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The changing validity of tropical cyclone warnings under
global warming
Nam-Young Kang1 and James B. Elsner2

Hurricanes and typhoons are a regular threat to large populations across the globe. Facing the potential of a storm disaster the
warning process and associated administrative activities across the western North Pacific are confounded by various tropical
cyclone classifications. Here, we show that current storm warning categories have suffered from the warming environment over the
past decades. Warning now at an average of one out of four storms, the category of ‘‘Super typhoon’’ from U.S. Joint Typhoon
Warning Center is seriously influenced by the warming environment. The categories of ‘‘Very strong typhoon’’ from Japan
Meteorological Agency, ‘‘Hurricane category 4’’ from U.S. National Hurricane Center and the higher now occur as often as one per
nearly every three storms. The cumulative proportions of storms falling into all warning categories are enlarging, which is
interpreted as an increasing threat but the frequency of warnings is potentially making the warnings less effective.
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INTRODUCTION
Tropical storms have different names depending on the regional
ocean basins where they form but everywhere they are the most
threatening events in nature.1 Energetics involving a tremendous
amount of water substantiate their thermodynamic potential for
destruction.2,3 The western North Pacific is the largest storm
reservoir, where as many as one-third of all global tropical
cyclones (TCs) are spawned. This fact coupled with significant
economic activity and a large population at risk creates a situation
where catastrophes are frequently unavoidable. Making matters
worse, there are several competing TC classifications used to
communicate the threat by administrative authorities in this
region.4 For example, observations from the Japan Meteorological
Agency (JMA) and the U.S. Joint Typhoon Warning Center (JTWC)
are widely utilized to interpret the danger of the storms. Owing to
distinct observational procedures,5,6 however, the comparison of
warning categories within the TC classifications among those
agencies remain a challenge. Wind speed in JMA best-track data is
the value averaged over a 10-min period, while wind speed in
JTWC best-track data is the value averaged over a 1-min period.
This creates inconsistent intensity levels and makes comparing
warning levels hard.7 Saffir-Simpson’s hurricane intensity scale,8

used for North Atlantic and eastern North Pacific TCs, is often
suggested as a reference for the intensity levels but this results in
even greater confusion regarding storm warnings.
Recent findings on the connection between TCs and global

warming seem to add to the confusion. Bursting intensification by
the warming oceans is observed most significantly in the western
North Pacific but it occurs throughout the tropics.9 The warning
level of intensity categories in the TC classifications might be
compromised by this warming environment, and the validity of
the warning level has yet to be considered under this changing
environment.

RESULTS
Storm intensities observed from different meteorological agencies
For this study, TC is defined as a storm whose lifetime-maximum
intensity (LMI) exceeds 34 kt, and the LMIs per TC over the past 30
years (1986–2015) are extracted from the two best-track data sets.
JMA and JTWC best-track data record TC winds at 5-kt intervals,
respectively as 10-min and 1-min average values. Only the
reliability of the research findings could be enhanced by the
observational consistency between the different observations. For
this, the comparable intensities are sought from the two
observations. It is somewhat common to match the LMI in JTWC
with 1.2 times10 of that in JMA, but this does not work well across
all intensity levels.5,6 Elsner et al.11 introduced a quantile approach
to the analysis of LMI, and Kang and Elsner7 employed the same
idea for matching the intensities between the two best-track data.
The fundamental assumption is that an intensity event share the
same probability level even in different observations though
recorded as having different absolute magnitudes. In this study,
the inverse empirical cumulative distribution function (ECDF) is
employed to find the probability level of the quantile. Here, the
probability level of an LMI is defined by the cumulative proportion
inversely from the highest LMI (see Supplementary Fig. S1). Figure
1 shows the probability level of LMI at 10-kt intervals in JMA and
JTWC. Each black dot represents the 30-yr (1986–2015) mean of
annual cumulative proportions. Probability–Probability (P–P) plots
are normally used to evaluate the skewness of a distribution. As 1-
min average wind should allow larger spread than 10-min average
wind, the range of JTWC is larger than that of JMA. This makes the
dots digress from a diagonal line of the same probability level.
Now that the probability level of storm intensity is identified, the
warning categories in the TC classifications from the two best-
track data sets can also be compared.
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Overcoming climate change perspective
To see the response of the probability level of LMI to global
warming, global mean SST (GMSST) can be used as a direct
indicator of the warming environment.9,12 GMSST represents the
annual variation of the global ocean warmth. As Bjerknes feedback
works along,13 annual variation of GMSST shows a fluctuation
similar to ENSO variation on relatively shorter timescale. At the
same time, the forced increase is seemingly apparent on relatively
longer timescales.12 Here, GMSST implies not merely a single
physical parameter, but the indication of a synthetic environment
where all environmental factors are constrained by the warmth
level. The understanding of the environmental factors has been in
progress, dealing with regional SST, vertical wind shear, vorticity,
stability, and so forth.14,15 Figure 2 shows the correlation
coefficients of the annual cumulative proportions with time and

