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Estimation of the crop 
evapotranspiration for Udham 
Singh Nagar district using modified 
Priestley‑Taylor model and Landsat 
imagery
Anurag Satpathi 1, Abhishek Danodia 2, Salwan Ali Abed 3, Ajeet Singh Nain 1, 
Nadhir Al‑Ansari 4*, Rajeev Ranjan 1, Dinesh Kumar Vishwakarma 5*, Amel Gacem 6, 
Lamjed Mansour 7 & Krishna Kumar Yadav 8,9*

The main challenges for utilizing daily evapotranspiration (ET) estimation in the study area revolve 
around the need for accurate and reliable data inputs, as well as the interpretation of ET dynamics 
within the context of local agricultural practices and environmental conditions. Factors such as cloud 
cover, atmospheric aerosols, and variations in land cover pose challenges to the precise estimation of 
ET from remote sensing data. This research aimed to utilize Landsat 8 and 9 datasets from the 2022–
23 period in the Udham Singh Nagar district to apply the modified Priestley‑Taylor (MPT) model for 
estimating ET. An average ET was estimated 1.33, 1.57, 1.70, 2.99, and 3.20 mm  day−1 with 0.29, 0.33, 
0.41, 0.69, and 1.03 standard deviation for December, January, February, March, and April month, 
respectively. In the validation phase, a strong correlation was found between the evaporative fraction 
derived from MPT and that observed by lysimeter, with  R2 = 0.71, mean biased error = 0.04 mm  day−1, 
root mean squared error = 0.62 mm  day‑1 and agreement index of 0.914. These results collectively 
support the effectiveness of the MPT model in accurately estimating ET across Udham Singh Nagar 
district. In essence, this research not only confirms the MPT model’s capability in ET estimation but 
also offers detailed insights into the spatial and temporal fluctuations of energy fluxes and daily ET 
rates.
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The amount of energy exchange taking place between the Earth’s surface and atmosphere can be determined 
through evapotranspiration (ET)1,2. The amount of ET depends on several factors such as land cover type, 
amount and duration of solar radiation, air temperature, speed of the wind above it  etc3,4. About 90% of the 
total water used in agriculture is lost either by evaporation from soil or crop  transpiration2,5–7. The actual crop 
evapotranspiration is an indicator of the water demand, crop stress, irrigation scheduling, drought and water 
budget study for crops and trees for healthy growth and  development7–10. Hence, the accurate estimation of crop 
evapotranspiration is very important for both rainfed and irrigated agriculture for water management, drought 
analysis and crop management. The ET estimation can be done through lysimeter systems, eddy covariance 
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towers, evaporation pans, Bowen ratio stations and scintillometer systems. All these methods mentioned here 
can measure ET in a relatively small area and difficult to extrapolate in both time and space. Apart from that 
these point measurements are only applicable to that area over which these are established or installed and there 
are many challenges in up scaling these values over a larger area. To overcome this problem several researchers 
developed empirical methods for estimating ET viz. Thornthwaite  method11, Hargreaves  method12, Penman 
 equation13, Penman-Monteith14, Priestley Taylor (PT)15 and FAO 56 Penman–Monteith  equation16 etc. The last 
method among all these methods is most widely used and adopted by the Food and Agriculture Organization 
(FAO)4. Again, all these methods depend on the local weather data and limited to that weather station area only. 
Hence these point-measured methodologies cannot be applied over extensive areas. Hence the need of remote 
sensing-based ET estimation for larger area comes into the picture. Among the several ET estimation methods, 
remote sensing can be regarded as the only technology that can accurately and economically provide ET amount 
at regional and global  scale17,18.

Several researchers have developed many remote sensing-based ET  models19–21 such as SEBAL: Surface energy 
balance algorithm for  land22,23, S-SEBI: simplified surface energy balance  index24, SEBS: Surface energy balance 
 system25 and METRIC: Mapping evapotranspiration at high spatial resolution with Internalized  calibration17. 
Among all the techniques developed through remote sensing for ET estimation, the energy balance method 
based on the modified Priestley-Taylor (MPT) approach has been widely used due to its simplicity and relatively 
low data demand. The MPT approach was first introduced by Priestley and Taylor in  197215 and has since been 
modified to improve its accuracy and applicability in different regions and cropping  systems26,27.

The triangle-based approach is firstly used by Jiang and  Islam28 for satellite-based ET estimation. Since then, 
this method has been widely modified and adopted by scientists worldwide to estimate ET for different crops. 
Table 1 in this paper provides a detailed overview of relevant research literature, showcasing the various algo-
rithms used for ET estimation across different scenarios and the corresponding outcomes. Notably, the table 
covers studies employing methods like the Ts-VI triangle method, Modified Priestley-Taylor model (MPT), 
Priestley-Taylor model (PT) and Penman–Monteith method (PM). It is essential to note that the models discussed 
in the table have been carefully calibrated and validated for specific regions and specific crop types.

Building on these existing approaches, we propose a modified method for ET estimation based on the MPT 
framework. Our proposed method offers the advantage of accurately estimating ET not only for sugarcane crops 
but for all the crops over study area, without relying on any ground-based observed data, which could signifi-
cantly benefit agricultural practices.

