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Constraining Amazonian land surface temperature sensitivity
to precipitation and the probability of forest dieback
Yuanfang Chai 1, Guilherme Martins 2, Carlos Nobre2, Celso von Randow 2, Tiexi Chen3 and Han Dolman 1,3✉

The complete or partial collapse of the forests of Amazonia is consistently named as one of the top ten possible tipping points of
Planet Earth in a changing climate. However, apart from a few observational studies that showed increased mortality after the
severe droughts of 2005 and 2010, the evidence for such collapse depends primarily on modelling. Such studies are notoriously
deficient at predicting the rainfall in the Amazon basin and how the vegetation interacts with the rainfall is poorly represented.
Here, we use long-term surface-based observations of the air temperature and rainfall in Amazonia to provide a constraint on the
modelled sensitivity of temperature to changes in precipitation. This emergent constraint also allows us to significantly constrain
the likelihood of a forest collapse or dieback. We conclude that Amazon dieback under IPCC scenario RCP8.5 (crossing the tipping
point) is not likely to occur in the twenty-first century.
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INTRODUCTION
Amazonia hosts the largest rainforest in the world: it holds
10–15% of global land biodiversity1,2 and generates 17–20% of
global runoff to the oceans3,4. Future changes in Amazonia’s
temperature and precipitation will play a key role in the global
carbon, energy and water cycles5. Yet, Earth System models
generally perform poorly in predicting Amazonian temperature
and rainfall6; a shortcoming that generates considerable uncer-
tainty in model predictions. Nevertheless, it has been suggested
that within the next 50–100 years Amazonia might experience a
large-scale dieback of the forest7,8 and cross a “tipping point”—
moving irreversibly into a savanna-like ecosystem. IPCC AR5, has
allocated a low confidence level to this dieback due to the
uncertainty of the climate predictions9. Thus, a reduction in the
uncertainty of Amazonian temperature–precipitation relations
would also enhance the credibility of these models and provide
more accurate information for planning climate change mitigation
and adaptation10.
Reducing the uncertainty in the prediction of Amazonian

climate by general circulation and Earth System models has
generally been a great challenge11. Much of this uncertainty arises
from scientific and observational gaps in our description of the
climate system and our representation of key processes. In recent
years, the “emergent constraints method” (see Methods) has been
applied to assessing the sensitivities of model output to particular
variables12. The method relies on a tight link between historical
climate and future predictions across a range of Earth System
models; it has been used to reduce the uncertainty in the climate
predictions of sensitivities such as: equilibrium climate sensitiv-
ity13, low cloud sensitivity14 and tropical carbon sensitivity. Here
we introduce a emergent constraint for reducing the uncertainty
in the prediction of Amazonian temperature–precipitation
relations.
Drought not only implies a shortage of precipitation, but it is

also almost always associated with an increase in surface air
temperature15. In Amazonia, such negative correlations between
surface air temperature and precipitation have been established

for the 2005 and 2010 drought16,17. Such droughts can severely
affect the ecophysiological behaviour of the forest18,19, with the
ultimate possibility of a runaway scenario of forest dieback. Such a
scenario was predicted about 20 years ago by Cox et al.20.
Here, we first explore a plausible mechanism behind this land

surface temperature–precipitation correlation by looking at in situ
observational data. Next, we investigate if a similar relation is
reproduced by Earth System models. We then analyse whether the
observed relation can be used to constrain the modelled
sensitivity of Amazonian future temperature to precipitation
change (ΔT/ΔP). We thus provide a way to reduce the uncertainty
in the temperature sensitivity. Importantly, using the newly
established temperature sensitivity constraint, we estimate how
much rainforest dieback is likely to occur.

RESULTS
Physical mechanisms of emergent constraint
We first explore and verify a plausible physical mechanism to
support the existence of a possible relationship between surface
air temperature and precipitation. From first principles such a
relation between the surface air temperature of the Earth and the
amount of precipitation is described through the surface energy
balance, which can be expressed in a simplified form as

