PDO prediction skill using
seven CMIP5 decadal hindcasts; however, PDO prediction skill has
not been assessed in the latest CMIP6 decadal hindcasts.
The present study revisits S2D predictions of ENSO and PDO.

Unlike previous studies, a very large ensemble of CMIP5 and
CMIP6 retrospective decadal predictions is utilized. In particular,
decadal hindcast extending over half a century are used to reduce
uncertainty. The prediction skill arising from model initialization is
identified by comparing the initialized ensemble predictions to
the uninitialized historical simulations. By taking advantage of
large ensemble sizes, the relative importance of the ensemble size
versus the multi-model ensemble average in predicting multi-year
ENSO and PDO indices is also evaluated.

RESULTS
Global sea surface temperature
The overall prediction skills of the annual-mean multi-model
ensemble (MME) SST anomaly (SSTA) at the first two years, three-
to-four-year, and five-to-nine-year average (YR1, YR2, YR3–4, and
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YR5–9, respectively) are shown in Fig. 1. At YR1, statistically
significant prediction skills are found in almost all regions in both
the anomaly correlation coefficient (ACC) and mean-squared skill
score (MSSS) metrics. As lead time increases, high skill scores
gradually decrease but not uniformly in space. For instance, the
prediction error in the North Pacific arises from the western coast
of North America and subsequently extends to the central Pacific
Basin (Fig. 1b–c). The error also increases in the Southern Ocean.
The MSSS decreases more rapidly compared to the ACC, and
becomes statistically insignificant in the eastern North Pacific and
the Southern Ocean at lead times longer than two years.
It is noticeable from Fig. 1c–d that the skill score maps are very

similar between YR3–4 and YR5–9. The regions with high skill
scores, such as the western Pacific, North Atlantic, and Indian
Ocean, are persistently found. This is partly due to the long-term
trend driven by external radiative forcing. As shown in Supple-
mentary Fig. 1c–d, similar skill score maps are found at YR3–4 and
YR5–9 in the uninitialized MME. More importantly, these regions

appear even at YR1 in the uninitialized MME, confirming that it is
driven by external radiative forcing.
To separate the prediction skill by external radiative forcing

from the one by model initialization, the skill differences between
the initialized and uninitialized MMEs are examined in Fig. 2. The
model initialization results in overall skill improvement at YR1 (see
the hatched regions). However, at YR2, its impact remains only in
the limited regions such as the Indian Ocean and the tropical
central Pacific. Except for these regions, the skill difference is
rather small from YR2 to YR5–9. This result indicates that external
radiative forcing, mostly due to greenhouse gas and aerosol
concentration changes, is one of the major sources of interannual-
to-decadal climate prediction29,30,31. It is noteworthy that both
ACC and MSSS show significant differences at YR5–9 over the
western coast of South America. Despite their differences, the skill
scores of the initialized MME are still very low in this region
(Fig. 1d).

Fig. 1 Prediction skill of sea surface temperature. a ACC, MSSS, and RPC of MME SSTA predictions at a one-year lead time (YR1). Dotted
regions denote where ACC and MSSS are significantly greater than 0, or RPC is significantly different to one at the 95% confidence level. Note
that RPC is calculated only when ACC is positive. The regions with negative ACC are masked out as they imply no predictive skill. b, c, and
d Same as (a) but for MME SSTA predictions at two-year (YR2), three-to-four-year (YR3–4), and five-to-nine-year (YR5–9) lead times,
respectively. A non-parametric bootstrap method is applied to test statistical significance.
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The errors in the signal-to-noise ratio are estimated with the
ratio of predictable components (RPC; right panels in Fig. 1 and
Supplementary Fig. 1). A statistically significant underconfident
feature (RPC > 1, a low signal-to-noise ratio) is more widely
observed than an overconfident feature (RPC < 1, a high signal-to-
noise ratio) at YR1. For YR1 and YR2 SSTA prediction, only the
initialized experiments show the significant RPC > 1 regions in the
western North Pacific (compare Fig. 1a–b and Supplementary Fig.
1a–b). It indicates that this region’s low signal-to-noise ratio likely
results from erroneously capturing internal variability even in the
initialized experiments. It is noticeable that the RPC maps are very
similar between the initialized and uninitialized experiments for

lead times longer than three years as in skill score maps. This
result again suggests a critical role of external radiative forcing in
predicting SSTA at interannual-to-decadal time scales.