Remote sensing technology plays a crucial role in contemporary environmental studies by providing a com-
prehensive view of the Earth’s surface and its dynamic  processes39,40. Among the array of remote sensing plat-
forms, the Landsat series stands out as an indispensable tool due to its long-term, consistent provision of high-
quality  data41. With the recent launch of Landsat 9, the capabilities of this iconic satellite constellation have been 
further augmented, promising enhanced insights into Earth’s land cover, land use, and environmental changes. 
Equipped with the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), Landsat 8 and 9 has 
facilitated numerous applications, including precision agriculture, forestry management, water management 
and urban  planning42,43. Its multispectral capabilities, coupled with a revisit time of approximately 16 days, have 
enabled researchers to monitor changes in land cover with unprecedented detail and frequency. The availability 
of Landsat 8 and 9 data represents a transformative opportunity to deepen our understanding of evapotranspira-
tion and water budgeting. Table 2 contains the characteristics of Landsat 8 and 9 datasets.

Table 1.  Different modified Priestley-Taylor based past studies and their results.

S. No Author Algorithm used Target Problem Results

1 Tang et al.29 Ts-VI triangle method Quantify sensible heat flux Helps to estimate regional surface ET accurately

2 Ding et al.30 Modified Priestley-Taylor ET estimation over irrigated maize field A good agreement was found between ET estimated by 
the model with observations

3 Qiu et al.31 Modified Priestley-Taylor ET estimation in a rice–wheat rotation system The model estimates ET for rice and winter wheat 
reasonably

4 Nikolaou et al.32 Modified Priestley-Taylor Calibration of Priestley-Taylor (α) coefficient in Medi-
terranean greenhouse cucumbers

The proposed modified potential evapotranspiration 
model can be used as a practical method for irrigation 
scheduling

5 Ai and  Yang33 Priestley-Taylor Model Estimating Cotton Evapotranspiration under Plastic 
Mulch Condition

The estimated values agreed well with the measured 
values

6 Venturini et al.34 Modified Priestley-Taylor Comparison among different modified Priestley and 
Taylor equations

Both atmospheric and surface variables should be 
jointly parameterized in order to obtain estimates with 
lower errors

7 Aschonitis et al.35 Priestley-Taylor method To test the Priestley-Taylor method for the assessment 
of reference ET

The surface coverage of the Italian territory,
with acceptable ± 10% difference

8 García et al.36 PT-JPL method Improving regional estimates of actual evapotranspira-
tion (λΕ) in water-limited regions

Both in-situ and satellite data produced satisfactory 
results for λΕ at the Sahelian savanna

9 Sumner and  Jacobs37 Penman–Monteith and MPT Estimating pasture evapotranspiration using different 
methods

The PM method was slightly less effective than the PT 
method

10 Yao et al.38 Modified Priestley-Taylor MPT algorithm is used to estimate ET then validated MPT algorithm is satisfactory in reproducing the inter-
annual variability at flux tower sites
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In the realm of innovative methodologies, the surface temperature-vegetation index (Ts-VI) triangle method, 
a variant of the Modified Priestley-Taylor (MPT) approach, emerged through the pioneering work of Jiang and 
Islam in 1999 and 2001, later refined in 2003. The modified Priestley-Taylor model is simplified form of the 
Penman equation 30,44. The accuracy of the PT model depends mainly on the precise determination of the PT 
 coefficient15,45,46. A distinguishing feature of the PT model lies in its exemption from the need for measuring 
sensible heat flux and computing the ratio of sensible heat flux to latent heat flux. Extensive investigations, led 
by scholars such as Khaldi et al.47 and Parlange and  Katul48, advocate for the adept application of a PT coefficient 
value of 1.26, particularly conducive to vegetative expanses. The versatility of this model has been showcased 
in various studies, as evidenced by the works of Jiang and  Islam28 and Yao et al.38. Leaf area index (LAI), vapor 
pressure deficit (VPD) and soil moisture content (θ) are the main factors, which can affect the PT  coefficient49,50.

Therefore, the main objective of this research is to estimate crop evapotranspiration using the energy balance 
based modified Priestley-Taylor approach approaches for the Udham Singh Nagar district of Uttarakhand, India. 
To assess the accuracy of this approach a comparison is made between remotely sensed estimated ET values with 
measured ET data from lysimeter installed in the study region. The outcomes of this study will help to improve 
water management practices and increase crop yield in the region.

Site description and data used
Study area
The focal point of our current investigation lies the Udham Singh Nagar district of Uttarakhand, India, as illus-
trated in Fig. 1, spanning from longitude 78º45′ E to 80º08′ E and latitude 28º53′ to 29º23′ N. The study area map 
was created using ArcGIS 10.8.2  software51. This locale experiences a mean annual precipitation of 1400 mm, with 
a striking 80% of this moisture bestowed upon the region during the transformative months of June to September 
due to courtesy of the South-West monsoon. Rice, wheat, sugarcane, and pulses are the main crop grown in the 
study area. The land use and land cover map of the study area during rabi season of 2022–23 was prepared based 
on the ground truth data of rabi season (Fig. 2). The LULC map was created using ArcGIS 10.8.2  software51.