ð1þ βÞλE � σT4 ¼ ð1� αÞRdowns þ Rdownl (1)

with σ the Stefan-Boltzmann constant, β the surface Bowen ratio, λ
the latent heat of vaporisation, E the evaporation, α the surface
shortwave albedo, and Rdowns and Rdownl the downward shortwave
and the longwave radiation, respectively. In the imaginary case of
a closed system (i.e. no net lateral influx of moisture or
convergence), λE is equal to the precipitation and there is full
recycling. In the low, or zero evaporation limit, Eq. (1) shows the
surface air temperature to be dependent solely on the balance of
incoming solar and longwave radiation. In the high evaporation
limit, more typical of moist humid areas, Eq. (1) suggests that the
land surface air temperature would balance the increasing
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evaporation, assuming no change in radiative fluxes. Varying land
surface properties, moisture convergence, convection onset and
radiation will make this relation more complex, but at its heart is a
mechanism at the land surface that generally yields high surface
air temperature when precipitation is low due to the reduced
evaporative cooling effects, and vice versa15. In models this
relation is probably best viewed as an emergent property of the
model, i.e. it comes out as a final property of the model,
incorporating various physical, thermodynamic and dynamic
feedbacks and processes. The relation also forms the basis of
many modelling results where Amazonia is deforested and the
resulting land surface shows a general increase in surface air
temperature and a decrease in rainfall21, albeit it with consider-
able variability between the models.
In Fig. 1a, we investigate whether such a relation exists in the

observations by plotting the interannual variability of the surface
air temperature and dry season precipitation from 1 May to 31
October22,23 for the sector of Amazonia bounded by 75°–45° W
and 15°–0° S using the observational data from the HadCRUT4
data set. The observed temperature is near completely anti-
correlated the dry season precipitation record; this relation

(y= (−0.58 ± 0.16)x, p < 0.001, R= 0.45) is also significant in Fig.
1b for the linearly de-trended anomalies. Analysing four other
observational data sets corroborates the negative correlation,
although there is some relatively minor data set dependency
(Supplementary Fig. 1 and Supplementary Table 1, p < 0.005). To
investigate whether the dry season behaviour is reproduced by
the Earth System models, the average land surface air temperature
anomalies (1949–2002) from 29 different CMIP5 models, with one
run per model (see Methods, Fig. 1c and Supplementary Table 2)
and a 57-member physically perturbed HadCM3 model ensemble
(Fig. 1d) are plotted against the precipitation anomalies. It is clear
that such a relation is also reproduced by these model runs, albeit
now one that is model dependent. The negative correlations are
also significant at the annual-scale (y= (−0.32 ± 0.1)x, p < 0.001,
R= 0.39, in Supplementary Fig. 2a), while during the wet season
the correlation is not significant (y= (−0.33 ± 0.14)x, p= 0.021,
R= 0.30, in Supplementary Fig. 2b). Apparently, and not
unexpectedly, the feedback behaviour of precipitation on
temperature at the annual-scale is mainly constrained by the
response in the dry season rather than that in the wet season.

Fig. 1 Land surface air temperature–precipitation relations. a The variation of the observed dry season average temperature and the
observed dry season average of daily precipitation based on the observed data from the HadCRUT4 data set during 1949–2002. b The linear
relationship between the observed dry season average temperature anomaly and the observed dry season average precipitation anomaly
(y= (−0.58 ± 0.16)x, p < 0.001, R= 0.45). c, d The linear relationships between the simulated historical dry season temperature anomaly and
the simulated historical dry season precipitation anomaly based on the mean outputs from the 29 CMIP5 models (y= (−2.17 ± 0.7)x, p < 0.005,
R= 0.4, see the relation for each model in Supplementary Fig. 3a) and the 57 HadCM3 model runs (y= (−1.30 ± 0.56)x, p < 0.05 R= 0.31, see
the relation for each model run in Supplementary Fig. 3b), respectively. e The uncertainties in the future annual temperature sensitivity to
the precipitation (ΔT/ΔP) for the 86 Earth System model runs under RCP2.6 and RCP8.5 during 2006–2098. The grey shading represents the
observed dry season sensitivity ± standard deviation (−0.58 ± 0.16 °Cmm−1 day).
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Based on the temperature–precipitation relation, we now define
the sensitivity of Amazonian surface air temperature to a change
in rainfall, ΔT/ΔP, where T is the anomaly (°C) in the seasonal
average temperature and P the precipitation anomaly (mm day−1).
The future annual sensitivity here is calculated for 86 model runs
(see Methods and caption to Fig. 1) using a similar procedure as
for the observations in Fig. 1b; this procedure generates a set of 86
gradients for the future period. We find that the future annual
temperature sensitivities show considerable variability ranging
from −8.5 to 5.2 °C mm−1 day) (Fig. 1e). Few models are within the
observed bounds (grey shading, −0.58 ± 0.16 °C mm−1 day) with
most placed outside, even if we use the other observed data sets.
Due to the observed strong control of the seasonal sensitivities on
the annual sensitivities, we expect the seasonal cycle relations, in
conjunction with the observations, to provide a meaningful
constraint to the uncertainties in the future sensitivities—as long
as we can establish a strong linear relation between historical
seasonal and future annual sensitivities.