ENSO
The prediction skill of three-month running mean NINO3.4 index is
summarized in Fig. 3. The MME skill scores show a sharp decrease
in the spring then a gradual increase in the winter, consistent with
the well-known ‘spring predictability barrier’ for ENSO predic-
tion32. Nevertheless, MME ACCs are statistically significant at the
95% confidence level at 25–27 lead months (January to March of
the third year; JFM3). A statistically significant MME MSSS is also

Fig. 2 Skill differences between the initialized and uninitialized MMEs. (left) ACC and (right) MSSS differences between the initialized and
uninitialized MMEs of (a) YR1 SSTA, (b) YR2 SSTA, (c) YR3–4 SSTA, and (d) YR5–9 SSTA. The cross indicates that the positive skill difference (i.e.,
skill improvements due to model initialization) is statistically significant at the 95% confidence level. Note that the skill differences at YR5–9 in
(d) are computed using only 46 initializations (see Supplementary Table 2 and Supplementary Fig. 5 for further details).
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found at 14–16 lead months in February to April of the second
year (FMA2). Until these lead times, the RPC is close to one (gray
bars in Fig. 3). These results indicate that ENSO is reliably
predicted by the MME with a maximum lead time of
14–16 months.
Consistent with previous studies10,19, the MME skill score is

typically higher than individual models (Supplementary Fig. 2).
The only exception is the CanCM4 which outperforms the MME
ACC in one-year ENSO prediction. The CanCM4 shows a
comparable ACC to the MME at relatively short lead times, but
surpasses the MME at 8–10 lead months (ASO1) to 21–23 lead
months (SON2). This superior performance of the CanCM4 is well
documented in Barnston et al.19. In terms of MSSS, the highest skill
score is found in the MME until the spring of the second year. The
MSSS difference among the models is substantially large in the
spring and summer, but becomes small in the winter.
As described in the Methods section, a higher prediction skill of

the MME than individual models might result from a large
ensemble size (i.e., the ensemble size effect) and/or a cancelation
of model errors through multi-model ensemble average (i.e., the
multi-model ensemble average effect). To test the ensemble size
effect, the ACCs are presented in Fig. 3b as a function of ensemble
sizes at lead times of DJF1, JJA2, and DJF2 (12–14, 18–20, and
24–26 lead months, respectively). The normalized ACC shows a
rapid saturation (M ~ 40) with increasing ensemble sizes at DJF1.
No significant skill difference is found between M= 40 and M=
142. This result indicates that only 40 ensemble members are
needed for skillful one-year ENSO prediction. This number is
comparable to the ensemble size for the climate model to robustly
capture ENSO characteristics (M > 50) in Lee et al.33. However,
almost twice as many ensemble members (M > 70) are required to
extract the maximum prediction skill of the winter ENSO at a two-
year lead time (see the normalized ACC of DJF2). It is noteworthy
that although MME ACC in JJA2 is comparable to that in DJF2 (0.20
and 0.19, respectively), their normalized ACCs exhibit different
curves with increasing ensemble sizes. For instance, the normal-
ized ACC at JJA2 reaches 0.95 with 50–60 ensemble members,
while that at DJF2 does so with 70–80 ensemble members. A
faster skill saturation at JJA2 than at DJF2 suggests that a higher
MME skill in this season is not simply caused by a large
ensemble size.
To verify the multi-model ensemble average effect, the

theoretically-estimated MSSS (MSSSTHEORY) in Eq. (8) is compared to
the practically-calculated MSSS (Fig. 3a). It is found that MME MSSS is
larger than MSSSTHEORY, particularly in the spring and summer. This

indicates that the perfect model assumption is rejected, implying
that the ensemble variance is not identical to the error variance of
ensemble-mean prediction. It can be translated that the model-
dependent errors are effectively reduced by the multi-model
ensemble average. Dunstone et al.34 recently showed that the
combination of two prediction systems has a higher prediction skill
at predicting the NINO3.4 index in the extended boreal summer from
May to September (MJJAS) (7–11 lead months) than a single
prediction system for any given ensemble size. Our result also
suggests that multi-model ENSO prediction is better than the
individual systems in the spring and summer when the ENSO
prediction barrier appears.
The ENSO prediction skills are also computed by taking the two

different MME methods—1) MME by considering all ensemble
members with an equal weighting (same to Fig. 3) and 2) MME
computed from each model’s ensemble mean. The results are not
sensitive to the MME methods (Supplementary Fig. 3a). The skill
scores are also separately computed for the CMIP5 and CMIP6
MMEs (compare red and blue lines in Supplementary Fig. 3a).
Although they do not show a substantial difference at the one-
year lead time, the springtime skill scores in the second year are
slightly improved in the CMIP6, especially for predicting ENSO
amplitude measured by MSSS. It may result from a larger
ensemble size used for CMIP6 than CMIP5 MMEs.