The application of the MPT approach for estimating crop evapotranspiration has been reported in various 
regions worldwide, including the United States, China, and India. However, there is a lack of research on the 
use of the remote sensing-based approach for estimating crop evapotranspiration in the Udham Singh Nagar 
district of Uttarakhand. Out of total geographical area of Uttarakhand state, 86% is hilly area and only 14% area 
is plain  area52. Due to this topographical difference of the state, only about 14% of the geographical area is well 
cultivable. Apart from this the state is also having 61% of area under forests (State profile, Government of Uttara-
khand). Uttarakhand has total thirteen districts; out of these, only two districts of the state mainly contribute as 
plain region viz. Haridwar and Udham Singh Nagar. Udham Singh Nagar is selected for this study purposefully 
since this district is having highest agricultural crop area as compared to other districts of Uttarakhand state 
(Directorate of economics and statistics). Udham Singh Nagar region lies is the Tarai belt at the foothills of the 
Shivalik range of Himalayas and about 80% of the crop area is irrigated area (Krishi Vigyan Kendra, Udham 
Singh Nagar). The higher percentage of the irrigated area also signifies the importance of the evapotranspiration 
study over this district for better irrigation and water management.

Remotely sensed data
In this research endeavour, pivotal remotely sensed data crucial for our investigation were sourced from the 
esteemed United States Geological Survey (USGS) via their website https:// earth explo rer. usgs. gov/ accessed on 
21st June 2023 for the rabi season of 2022–23. The focus of our scrutiny lies in the multidimensional analysis of 
multispectral and thermal remote sensing data harnessed from the imagery of Landsat 8 and 9 satellites during 
the chickpea crop grown in lysimeter (January to April) were used. These satellites, equipped with optical bands 
boasting a remarkable 30 m resolution and thermal bands at a resolution of 100 m, serve as invaluable tools in 
our quest for understanding. Leveraging the optical bands, we engage in the calculation of albedo and vegetation 
indices, while the thermal band becomes instrumental in the precise determination of land surface temperature. 
The selection of cloud free images process led us to select a total of 9 cloud-free images, spanning from the 17th 
of December to the 16th of April. This carefully curated dataset forms the foundation for the parametrization of 
the MPT model, facilitating the estimation of evapotranspiration.

Table 2.  Characteristics of Landsat 8–9 OLI/TIRS collection.

Pixel size

OLI multispectral bands (Band 1–7 and 9): 30 m

OLI panchromatic band (Band 8): 15 m

TIRS band (Band 10 and 11): 100 m (Resampled to 30 m)

Data characteristics

North up (MAP) orientation

Universal transverse Mercator (UTM) map projection

World Geodetic System (WGS) – 84 datum

16-bit pixel values

https://earthexplorer.usgs.gov/
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Meteorological data
Daily agroclimatic parameters, specifically the 2 m surface temperature and surface pressure were meticulously 
acquired from the ERA 5 repository, a trove of climatic information accessible via the Copernicus EU website, 
as of the 21st of June 2023. The indispensability of both surface temperature and surface pressure at the time 
of each satellite passage became apparent, laying the foundation for our subsequent analytical endeavours. It is 
imperative to note that ERA5, standing as the fifth-generation bastion of reanalysis products, offering a treasure 
trove of hourly data spanning atmospheric and oceanic domains.

Lysimeter data
Embarking on a meticulous exploration, a plot-scale lysimeter study unfolded within the experimental domains 
of the Department of Agrometeorology at GBPUAT, Pantnagar, situated at coordinates 29º 01 ′N 79º 48 ′E, as 
depicted in Fig. 3. This endeavour unfolded during the Rabi (winter) seasons of 2022–23, showcasing a strategic 
focus on evaluation of capability of MPT model to predict crop evapotranspiration accurately. The methodology 
employed a weighing-type lysimeter, serving as a sentinel for daily observations that meticulously documented 
the nuances of chickpea evapotranspiration. Commencing in the first week of January, the crop was not only 
cultivated within the confines of the lysimeter tank but also in the proximate field of approximately 4000  m2, 
encapsulating a holistic view of the crop’s interaction with its environment. The lysimeter tank, with dimensions 
measuring 1.33 × 1.33 × 0.9  m3, became the controlled arena for this agricultural symphony, while the crop’s 
manifestation occurred on a platform spanning 120  cm2. The crop was harvested at second fortnight of the April 
month. The lysimetric data is used to verify the results of the MPT model.