GMSST, respectively. Positive sign indicates an increasing portion
of TCs whose LMI exceeds the threshold value. Considering the
fact that the correlation coefficient is the same as the regression
coefficient when both the predictor and the predictand are
standardized, the response to time (linked black dots) could be
understood as the standardized amount of climate change. Each
shaded area shows the 95% confidence interval and confirms that
a statistically significant change is rarely captured even at the
strongest LMI range. The response of the cumulative proportions
to GMSST (linked orange dots), on the other hand, is found to be
clearer than to time. In both best-track data sources, statistically
significant correlation appears for the cumulative proportions
around 40% and less, which means the stronger TCs are more
responsive.11 As long as the 30-yr GMSST reflects the forced
warming, the result implies that the simpler ‘‘climate change’’
approach to TC intensity using only time might weaken the global
warming signal.

Quantified worsening of storm warning validity
Now, we examine and compare the influence of GMSST increase
on the storm warning categories also shown using JTWC
observation to further understand the validity of the storm
warning categories. Firstly, the level of warning categories by 30-yr
mean of the cumulative proportions at each threshold LMI, are
compared among the three different sources. Warning categories
of JMA, JTWC, and SS are divided into four, three and six intervals,

respectively (Table 1). The cumulative proportion method reveals
that ‘‘Super typhoon’’ is not the highest level of warning. ‘‘Violent
typhoon’’ in JMA ranks at the highest warning category covering
only 7% of the strongest storms. ‘‘Super typhoon’’ in JTWC and
‘‘Hurricane category 5’’ in SS, on the other hand, represent 18%
and 12%, respectively. ‘‘Very strong typhoon’’ in JMA and
‘‘Hurricane category 4’’ in SS are comparable as covering each
31% and 29%.
Secondly, binomial logistic regression is employed to model the

cumulative proportion of LMIs on GMSST. Since the probability
level ranges from 0 to 1, the logit is used as the link function in the
generalized linear model (GLM). For the cumulative proportion as
the dependent variable, ‘‘success’’ is defined as the number of
annual TCs over the threshold LMI inclusive, and ‘‘failure’’ is
defined as all the rest. GLM assumes a linear relationship between
the nonlinear link function and GMSST. In spite of the ‘‘global
warming hiatus’’, meaning a pause between 1998 and 2013,16 the
increase of GMSST is seen as ongoing.17 From a simple linear
perspective, the increase of GMSST is significant as+ 0.33 ± 0.041
(s.e.) °C/30 yr. Then the GMSST input as the single explanatory
variable is produced by the prediction of linear model over the 30

Fig. 1 Probability–Probability (P–P) plot of the LMIs at 10-kt intervals
in JTWC and JMA best-track data. Each black dot represents the 30-
yr (1986–2015) mean of annual probability levels. Probability level is
calculated by the cumulative proportion inversely from the highest
LMI. The dashed diagonal line draws the matching probability level
of the TC intensities between JTWC and JMA

Fig. 2 Correlation coefficients of the annual probability levels of LMI
with time (linked black dots) and GMSST (linked orange dots). The
annual probability level means the annual variation of the
cumulative proportion at each threshold LMI. Observations come
from a JMA and b JTWC, respectively. Ninety-five percent
confidence intervals are shaded in gray and orange colors for time
and GMSST, for each. The average of the annual probability levels is
labeled on the right ordinate
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years (1986–2015). On an assumption that the internal variation
has no trend, the modeled GMSST implies the time series of
GMSST where the internal variation is removed.
Based on this linear assumption of the global warming,

modeled GMSST influence on the warning categories are shown
in Fig. 3 (see Supplementary Fig. S2 for comparison with the
prediction results by GLM on time). As the logistic regression
works, the warning level for each category shows nonlinear
change by GMSST change over the same period. All GLM results
show significant responses to the increasing global ocean warmth
at 95% confidence level, except for the thresholds of ‘‘Typhoon’’ in

JTWC and ‘‘Hurricane category 1’’ in SS (see Supplementary Table
S1). Modeled cumulative proportion of the beginning year (1986)
is denoted in dark blue color at the left side of each column, and
that of the ending year (2015) in orange color at the right. All
values are rounded off to the nearest whole number. Warning
categories in all TC classifications are experiencing the increasing
proportion, which is most apparent in the set of strongest storms.
‘‘Violent typhoon’’ in JMA started from 4% and reached up to 12%
over the 30 years. As the highest level among the warning
categories, 12% could be considered as still being effective for
rarely occurring extreme events. Nevertheless, the truth is that the
warning for one per 25 storms in the past is not valid any longer.
This is similar to the hurricane category 5 in SS, though the
coverage is a bit larger than ‘‘Violent typhoon.’’ The validity of
‘‘Super typhoon’’ is seen to be more seriously affected by global
warming. The earlier 13% is changed to 24% by the end of the
period, which means one per 4.2 storms making the word ‘‘super’’
seem somewhat misleading. Other categories also show widening
ranges, though the gap looks less than that of the strongest
categories. ‘‘Very strong typhoon’’ and ‘‘Hurricane category 4’’
added 14% and 15% more storms, each reaching 38% and 37%.
This implies that we see those warnings or more dire as often as
one in every 2.6 and 2.7 storms. The larger proportion can be
understood as representing the reality of the increasing threats,
the frequency of warnings is, in practice, making the warning less
effective. Overall, it seems clear that the validity of current
warning categories are suffering from the warming environment.