PDO
The PDO prediction skill is illustrated in Fig. 4 as a function of
forecast lead times. The MME ACC of PDO index is statistically
significant at the 95% confidence level at YR1, YR2, and YR5–9. As
shown in Fig. 2, the PDO prediction skill at lead times longer than
three years is mostly due to external radiative forcing. This result
indicates that the PDO prediction skill is determined by both
model initialization at a short lead time and external radiative
forcing at a long lead time. However, the MSSS score is statistically
significant only at YR1. This indicates that only the PDO phase is
qualitatively predicted in the current S2D prediction systems. All
RPCs are lower than one, indicating an overconfident prediction
with a high signal-to-noise ratio, but they are not statistically
different from one at the 95% confidence level.
The sensitivity of the PDO ACCs with ensemble sizes is

demonstrated in Fig. 4b. At YR1, the skill saturation of PDO is
somewhat faster than that of ENSO. The normalized ACC reaches
0.95 with 30 ensemble members (solid black line). At YR2, more
ensemble members are needed for skill saturation. The normalized

Fig. 3 Prediction skill of ENSO and ensemble size effect. a Skill scores of three-month running averaged NINO3.4 SSTA from MME prediction.
ACC, MSSS, and RPC are shown by red, blue lines, and gray bars, respectively. The closed circles and filled bars denote the statistically
significant skill scores (ACC and MSSS) and RPC at the 95% confidence level. The purple line represents the theoretical estimation of MSSS
(MSSSTHEORY). b ACCs of DJF1, JJA2, and DJF2 (12–14, 18–20, and 24–26 lead months, respectively) NINO3.4 SSTA as a function of ensemble
sizes (red lines). The black lines represent the normalized ACCs by the Min-Max normalization method. A five-member running average is
applied to smooth the normalized ACCs.
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ACC of the YR2 PDO index reaches 0.95 when 40–50 ensemble
members are used. A similar ensemble size is needed for skill
saturation at YR5–9. Note a relatively small ensemble size for PDO
prediction skill saturation compared to ENSO. It may result from
the reduced noise in the annual or multi-year mean PDO index.
The MSSSTHEORY of the PDO index is quite similar to the practical

MSSS (compare purple and blue solid lines in Fig. 4a). It indicates
that the multi-model PDO prediction does not always guarantee a
high skill than a single model prediction when their ensemble
sizes are comparable. It may hint that there are common errors in
predicting PDO in the current S2D prediction models. In
accordance with Kim et al.35, the multimodel ensemble average
effect is not significant in addressing systematic errors over the
North Pacific.
The PDO skill scores are also separately evaluated for the CMIP5

and CMIP6 MMEs (Supplementary Fig. 3b). At YR1 and YR2, the
CMIP5 MME shows higher skill scores than the CMIP6 MME. It is
partly explained by the fact that two CMIP5 models (CanCM4 and
MIROC5) surpass the MME at these lead times (Supplementary Fig.
4). At longer lead times, they show comparable skill scores,
indicating no major improvement in PDO prediction in the latest
S2D prediction systems.

SUMMARY AND DISCUSSION
The present study evaluates the S2D prediction skills of the Pacific
SSTA, focusing on ENSO and PDO. Two deterministic metrics (ACC
and MSSS) and RPC are utilized to assess the prediction skill and
its spread. The results are compared to those of the uninitialized
experiments to quantify the skill improvement due to the model
initialization versus external radiative forcing.
The overall skill scores of MME SSTA decrease inhomogeneously

in space as the lead time increases. The skill scores rapidly decline
in the regions where no skills are found in the uninitialized MME
(e.g., the eastern Pacific coast and the Southern Ocean). The
model initialization results in successful SSTA predictions at lead
times of up to two years, particularly in the tropical Pacific.
However, the skillful prediction at lead times longer than three
years is mostly explained by external radiative forcing. In the
regions where external radiative forcing is important, a large inter-
member diversity in predicting SSTA with a low signal-to-noise
ratio (RPC > 1) is also found at decadal time scales. This result
indicates that both the initialization and the proper estimate of
near-term radiative forcing are required to improve the S2D
prediction.
For ENSO prediction, the skill score is significantly high at a lead