Methodology
Modified Priestley Taylor model for ET estimation
The reason behind selection of MPT model over several remote sensing-based energy balance method is its 
simplicity compared to other methods, making it easier to use. An advantage of our novel approach is that it 
doesn’t rely on any ground observations, simplifying the estimation process. However, it’s important to note that 
the MPT model works best in flat areas where elevation changes are minimal, as it mainly uses temperature data, 
which can vary with elevation. This consideration ensures the method’s suitability for our study area and helps 

Fig.1.  Location map of study area with standard false colour composite generated from Landsat 8 OLI data 
(23rd Nov 2022).
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reduce potential errors related to elevation differences. Overall, selecting the MPT model fits our research goals 
and context, offering a practical and trustworthy approach for ET estimation in our study region. The simplified 
formula of a Priestley-Taylor method based purely on the remotely sensed data is firstly proposed by Jiang and 
 Islam28, can be represented as:

where, ϕ is PT coefficient ranges from 0 to 1.26,  Rn is net radiation, G is ground heat flux, γ is psychrometric 
constant and Δ is saturated vapor pressure curve. All the four entities  (Rn, G, ϕ and Δ) can be derived indepen-
dently majorly using remotely sensed  data28,53. The Fig. 4 shows the flowchart of all the data required and process 
followed to develop the MPT model.

(1)LE = φ

[
(Rn − G)

�

�+ γ

]

Fig.2.  Land use and land cover (LULC) map of the study area for rabi 2022–23.

Fig.3.  Location map of installed lysimeters, field preparation and grown chickpea crop.
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The findings of this research offer valuable insights into the spatiotemporal variations of evapotranspiration, 
which are crucial for effective water resource management and agricultural planning in the area. Importantly, 
this study also contributes uniquely by demonstrating the applicability of the MPT model in regions where 
ground-based weather data is limited or unavailable. By relying on reanalysis products such as temperature, rather 
than ground-based observed data, it showcases the model’s versatility and robustness across diverse geographi-
cal areas. This aspect underscores the practical utility of this modified approach in regions where traditional 
weather stations may be sparse or non-existent, thereby expanding the scope of evapotranspiration estimation 
to previously underserved areas.

Criteria for selecting specific Landsat images of the MPT model
In our study, we meticulously selected Landsat imagery to ensure high-quality data for analysis. The Landsat 
data utilized in this research were obtained from the United States Geological Survey (USGS) Earth Explorer 
database. We primarily focused on Landsat 8 and Landsat 9 imagery due to their superior spatial resolution and 
spectral characteristics. The specific Landsat data parameters are detailed in Table 3, including the collection 
category, number, WRS path, WRS row, sensor identifier and datum, which are crucial for accurately identifying 
and accessing the desired imagery.

To ensure the reliability of our analysis, we established stringent criteria for selecting Landsat images, with 
a primary focus on minimizing cloud cover. Table 4 provides detailed information on the Landsat images used 

Fig.4.  The flowchart of modified Priestley-Taylor model development process.

Table 3.  Specific Landsat data parameters.

Information head Details

Collection category T1

Collection number 2

WRS path 145

WRS row 040

Sensor identifier OLI_TIRS

Datum WGS84
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in our study, including the acquisition date, Landsat version (8 or 9) and corresponding cloud cover percentage. 
Notably, we prioritized images with minimal cloud cover to facilitate clear observation of the study area. How-
ever, rather than adhering to a fixed threshold of cloud cover percentage, we assessed each image individually 
to ensure a cloud-free view of the study area that’s why higher cloud cover percentage can be seen on the images 
of 17th December 2022 and 26th January 2023 (clouds are on other parts of image not above the study area). 
This approach allowed us to maintain consistency and accuracy across our Landsat image selection process. In 
summary, our methodology involved meticulous selection of Landsat imagery based on stringent criteria, with 
a focus on minimizing cloud cover to ensure clarity and accuracy in our analysis.

Estimation of surface energy Flux using Landsat Data
Net radiation
The net radiation portion mainly consists of two types of radiation viz. longwave radiation and shortwave radia-
tion. The formula provided by Allen et al.16 was used to compute the Net radiation:

where, Rn is net radiation, α is albedo, Rs is shortwave radiation, RL is longwave radiation, ε0 is surface emissivity, 
↓ is denoting incoming radiation and ↑ is denoting outgoing radiation. Tasumi et al.54 developed an algorithm 
for calculating at-surface broad-band albedo. it can be calculated as follows:

where, ρ represents reflectance values of Landsat bands 2,3,4,5,6 and 7. Rs↓ is calculated, assuming clear sky 
conditions as (Waters et al.55):

where, Gsc is the solar constant (1367 W/m2), cosθ is the cosine of the solar incidence angle, dr is the inverse 
squared relative sun-earth distance, and τsw is the broad band atmospheric transmittivity. The cosine of the 
solar incidence angle is simply derived from the sun elevation angle provided in the metadata file of the Landsat 
images:

where, ϕ is sun elevation angle in radians. Now, τsw can be calculated with two separate components for beam 
and diffused radiation  (Allen56):

where, τB is the transmittivity index for direct beam radiation and τD is the transmittivity index for diffuse radia-
tion. The calculation of τB can be done with following formula given by  (Allen56):

where, Pair is air pressure (kPa) obtained through ERA5 data, Kt is a unitless “clearness” coefficient 0<Kt  <  = 1.0 
where Kt = 1.0 for clean air and Kt = 0.5 for extremely turbid, dusty, or polluted air (Usually Kt is set equal to 1), θ 
is the solar incidence angle and W is precipitable water in the atmosphere (mm). Precipitable water is calculated 
as following (Garrison and  Adler57):

where, ea is near surface vapour pressure (kPa) calculated through ERA5 temperature data. After calculating τB , 
the τD is estimated from τB itself as  (Allen56):