Emergent constraint on temperature sensitivity
Even with the large model-to-model variation in the future
temperature sensitivity and the seasonal cycle of the dry season
(Fig. 1e), the linear relationships for the 86 models are all
significant, both for the 29 CMIP5 models as well as for the 57
HadCM3 model runs under the RCP2.6 and RCP8.5 scenarios (see
Methods). The results for CMIP5 models are given in Fig. 2 and
Supplementary Fig. 4, by the black circles and red fitting line. In
contrast (Supplementary Fig. 5), the historical temperature
sensitivity of the wet season exhibits extremely poor correlations
with future climate. These tight relations in the dry season are in
line with the observations where the observed annual tempera-
ture sensitivity is found to be highly dependent on the occurrence
of precipitation in the dry season, rather than in the wet season.
We now use these relations of the dry season with the observed
seasonal sensitivity ± standard error (grey shading in Fig. 2 and

Supplementary Fig. 4) to constrain the future annual temperature
sensitivities. The associated probability density functions (PDF, see
Methods and also see Cox et al.12) are also calculated for the inter-
model spread in the future temperature sensitivity before (golden
yellow lines) and after (blue lines) applying the observational
constraint.
As shown in Fig. 2 and Supplementary Fig. 4a, the PDF for the

constrained temperature sensitivities of the 29 CMIP5 models is
considerably tightened when compared with the prior values.
With 66% confidence limits, the observational constraint reduces
the uncertainty of the future annual temperature sensitivities by a
considerable amount, 20.3% and 14.1% for RCP2.6 and RCP
8.5 scenarios, respectively (Supplementary Table 3). We also find
that the best estimates of the constrained temperature sensitiv-
ities at the peak of the PDF have been shifted towards the higher
values with −0.78 °C mm−1 day and −1.49 °Cmm−1 day for RCP
2.6 and RCP 8.5 scenarios, respectively. These values become less
negative than the original results (Supplementary Table 3). These
increased values of temperature sensitivities are a result of the
strong relationship in the observed data, and suggest that the
risks of a future increasing trend of the annual average
temperature in response to decreasing precipitation might have
been over-estimated in the CMIP5 ensemble for RCP2.6 and
RCP8.5. The fact that this value is very close to the observed is
fortuitous, a result of the particular value of the slope of the
regression. For the other RCP scenarios and combinations with
model sets there is a larger discrepancy. By multiplying the
constrained future temperature sensitivity (ΔT/ΔP) and the future
decreasing Amazonian precipitation (ΔP, Supplementary Fig. 6),
we find that the increase in annual temperature can be
overestimated by up to 0.04 °C and 0.36 °C under RCP2.6 and
RCP8.5, respectively, at the end of the twenty-first century
(2089–2098), by comparing with the models’ original outputs.
When the same observational constraint is now also applied to

the ensemble of 57 HadCM3 model runs (Supplementary Fig. 4b, c).
We again find that the observed seasonal temperature sensitivities
reduce the uncertainty of the future projections within a
considerably tighter PDF at 23.0% and 15.1% for the RCP2.6 and
RCP8.5 scenarios, respectively (Supplementary Table 3). Contrary to
the CMIP5, the original outputs from the HadCM3 ensemble of
model runs underestimated the risks of the future potential increase
in annual temperature by 0.53 °Cmm−1 day and 0.98 °Cmm−1 day
for the RCP2.6 and RCP8.5 scenarios, respectively. This result is due
to a greater reduction in Amazonian precipitation in the HadCM3
ensemble than the CMIP5 models (Supplementary Fig. 6), with the
best estimates shifting to more negative values. At the end of
twenty-first century, the increased temperature can be under-
estimated by 0.03 °C and 0.22 °C under the RCP2.6 and
RCP8.5 scenarios, respectively.
As shown in Fig. 2 and Supplementary Fig. 4, we also find that

the best estimate of the temperature sensitivities under RCP2.6
and under RCP8.5 for the 57 HadCM3 model runs are higher than
the sensitivities from the CMIP5 models, with the increased
sensitivities up to 0.49 °C mm−1 day and 0.54 °Cmm−1 day,
respectively. The reason for these higher sensitivities is probably
that the HadCM3 model runs explore a broader range of
temperature, while the ensemble mean is also larger than that
of the CMIP5 ensemble due to differences in physical climate
feedbacks and carbon cycle responses between the two
ensembles24.