time of one year in predicting the ENSO amplitude and at two

years in predicting the ENSO phase, respectively. The MME skill
scores are higher than individual models. The improved MME
ENSO prediction skill in the boreal spring and summer with 40
ensemble members is partly related to the cancelation of model
errors through the multimodel ensemble average effect. The
theoretically estimated prediction skills below the practical ones
confirm that the multimodel prediction system has the potential
to mitigate the spring predictability barrier of ENSO. It is also
found that multi-year ENSO prediction requires a larger ensemble
size, more than 70 ensemble members. Unlike ENSO, the PDO
prediction skill follows the theoretical estimation, indicating that
individual model errors are not effectively eliminated by the
multimodel ensemble average. More than 50 ensemble members
are needed to extract the maximum prediction skill of YR5–9 PDO
index despite the skill score is not very high.
The PDO prediction skill is considerably more limited than the

AMO prediction9 because of its shorter timescale. The physically
indistinguishable resemblance between the ENSO and PDO25,36

and systematic model bias in the extratropical Pacific Basin37 may
also contribute to the lower prediction skill of the PDO. Regardless
of its cause(s), the limited PDO prediction skill implies that the
PDO-related regional and global climate variabilities may not be
well represented in the decadal prediction systems. In this regard,
a sophisticated and advanced post-processing technique, applied
to improve the AMO prediction15 and/or a statistical error
correction35, may help to improve the PDO prediction.
The CMIP6 DCPP provides various experiments that are not

explored in this study. Further studies using additional experi-
ments, especially those designed to investigate the idealized
impacts of the Pacific and Atlantic decadal variability, would be
desirable. This would provide an opportunity to improve our
understanding of S2D climate variability and its prediction.

METHODS
Data
Six CMIP5 and ten CMIP6 models are used in this study (Supplementary
Table 1). Only the retrospective predictions (or hindcasts) initialized every
year from 1960/1961 winter to 2009/2010 winter are used. Each model
consists of 50 initializations with three to ten ensemble members. In total,
142 ensemble members are available. Among 16 models, seven models
are initialized in January. The other nine models are initialized in
November. Despite this difference in initialized months, the forecast lead
time of multimodel ensemble is counted from January. For example, one-
month and one-year lead times denote January and January-December
average, respectively (see Supplementary Table 2).
The individual ensemble members are interpolated to a uniform 2.5° ×

2.5° grid and are considered independently. To remove the model drift,

Fig. 4 Prediction skill of PDO and ensemble size effect. Same as Fig. 3 but for the annual-mean PDO index. Note that significantly different
RPC from one is not found in (a). (b) ACCs (red) and normalized ACCs (black) of annual-mean PDO index at one-year (YR1), two-year (YR2), and
five-to-nine-year (YR5–9) lead times as a function of ensemble sizes. Only the statistically significant ACCs are tested. The normalized ACCs at
YR2 and YR5–9 overlap with each other.
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model bias is defined as the difference between the modeled and
observed climatology at each lead time. Then, the lead time-dependent
model bias is corrected to individual ensemble members before the
analysis38. The multi-model ensemble (MME) is then calculated by
averaging bias-corrected ensemble members with an equal weighting.
The prediction skill is quantified by comparing the MME with the observed
SST anomaly (SSTA) of the National Oceanic and Atmospheric Adminis-
tration (NOAA) Extended Reconstructed Sea Surface Temperature version 5
(ERSSTv5)39, interpolated to a uniform 2.5° × 2.5° grid. The anomaly at each
grid point is defined by the deviation from the monthly climatology over
the period of 1961–2020.
The ENSO prediction skill is evaluated by computing three-month

running mean NINO3.4 index (SSTA averaged over 170°–120°W and 5° S–5°
N) for lead times up to three years. The PDO prediction skill is computed
with the annual-mean PDO index. The PDO index is calculated as follows.
The observed PDO pattern is first defined as the leading empirical
orthogonal function (EOF) of monthly ERSSTv5 SSTA in the North Pacific
(poleward of 20°N) for 1961–2020. Global-mean SSTA is removed at each
grid point before conducting the EOF analysis. Since the leading EOF
pattern in models often does not agree with the observed EOF pattern40,
we employed the common basis function approach by projecting model
anomalies onto the observed pattern. In other words, the annual-mean
PDO index in each hindcast is derived by projecting the bias-corrected
annual-mean SSTA of each hindcast onto the observed PDO pattern. The
resultant PDO index is evaluated for the first two years, three-to-four-year,
and five-to-nine-year average (YR1, YR2, YR3–4, and YR5–9, respectively).
While the first three predictions (YR1, YR2, and YR3–4) are tested with all
142 ensemble members, the YR5–9 prediction is tested with 132 ensemble
members as the MRI-ESM2-0 provides only five-year-long hindcasts.
In order to estimate prediction skills originating from external radiative