(2)Rn = (1− α)Rs↓ + RL↓ − RL↑ − (1− εo)RL↓

(3)α = 0.254× ρ2 + 0.149× ρ3 + 0.147× ρ4 + 0.311× ρ5 + 0.103× ρ6 + 0.036× ρ7

(4)Rs↓ = Gsc × cos θ × dr × τsw

(5)cosθ = cos
(π
2
− ϕ

)

(6)τsw = τB + τD

(7)τB = 0.98 exp

[
−0.00146Pair

Kt cos θ
− 0.075

(
W

cos θ

)0.4
]

(8)W = 0.14eaPair + 2.1

Table 4.  Detailed information on the Landsat images used.

Date Landsat Cloud cover

17-Dec-22 9 9.04

18-Jan-23 9 0.00

26-Jan-23 8 23.79

11-Feb-23 8 0.84

19-Feb-23 9 1.34

15-Mar-23 8 0.39

23-Mar-23 9 0.22

8-Apr-23 9 0.39

16-Apr-23 8 0.06
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The dr was computed using the following equation by Duffie and Beckman (1980), which was also used by 
Allen et al.16:

where; DOY is the sequential day of the year. Values of dr ranges from 0.97 to 1.03 and are  dimensionless55. The 
incoming longwave radiation is the downward thermal radiation flux, initiated by the atmosphere (W/m2). It 
can be computed using the Stefan-Boltzmann equation:

where; εa is the effective atmospheric emissivity (dimensionless), σ is the Stefan-Boltzmann constant 
( 5.67× 10−8 W/m2/K4 ) and Ta is the near surface air temperature (K) which can be taken from ERA5 prod-
uct. To calculate εa , empirical equation provided by  Bastiaanssen58 can be used by using coefficients developed 
by Allen (2000)17:

The outgoing longwave radiation ( RL↑ ) is calculated using the Stefan-Boltzmann equation:

where; σ is the Stefan-Boltzmann constant ( 5.67× 10−8 W/m2/K4 ) and Ts is the land surface temperature (K), 
which can be calculated by the single-channel algorithm proposed by Jiménez‐Muñoz and  Sobrino59 and εo is 
the broad-band surface emissivity (dimensionless). Van De Griend and  Owe60 has given a formula to calculate 
broad-band surface emissivity:

where; emissivity is assumed to be zero if NDVI > 0 (for example, for water).

Soil heat flux (G)
The ratio of the ground heat flux and net radiation using the empirical equation provided by  Bastiaanssen58, 
representing values near mid-day:

Calculation of Priestley‑Taylor (PT) coefficient ( φ)
The vegetation index which will be calculated for this purpose will be fraction of vegetation ( Fr ) for each pixel 
proposed by Carlson and  Ripley61:

In this study, the direct incorporation of irrigation practices was not explicitly modelled. However, the influ-
ence of water availability, including the effects of irrigation, is indirectly embedded in the Modified Priestley-
Taylor (MPT) model through the use of NDVI (Normalized Difference Vegetation Index) and temperature data. 
The estimated ET in this study is largely driven by these two parameters. Specifically, higher NDVI values typi-
cally indicate good water availability, which may result from sufficient irrigation or natural precipitation, while 
lower NDVI values can reflect water stress conditions. In this way, the MPT model inherently assumes water 
sufficiency in areas with higher NDVI values, indirectly incorporating the impact of irrigation. This approach 
aligns with the underlying assumptions of the MPT model, which is designed to estimate potential ET under 
conditions of sufficient water supply. After calculation of the Ts and Fr for each pixel, a scatter plot was made 
against each other for the calculation of dry (upper decreasing line) and wet edge (lower nearly horizontal line), 
as shown in Fig. 5.

After having the determines dry and wet edge, the value of φ corresponding to the dried bare soil is set to 0 
and the value of φ at maximum vegetation and lowest temperature is set to 1.26. Then two-step linear interpola-
tion is used to get the value of φ for each pixel. For every pixel, it can be calculated  as29:

In which; φmax, i = φmax = 1.26 and φmin, i = 1.26Fr . The psychrometric constant relates the partial pressure 
of water in the air to the air temperature. The psychrometric constant ( γ ) is given by formula (Allen et al.16):

(9)τD = 0.35− 0.36τB for τB ≥ 0.15

(10)τD = 0.18+ 0.82τB for τB < 0.15

(11)dr = 1+ 0.033cos

(
DOY

2π

365

)

(12)RL↓ = εa × σ × T4
a

(13)εa = 0.85× (− ln τsw)
0.09

(14)RL↑ = εo × σ × Ts
4

(15)εo = 1.009+ 0.047 ln (NDVI)forNDVI > 0

(16)
G

Rn
=

Ts

α

((
0.0038α + 0.0074α2

)(
1− 0.98NDVI4

))