Implications on Amazonian forest dieback
The realism of Earth System models is improving continuously as
more physically based parameterisations of key processes are
incorporated. Yet, the temperature sensitivity of Amazonian
precipitation shows large variability among the predictions of
the 86 model runs, even with values opposite in sign. We show

Fig. 2 Emergent constraint on the surface air temperature
sensitivity to the precipitation. The outputs from the 29 models
of the CMIP5 under RCP2.6 are used to derive the linear regression
relationship between the future annual temperature sensitivity
during 2006–2098 (see left y-axis) and the historical seasonal
temperature (dry season) sensitivity during 1949–2002 (see bottom
x-axis) (y= (0.81 ± 0.17)x-0.30, p < 0.001, R= 0.68); Each model out-
put is shown by a black circle; the grey shading is the observational
constraint from the HadCRUT4 (observed value ± 1 standard error,
−0.58 ± 0.16 °Cmm−1 day). The blue shading is the 90% prediction
error of the linear fitting that has taken the fitting errors into
consideration; the orange and blue probability density functions
(PDFs) are for the future annual temperature sensitivities before and
after applying the emergent constraint, respectively. We assumed all
models obey a Gaussian distribution.
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that, based on strong emergent relationships between the current
seasonal cycle and the future temperature sensitivity, the
emergent constraint method can be used to reduce the models’
biases in temperature sensitivity. This holds for two nearly
independent sets of models, and, importantly, we also identified
a plausible physical mechanism for the relationships.
We find that the Earth System models from CMIP5 tended to

overestimate the potential future increased temperature in
response to the decreasing Amazonian precipitation. By compar-
ing with the models’ original outputs, this temperature reduction
was largely the result of feedbacks from the forest intensifying
evaporative water recycling (evaporative cooling effects)25–27. The
overestimated higher temperature can benefit modelled forest
growth by reducing evaporative demand or by reducing
respiration28,29. Thus, an overestimate of temperature increase
also leads to a possible overestimated forest dieback based on the
original outputs under RCP8.5 at the end of the twenty-first
century.
To reveal the potential for forest dieback, the relationships

between the future annual temperature sensitivity and the future
forest losses for the CMIP5 models under RCP8.5 are shown in Fig.
3a and Supplementary Fig. 7a. We find a clear “tipping point” that
might represent the limits of Amazonian forest drought tolerance
(temperature sensitivity at −3.98 °C mm−1 day). A similar tipping
point also occurs in the HadCM3 ensemble (Fig. 3b and
Supplementary Fig. 7b, temperature sensitivity at −3.41 °Cmm−1

day). Before this point, the rainforest appears to be able to access
the water stored deep in soils for combating severe, seasonal
droughts, even as the surface soil moisture stores are
depleted30,31. Thus, in this range, the relation between sensitivity
and forest cover before the tipping point is weak and the forest-
cover fraction remains almost stable. Possible mechanisms are
that forests can resist drought through, for instance, investing
more carbohydrates into root growth for higher soil water
availability32, increase stomatal closure during the middle of the
day for less transpiration, thus increasing water-use efficiency
(WUE)33 and leading to a more stable forest cover even during
drought events34. The assumption of stable vegetation cover
under drought is also supported by satellite-observed dry-season
green up in Amazonian forest.

In contrast, once this tipping point is crossed, the forest-cover
fraction reduces sharply with further decreasing (more negative)
temperature sensitivity. This relationship is significant (p < 0.001)
for both the CMIP5 and for the HadCM3 model runs. There is a
large set of observation-based papers that discusses the
physiological mechanisms whereby Amazonian forest cover is
sharply reduced under continuous drought (warmer temperature
and less precipitation). This literature is largely based on long-term
and large-scale ecosystem manipulation experiments, and sug-
gests that multi-year severe drought can substantially reduce
Amazonian forest cover35. For instance, an experimental exclusion
of 35–41% of annual precipitation did exceed the drought-
enduring upper limit of the forest, resulting in a sharp reduction in
wood production by 13–62% in the region of Amazonia where the
experiment was located. Apart from the effects of the long-term
droughts on forest dieback, extreme drought events could also
push the rainforest over the tipping point.
In Fig. 3a, our best estimate of the constrained temperature