DISCUSSION
On the basis of the observed TC intensity, meteorological agencies
issue categorical storm warnings. But global warming appears to
have influenced the TC intensity and the coverage of storm
categories over the past 30 years. The value of this study lies in the
fact that the influence of global warming on the warning
categories in the TC classifications are quantitatively reviewed
and compared. Results indicate that the current TC classifications
are not valid for communicating the risk since we are warning
considerably more often than before. The physical changes in the
frequency of the strongest storms and the concominant societal
shifts in response will continue as long as the warming continues.
Recent studies on the increasing regional impacts by the changing
climate and the TC intensity in the western North Pacific14,15 may
support the importance of the review for better storm warning
system. The findings discussed here should help inform and
improve the warning procedures toward more efficient prepared-
ness against these often catastrophic storms.

METHODS
Best-track data from JMA and JTWC are used to analyze the annual
variation of the TC intensity and to review the TC classifications. The
selection of the data period (1986–2015) is based on Kang and Elsner,7

Table 1. TC classifications for JMA, JTWC, and SS

JMA JTWC SS

Violent typhoon (7%) Super typhoon (18%) Hurricane category 5 (12%)

Very strong typhoon (31%) Typhoon (64%) Hurricane category 4 (29%)

Strong typhoon (55%) Tropical storm (100%) Hurricane category 3 (36%)

Typhoon (100%) Hurricane category 2 (46%)

Hurricane category 1 (100%)

Each 30-yr (1986–2015) mean of the cumulative proportions at threshold values of the LMI is denoted in parentheses. JMA is referenced by JMA best-track
data following 10-min period for averaging winds, while JTWC and SS by JTWC best-track data following 1-min period. Values are rounded to the nearest
whole number.

Each 30−year period (1986−2015)
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Fig. 3 Response of the probability level for the storm warning
categories in the TC classifications to global warming. Binomial
logistic regression is employed to model the probability level of the
threshold LMIs over the 30 years (1986–2015). Based on a linear
assumption of global warming, the modeled GMSST by linear
regression is used for the single explanatory variable. All results
show significant responses to GMSST increase at 95% confidence
level, except for the thresholds of ‘‘Typhoon’’ in JTWC and
‘‘Hurricane category 1’’ in SS. The storm warning categories for
JTWC and SS are referenced by JTWC best-track data with 1-min
average of the winds, which is different from JMA with 10-min
average. Probability level indicated by the cumulative proportion,
however, enables the comparison between the best-track data sets
following different observational procedures. All values are rounded
to the nearest whole number
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who showed that the reliable consensus between the two agencies could
be hampered when their observations prior to 1984 are included. They
addressed that each of the termination of the U.S. Air Force aircraft
reconnaissance, and the advanced techniques in the satellite observation
on TCs might have negatively and positively affected the quality of
intensity observation. A notable change, on the other hand, was found to
have occurred in 1984 when JMA introduced the Dvorak intensity
estimation technique18,19 to operational TC analysis (http://www.wmo.
int/ pages/prog/www/tcp/documents/JMAoperationalTCanalysis.pdf). This
implies that the sequence of JMA intensities since 1984 have been
following a standardized analysis procedure. It was also remarked that the
JTWC intensities prior to 1985 would be less reliable and need to be used
with care.20 In this study, the beginning year of the analysis is set as 1986
for a reliable consensus between JMA and JTWC.

Code availability
For study reproducibility, all of the statistics and figures are made by the
software R (http://www.r-project.org) and code is available online (http://
rpubs.com/Namyoung/P2018b)

DATA AVAILABILITY
Best-track data for JMA and JTWC are available in http://www.jma.go.jp/jma/jma-eng/
jma-center/rsmc-hp-pub-eg/trackarchives.html and http://www.usno.navy.mil/
NOOC/nmfc-ph/RSS/jtwc/best_tracks, respectively. The Extended Reconstructed Sea
Surface Temperature version 4 (ERSSTv4)21 of the National Oceanic and Atmospheric
Administration (NOAA)/National Centers for Environmental Prediction (NCEP)
reanalysis (http://www.esrl.noaa.gov/psd/data/gridded) is used to identify the global
ocean warmth.
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