(17)Fr =

(
NDVI−NDVImin

NDVImax −NDVImin

)2

(18)φ =
Tmax,i − Ts,i

Tmax,i − Tmin,i

(
φmax,i − φmin,i

)
+ φmin,i
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where, Cp is specific heat at constant pressure (1.013 ×  10–3 MJ  kg-1 ℃−1), P is atmospheric pressure, ε is ratio of 
molecular weight of water vapour/dry air (0.622) and � is latent heat of vaporization (2.45 MJ  kg-1). The slope of 
saturation vapour pressure curve ( � ) at a given temperature is given by Allen et al.16:

The calculated value of LE was then converted into instantaneous ET  (ETi) by using the formula:

The upscaling of instantaneous ET to daily ET was done by many methods, developed by many researchers, 
but MEF (modified evaporative fraction) is used widely. EF (evaporative fraction) method usually underestimates 
the value of daily  ET62. Thus, the value of daily ET was calculated with following expression:

where, α is a modified coefficient. For α many researchers by default take the value of 1.163–66.

Model evaluation
For testing the developed model with respect to the lysimetric data five parameters viz. coefficient of determina-
tion  (R2), root mean square error (RMSE), Nash–Sutcliffe efficiency parameter (NSME), agreement index (d) 
and mean biased error (MBE) were used is this study. The  R2, RMSE, NSME, d and MBE are estimated  as67,68:
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Fig.5.  Scatter plot between surface temperature and fraction of vegetation.
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Here, yi is the observed value, ŷi is the predicted value, yi  is the mean of observed values, σy and σŷ  is the 
standard deviation of actual and predicted values respectively and n is number of observations.

The value of  R2 can range from 0 to 1 and value 1 illustrates a strong linear relationship. The lower value 
of RMSE shows better model performance and higher value shows poor model  performance69,70. The value of 
NSME ranges from -∞ to 1. The NSME value close to 1 shows better model efficiency, the value of 0 indicates 
model accuracy close to accuracy of the calculated mean of observed data and negative value shows insufficiency 
of the model. The value of d ranges between 0 to 1. The 1 value shows the perfect match between observed and 
predicted values while 0 value shows no match between  them2,71,72. The value of MBE indicates the average 
bias in the prediction. A positive value of MBE indicates overestimation and negative value of MBE indicates 
underestimation from the  datasets4,73.

Results
Validation of daily ET through lysimetric data
In the meticulous effort to validate the daily evapotranspiration (ET) estimates generated by the Modified Priest-
ley-Taylor (MPT) model, a thorough comparison was conducted using lysimetric daily ET data specifically for 
chickpea cultivation. With chickpea planting initiating in January, a total of 8 daily ET values were collected and 
analyzed to compare against their lysimetric counterparts. The outcomes of this comparative analysis revealed 
a significant agreement between the daily ET values estimated by the MPT model and the lysimetric data, sup-
ported by a strong R2 value of 0.71. Further metrics of model performance bolstered this assertion, with the 
Nash–Sutcliffe Model Efficiency (NSME) reaching a praiseworthy 0.66, indicative of robust model performance. 
Additionally, the Agreement Index (d) soared to an impressive 0.91, underscoring the MPT model’s excel-
lence in capturing the nuances of ET dynamics. The Mean Bias Error (MBE) value, hovering close to zero at 
0.04 mm day−1, further reinforced the model’s aptitude for accurate agreement.

These findings collectively advocate for the efficacy of the MPT model in the precise estimation of ET over the 
canvas of Udham Singh Nagar district. The resonance between the measured and estimated ET values is vividly 
depicted in Fig. 6, encapsulating a visual testament to the high degree of correlation between the two datasets. 
In essence, the MPT model emerges as a potent tool, demonstrating its capacity for accurate ET retrieval in the 
dynamic agricultural landscape of Udham Singh Nagar district, Uttarakhand, India.

Validation of daily ET through EEFlux data
A reference for general equations for EEFlux, based on those of METRIC is available at: http:// www. intec hopen. 
com/ books/ evapo trans pirat ion- remote- sensi ng- and- model ing/ opera tional- remote- sensi ng- of- et- and- chall enges 
which is an Intech book chapter compiled by Dr. Ayse Kilic (Irmak) of the Univ. Nebraska-Lincoln and associ-
ates at the University of Idaho and Desert Research Institute in 2012. An original reference for METRIC is Allen 

MBE =
1

n

∑n

i=1

(
yi − ŷi
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et al.17 published in the ASCE J. Irrigation and Drainage Engineering. The outcomes of this comparative inves-
tigation revealed a commendable agreement between the daily ET values calculated from the MPT model and 
the lysimetric data, as evidenced by a strong  R2 value of 0.83. Additional metrics assessing model performance 
supported this finding, with the Nash Sutcliffe model efficiency (NSME) reaching a noteworthy -0.23, indicative 
of robust model performance. Moreover, the Agreement Index (d) surged to an impressive 0.81, highlighting the 
exceptional ability of the MPT model to capture the intricacies of ET dynamics. The mean bias error (MBE) and 
root mean squared error (RMSE) value, quite more as 1.02 and 1.19 mm day−1 respectively, further emphasized 
the model’s accuracy in agreement.