sensitivity (−1.49 °Cmm−1 day) is mostly far away from reaching
the tipping point identified by the CMIP5 models, leading to a
0.69% probability of forest dieback at the end of the twenty-first
century. In contrast, although the best estimate of the original
outputs from the models (−3.62 °Cmm−1 day) also did not cross
the tipping point, a probability (4.7%) for exceeding this point still
exists. The initial CMIP5 findings may have been overestimating
the impact of the temperature increase on Amazonian rainforest,
with the overestimated future forest losses up to 1.78%. For the
HadCM3 model runs (Fig. 3b), neither the central estimates of the
constrained temperature sensitivity (−3.35 °Cmm−1 day), nor
the prior models’ mean results (−3.08 °Cmm−1 day) passed the
tipping point, while the original outputs are more likely to cross
this point. Thus, although the potential future increase in
temperature is underestimated by the original outputs, the best
estimate of the forest losses from the original HadCM3 model runs
are still overestimated by 8.68%, rather than underestimating
forest dieback.
To evaluate the reliability of the constrained potential forest

losses, we calculated the PDF of the forest dieback in response to
the constrained and the unconstrained temperature sensitivities.
As shown in Supplementary Fig. 8, at 66% confidence limits, the
initial forest changes ranged between −6.29% and 1.35% for the

Fig. 3 Estimating future potential forest losses using the constrained temperature sensitivity. The relationships between the future forest
losses (difference in forest-cover fraction between the periods 2089–2098 and 2006–2015) and the future annual temperature sensitivity for
the CMIP5 (a) and HadCM3 (b) model ensembles under RCP8.5. The light blue bar is the constrained temperature sensitivity ± standard
deviation (−1.49 ± 2.18 °Cmm−1 day). The light brown bar is the initial mean temperature sensitivity of the CMIP5 models ± standard
deviation (−3.61 ± 4.69 °Cmm−1 day). The red lines before the tipping point are the mean future forest losses. The red lines after the tipping
points are the linear relationships between the future forest losses and the future annual temperature sensitivities for the CMIP5 models (y=
(2.280 ± 0.58)x+ 8.45, p < 0.001, R= 0.89, for (a)) and for the 57 HadCM3 model runs (y= (20.08 ± 6.3)x+ 64.31, p < 0.001, R= 0.53, for (b)).
Note: Among the 29 CMIP5 models, 12 models output the leaf area index (LAI). Among them, we ignored the outputs of the LAI from the
MIROC-ESM, GFDL-C3 and GFDL-ESM2G models, because of the unexpected result that for these three models, the more negative
temperature sensitivity is, the higher is the LAI. This is not realistic because more negative temperature sensitivity represents a higher land
surface temperature (see Methods for calculating forest-cover fraction using the LAI data).
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CMIP5 models. After using the constrained temperature sensitivity,
the constrained forest changes range between −2.55% and
1.17%, reducing the uncertainty by up to 51.0%. Similarly, the
uncertainty of the future forest losses for the HadCM3 model runs
is reduced by 13.8% (Supplementary Fig. 7b). Based on the
original findings of the CMIP5 and HadCM3 model runs, the
potential for large-scale forest dieback exists, with the reduced
cover fraction being higher than 7.0% and 57.0% among the
models, respectively. The initial probabilities of these extreme
scenarios are up to 12.9% and 1.3% (Supplementary Fig. 7)36–38. In
contrast, the constrained results show that the probabilities for the
occurrence of these two extreme phenomena are almost
impossible to reach for both the CMIP5 and HadCM3 model
ensembles.

DISCUSSION
Different global precipitation and temperature data sets all have
their own uncertainties39, suggesting a possible bias in our
findings when using only the HadCRU climate data set. However,
using four other data sets for the observational constraint
(Supplementary Figs. 8 and Supplementary Table 4), we still come
to the same conclusions. Also, the potential future Amazonian
forest losses are overestimated significantly, by both the CMIP5
and by the HadCM3 model runs. Thus, our main findings are
neither observational data set dependent nor model-set
dependent.
El Niño is the main driver of the drought events in Amazonia

because under those conditions convection is suppressed40,41,
leading to extremely high temperatures and low precipitation.
These abnormal values may non-linearly affect the actual trends in
the climate of Amazonia and it could be possible to obtain
spurious and wrong precipitation–temperature relations. After
smoothing out extreme fluctuations, using moving averages, we
still find strong negative relations between precipitation and
surface air temperature in the observations. Furthermore, the
temperature sensitivities remain nearly the same, with the
changed percentage only up to 6.8% (Supplementary Fig. 10).
These findings further support the plausibility of the physical
mechanisms behind our emergent constraint.
The current results show that the ESMs from CMIP5 may have