forcing, the MME of uninitialized historical simulations is also examined. A
total of 121 ensemble members from ten CMIP6 models are used
(Supplementary Table 1). Since the historical simulations cover the period
up to 2014, the comparison to the ensemble hindcasts is limited to
1961–2014 for YR5–9 (see Supplementary Table 2 for further details).

Measure of prediction skill and spread
The prediction skill is quantitatively evaluated using the two deterministic
metrics. Following the US CLIVAR decadal predictability working group41,
the anomaly correlation coefficient (ACC) and mean-squared skill score
(MSSS) are particularly used. These metrics are defined as follows:

ACCðτÞ ¼
1
n

Pn

j¼1
ðHjτ � HτÞðOjτ � OτÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

j¼1
ðHjτ � HτÞ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

j¼1
ðOjτ � OτÞ2

s (1)

where O and H are the observations and a set of hindcasts, respectively.
The subscript j is the initialization year, n is the total number of
initializations (n= 50), and τ is the forecast lead time. The climatological
averages of the observation and hindcasts are computed by

Oτ ¼ 1
n

Xn

j¼1

Ojτ andHτ ¼ 1
n

Xn

j¼1

Hjτ (2)

The MSSS is based on the mean squared error (MSE). It is obtained as

MSSSðτÞ ¼ 1�MSEHðτÞ
MSEOðτÞ

(3)

where

MSEHðτÞ ¼ 1
n

Xn

j¼1

½ðHjτ � HτÞ � ðOjτ � OτÞ�2 andMSEOðτÞ ¼
1
n

Xn

j¼1

ðOjτ � OτÞ2

(4)

The ACC estimates the linear association between the observations and
hindcasts (i.e., the phase of variability), while the MSSS further quantifies
the variance ratio of the hindcasts relative to the observations (i.e., the
amplitude of variability). Therefore, the MSSS is a more constrained metric
than the ACC.
The ratio of predictable components (RPC) is also computed to measure

the ensemble spread42. The RPC is defined by comparing the predictable

component in the observations (PCO) and that in the hindcasts (PCH).

RPCðτÞ ¼ PCO

PCH
� ACCðτÞ

σsignal=σtotal
(5)

where σsignal and σtotalare the expected standard deviations of the
predictable signal and the total variability in the hindcasts, respectively.
They are computed from the ensemble mean hindcasts and the individual
members at lead time τ. Since PCO cannot be directly estimated, its lower
bound is used from the ACC as the ACC2 reflects the proportion of the
observed variance accounted for by the model hindcasts. For a perfect
forecast, the RPC is expected to be one. A small RPC of <1 indicates an
overconfident forecast, in which individual ensemble members agree well
with each other (high signal-to-noise ratio) but the ensemble mean
forecasts do not capture the observed variations (low correlation). A large
RPC of >1 denotes an underconfident forecast, in which the ensemble
mean forecast agrees well with the observed variations (high correlation)
but individual ensemble members do not agree well with each other (low
signal-to-noise ratio)42. In this study, RPC is computed only when ACC is
positive.

Significance
A non-parametric bootstrap resampling method, without any assumptions
on data distribution, is utilized to test the statistical significance of the
prediction skill41. This method allows for a more objective criterion to
determine a practically useful skill score than a certain threshold value. An
additional 1,000 bootstrapped hindcasts are created from a finite
ensemble size M (=142) and a finite number of validation years N
(=50), as follows. 1) The N cases are randomly selected with replacement.
To take autocorrelation into account, this is done in blocks of five
consecutive years. 2) For each case, M ensemble members are randomly
selected with replacement. The ensemble mean is then computed from
these M samples. 3) The evaluation metrics (i.e., ACC, MSSS, RPC, and skill
difference) are computed with the resultant ensemble mean prediction. 4)
The steps 1)-3) are repeated 1,000 times to create a sample distribution of
the evaluation metrics.
For the ACC and MSSS, the p-value is defined as the ratio of negative

value from the bootstrapped sample distribution on the basis of a one-
tailed test of the hypothesis that the prediction skill is greater than 0.
Similarly, only the positive skill difference (initialized MME minus
uninitialized MME) is assessed as it represents an improvement by the
model initialization. For example, if the p-value is smaller than or equal to
0.05, the skill score and skill difference are set to be statistically significant
at the 95% confidence level. The RPC is significantly different from one at
the 95% confidence level when the 2.5–97.5% percentile, obtained from
the bootstrapped sample distribution, does not cross one15,42.