These results strongly support the effectiveness of the MPT model in accurately estimating ET across the 
landscape of Udham Singh Nagar district. The clear alignment between observed and estimated ET values is 
vividly illustrated in Fig. 7, serving as a visual confirmation of the significant correlation between the datasets. 
Essentially, the MPT model stands out as a powerful tool, showcasing its capability for precise ET retrieval within 
the dynamic agricultural setting of Udham Singh Nagar district, Uttarakhand, India.

Spatiotemporal variation of energy fluxes
In the intricate choreography of parameterizing the Modified Priestley-Taylor model, the initial ballet unfolds 
with the meticulous quantification of net radiation  (Rn). The value of  Rn was obtained after getting the values of 
incoming short, incoming and outgoing long wave  radiation74,75. The temporal variation in the values of energy 
fluxes viz.  Rn, G and LE over the canvas of Udham Singh Nagar is artfully presented in Table 5 and visualised in 
Fig. 8. The mean values of different energy fluxes range as mentioned here:  Rn from 401.14  Wm−2 (January) to 
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Fig.7.  Scatter plot between model and EEFlux values of ET.

Table 5.  Spatiotemporal mean values of energy fluxes.

Date Rn G G/Rn LE

17-Dec-22 405.08 22.86 0.06 231.19

18-Jan-23 401.14 17.25 0.04 218.87

26-Jan-23 408.71 35.39 0.09 209.99

11-Feb-23 447.83 44.99 0.10 248.31

19-Feb-23 434.95 37.66 0.09 214.23

15-Mar-23 528.32 67.82 0.13 321.32

23-Mar-23 569.72 49.73 0.09 337.14

08-Apr-23 623.67 67.57 0.11 372.11

16-Apr-23 572.10 101.17 0.18 257.41
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623.67  Wm−2 (April), G from 17.25  Wm−2 (January) to 101.17  Wm−2 (April) and LE from 209.99  Wm−2 (Janu-
ary) to 372.11  Wm−2 (April). The low temperature, fog and haze are the main causes for the lower values of Rn 
during the winter  months76. The lower values of energy fluxes during the December month are associated with 
the lower temperatures and foggy conditions over the study region.

Rn net radiation, G ground heat flux, LE latent heat flux.
In our quest for comprehensive insights, the values of G/Rn ratio were calculated for different time periods. 

G/Rn ratio values range from 0.04 (January) to 0.18 (April) suggesting higher portion of net radiation is used for 
ground heat flux during the April month as compared to other months. The G/Rn ratio varies from 0.04 to 0.15 
for  crops55. However, G/Rn ratio values varies from 0.2 to 0.4 for bare soil and 0.5 value indicates clear water or 
snow. Kustas and  Daughtry77 also studied G/Rn ratio and found 0.15 value for crop field. Hence, G/Rn ratio of 
this study is in line with the previous studies.

Spatiotemporal variation of daily ET and NDVI
The daily evapotranspiration (ET) values for the study area were computed based on the theoretical framework 
elucidated in the methodology section, with Table 6 encapsulating the comprehensive dataset of these daily 
ET values and their fluctuations within the study area. A detailed analysis of the ET variations across Udham 
Singh Nagar district unveiled a distinct pattern: December (1.33 mm/day) < January (1.57 mm/day) < February 
(1.7 mm/day) < March (2.99 mm/day) < April (3.2 mm/day).

ET evapotranspiration, Max maximum, SD standard deviation.
This progressive cadence is visually represented in Fig. 9, illustrating the evolving relationship between daily 

ET values and the temporal trajectory (months). The robust correlation coefficient, with an  R2 value of 0.84, 
substantiates the upward trend of daily ET values with the passage of months. This temporal evolution finds 
its rationale in the shifting local climatic dynamics across different seasons. December, characterized as one of 
the coldest months, experiences limited thermal conditions that suppress the ET process. Subsequently, as tem-
peratures gradually ascend, the ET process commences a gradual intensification, towards the month of April. 
Therefore, Udham Singh Nagar shows highest ET during April month due to optimal hydrothermal condition. 
In summary, the local weather conditions which influence the hydrothermal condition is the main factor deter-
mining the rate of daily ET in the study region.
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Fig.8.  Temporal variation of mean values of energy flux over study region.

Table 6.  Daily average evapotranspiration in Udham Singh Nagar district.