been overestimating the sensitivity of land surface temperature to
Amazonian precipitation, and that those from the HadCM3
ensemble tend to underestimate this sensitivity. In the
RCP2.6 scenario runs, most of the models do not generate
substantial dieback (Supplementary Fig. 11). Only with the
stronger increases under RCP8.5 do a substantial number of
the runs show such large-scale dieback, especially at the end of
the twenty-first century42 (Supplementary Figs. 10), which should
be receiving more attention. While the RCP8.5 climate change
scenario may be unrealistic for the longer-term future43, previous
deforestation modelling experiments, where substantial defores-
tation is simulated in the Amazon basin, have generally shown an
increase in surface temperature44. This opens up the possibility
that increasing human-induced deforestation may well bring the
Amazonian forest closer to the tipping point than we have
identified here. It is this interaction of a changing climate with
human-induced deforestation that presents the next challenge for
our understanding.

METHODS
Selection of Earth System models and observational data sets
We selected 29 models from the Coupled Model Intercomparison
Project 5 (CMIP5) based on the criterion of “one ensemble member per
model”. The models’ historical outputs (1949–2002) and their outputs
for a future under two representative concentration pathways (RCP2.6
and RCP8.5, 2006–2098) were collected from https://esgf-node.llnl.gov/

projects/cmip5/. To verify that our proposed emergent constraint is
independent of the selection of model sets, we also used the historical
and future outputs from the 57-member ensemble made with the
HadCM3 model for the same two scenarios45,46.
After identifying an empirical relationship between the current dry

season temperature sensitivity and the future annual temperature
sensitivity, we used the observed dry season temperature sensitivity
during the period 1949–2002 from the HadCRUT4 data set (http://data.
ceda.ac.uk/badc/cru/data/cru_ts) to constrain the future annual tempera-
ture sensitivity. To further verify our main findings, we also collected the
four other data sets from the Delaware, GHCN, the “GISS vs GPCC” and the
“NOAA vs GPCC”. The GISS data set and the NOAA data set have only the
observed temperature data available. We therefore used the observed
precipitation data from the GPCC data set for building their
precipitation–temperature relations,

Calculating the probability density function involving in
emergent constraints method
First, we calculate the PDF for the unconstrained future annual
temperature sensitivity (the original results from CMIP5 under RCP2.6
and RCP8.5) by putting the mean value and standard deviation of the
original future annual temperature sensitivity into Eq. (2). In general, we
follow Cox et al.12 for the calculation of the PDFs.

PDFðy=xÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π � σ2y
q exp �ðy � f ðxÞÞ2

2σ2y

( )

(2)

where PDF(y/x) is the probability density around the best-fit linear
regression, which represents the probability density of y given x. The
“prediction error” of the regression is σy, calculated by Eq. (3); f(x) is the
linear regression Eq. (4);

σyðxÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1
N
þ ðx � xÞ2

N � σ2x

s

(3)

yi ¼ axi þ b (4)

where yi is the value given by xi; a and b are the slope and intercept,
respectively; s is used for minimising the least-squares error, calculating by
Eq. (5); and N is the number of data points. σx is the variance of xi,
calculated by Eq. (6); x is the mean value;

s2 ¼ 1
N�2

X

N

n¼1

ðy � yiÞ2 (5)

σx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

n¼1

ðxi � xÞ2=N
v

u

u

t (6)

As shown in Eq. (7), where PDF(F/H) is the probability density for “future
annual temperature sensitivity” given “historical dry season temperature
sensitivity”; PDF(H) is the observation-based PDF for “historical dry season
temperature sensitivity”; Thus, after the emergent constraint, the PDF for
“future annual temperature sensitivity” (PDF(F)) is calculated by numeri-
cally integrating PDF(F/H) and PDF(H).

PDFðFÞ ¼
Z þ1

�1
PDFðF=HÞ � PDFðHÞ � dH (7)

Method for estimating vegetation-cover fraction
Based on the LAI data, we estimated vegetation-cover fraction using Eq. (8).

CF ¼ 1� e�LAI=2 (8)

Where CF is the annual average vegetation-cover fraction of each grid cell
(%); and LAI is the leaf area index.
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