Impact of the ensemble size and multi-model ensemble
average
The sensitivity of the prediction skill to the ensemble size is also evaluated.
The ACCs are first calculated as a function of ensemble sizes using a
bootstrap resampling methodology. For each validation year, M members
are randomly selected with replacement. The ACC is then computed with
the resultant ensemble mean. This resampling is repeated 1,000 times for
each M (here, M varies from 1 to 142). An average of 1,000 bootstrapped
ACCs with an ensemble size M is denoted as ACCM.
To determine the minimum ensemble size when the prediction skill is

saturated, the ACCs are standardized by the Min-Max normalization as

Normalized ACCM¼ ACCM � ACCMin

ACCMax � ACCMin
(6)

where ACCMin and ACCMax are defined by ACCM=1 and ACCM=142,
respectively. The normalized ACCM gets transformed to a value between
0 to 1. The minimum ensemble size is defined when the normalized ACCM
reaches 0.95.
In order to quantify the impacts of the ensemble average on the

prediction skill, the theoretical estimation of the ensemble-mean MSE is
calculated following Murphy43 under perfect model conditions. Mathema-
tically, the error variance of an ensemble-mean hindcast (HM) can be
written with the averaged error variance of individual ensemble members
(Hi) as follows:

MSEHM
ðτÞ ¼ Mþ 1

2M

� �

MSEHi ðτÞh i (7)

J. Choi and S.-W. Son

6

npj Climate and Atmospheric Science (2022)    29 Published in partnership with CECCR at King Abdulaziz University



where <> denotes an average of MSE over individual ensemble members,

i.e., 1
M

PM

i¼1
MSEHi . The MSEHM

ðτÞ is smaller than MSEHi ðτÞh i when M > 1,

indicating that the ensemble-mean hindcast is theoretically superior to the
individual hindcasts. For the infinite ensemble size (M→∞), the error
variance of the ensemble-mean hindcast becomes proportional to half of
the averaged error variance of individual ensemble members.
Equation (7) indicates that the prediction error can be reduced by

increasing the ensemble size M. It can also be reduced by canceling the
model’s systematic errors through the ensemble average. In terms of the
prediction skill, the skill score increases by increasing the ensemble size
and decreasing the model errors by averaging many ensemble members.
Note that the former, the so-called ensemble size effect, is not necessarily
related with the latter, the so-called ensemble average effect, which
cannot be expressed as a function of the ensemble size.
The formulation described above can also be written in terms of the

MSSS:

MSSSHM
ðτÞ ¼ 1�MSEHM

ðτÞ
MSEOðτÞ

¼ 1� Mþ 1
2M

� �
MSEHi ðτÞh i
MSEOðτÞ

¼ 1� Mþ 1
2M

� �

ð1� MSSSHi ðτÞh iÞ ¼ MSSSTHEORY

(8)

When M is set to 142 (132 for YR5–9), the theoretical estimation of MSSS
(MSSSTHEORY) can be obtained from the average value of individual
ensemble members’MSSSs. Here it should be stated that MSSSTHEORY is not
necessarily the upper limit of model prediction skill when individual
ensemble members and their average have a relatively poor skill (i.e., small
< MSSSHi>). Since this theoretical estimation assumes that the individual
ensemble members are composed of the same model, a practical
ensemble-mean prediction skill could become higher than MSSSTHEORY if
the model errors are corrected by the multi-model ensemble average.

DATA AVAILABILITY
The original CMIP5/6 database can be downloaded from the Earth System Grid
Federation (ESGF) server (https://esgf-node.llnl.gov). The ERSSTv5 is obtained from
the NOAA web interface (https://www.ncei.noaa.gov/products/extended-
reconstructed-sst).

CODE AVAILABILITY
Methods have been fully mentioned in the Methods section and codes are available
upon reasonable request from jungchoi@snu.ac.kr.
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