Date Max. (mm/day) Daily Mean ET (mm/day) SD

17-Dec-23 2.10 1.33 0.29

18-Jan-23 2.46 1.50 0.33

26-Jan-23 2.59 1.64 0.32

11-Feb-23 3.22 1.80 0.48

19-Feb-23 2.99 1.60 0.33

15-Mar-23 4.58 2.73 0.78

23-Mar-23 5.74 3.25 0.60

08-Apr-23 9.42 3.68 1.14

16-Apr-23 6.61 2.71 0.92
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Fig.10.  Spatiotemporal distribution of daily ET over Udham Singh Nagar.
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Figure 10, 11 shows the spatial and temporal variation of daily ET and NDVI over the study region, respec-
tively, was created using ArcGIS 10.8.2  software51. Notably, the southeastern sector emerges as an ET hotspot, 
consistently exhibiting higher rates compared to other locales throughout the observation period. This height-
ened ET phenomenon is notably concentrated in areas adorned with dense forest and woodland cover, which is 
supported by higher NDVI values over that area and the LULC map of the study area (Fig. 2). Conversely, the 
central expanse of the study region showcases a distinctive temporal pattern, with ET levels soaring up until 
March before undergoing a sharp reduction. This intriguing fluctuation aligns with the agricultural rhythm of 
the region, where crop lands dominate the landscape as depicted in LULC map of the study area (Fig. 2). Con-
sequently, the diminishing ET and NDVI values in the later months align with the natural progression of the 
crop cycle. During January rabi crops can be found in these areas at their peak vegetative stage which comes to 
maturity in March and April month. Hence, the value of ET and NDVI also decreases with the maturity of the 
rabi crops. Contrastingly, the northernmost and lower regions, characterized by sparse vegetation and urban 
land conditions, exhibit comparatively lower ET and NDVI values.

In interpreting the results of the daily evapotranspiration (ET) variation over the study area, considered sev-
eral factors and processes that influence ET dynamics. Our analysis revealed a distinct seasonal pattern, with ET 
rates gradually increasing from December to April. This progression can be attributed to shifting local climatic 
dynamics, with December experiencing limited thermal conditions due to colder temperatures, which suppress 
the ET process. As temperatures gradually rise, particularly towards April, the ET process intensifies due to 
optimal hydrothermal conditions. Factors such as land use and land cover, as depicted in the Land Use and Land 
Cover (LULC) map of the study area, also play a significant role in influencing ET patterns. For instance, areas 
with dense forest and woodland cover exhibited higher ET rates, while regions dominated by sparse vegetation 
and urban land conditions displayed comparatively lower ET values. Additionally, agricultural activities, such 
as the cultivation of rabi crops, contribute to fluctuations in ET levels, with peak vegetative stages in January 
gradually transitioning to maturity in March and April. While our study focused on analyzing the spatiotemporal 
variation of daily ET using Landsat imagery data, we acknowledge the importance of comparing and contrasting 
our results with previous studies and literature. Unfortunately, due to the specific scope and focus of our research, 
direct comparisons with previous studies were limited. However, our findings align with established principles 
of ET dynamics, emphasizing the influence of climatic factors, land use, and land cover on ET patterns. Future 
research efforts could further explore the nuances of ET variation and validate our findings against existing 
literature to enhance the robustness of our conclusions.

Discussion
In interpreting the results of the daily evapotranspiration (ET) variation over the study area, we considered sev-
eral factors and processes that influence ET dynamics. Our analysis revealed a distinct seasonal pattern, with ET 
rates gradually increasing from December to April. This progression can be attributed to shifting local climatic 

Fig.11.  Spatiotemporal variation of NDVI over Udham Singh Nagar.
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dynamics, with December experiencing limited thermal conditions due to colder temperatures, which suppress 
the ET process. As temperatures gradually rise, particularly towards April, the ET process intensifies due to 
optimal hydrothermal conditions. Factors such as land use and land cover, as depicted in the Land Use and Land 
Cover (LULC) map of the study area, also play a significant role in influencing ET patterns. For instance, areas 
with dense forest and woodland cover exhibited higher ET rates, while regions dominated by sparse vegetation 
and urban land conditions displayed comparatively lower ET values.

Additionally, agricultural activities, such as the cultivation of rabi crops, contribute to fluctuations in ET levels, 
with peak vegetative stages in January gradually transitioning to maturity in March and April. While our study 
focused on analysing the spatiotemporal variation of daily ET using Landsat imagery data, we acknowledge the 
importance of comparing and contrasting our results with previous studies and literature. Unfortunately, due to 
the specific scope and focus of our research, direct comparisons with previous studies were limited. However, 
our findings align with established principles of ET dynamics, emphasizing the influence of climatic factors, land 
use, and land cover on ET patterns. Future research efforts could further explore the nuances of ET variation and 
validate our findings against existing literature to enhance the robustness of our conclusions.

The application of the Modified Priestley-Taylor (MPT) model, while a powerful tool for estimating evapo-
transpiration (ET) and understanding hydrological processes, is subject to various sources of error and uncer-
tainty. These sources can arise from both model assumptions and input data, necessitating careful consideration 
and validation to ensure the reliability and accuracy of the results. One significant source of uncertainty in the 
MPT model stems from its reliance on meteorological data, including air temperature. Variations in the qual-
ity and spatial resolution of meteorological data can introduce errors into the model output, particularly in 
regions with heterogeneous climatic conditions or limited ground-based monitoring stations. To mitigate this 
uncertainty, efforts are made to obtain high-quality meteorological data from reliable sources, such as reanalysis 
datasets. The authors had access to observed datasets from ground stations, but they aimed to develop a method 
capable of predicting ET values without relying on any ground observation data. Hence, reanalysis data were 
used in this study.

Another potential source of error lies in the parameterization of the MPT model itself, including the estima-
tion of model coefficients and calibration constants. These parameters are often derived from empirical relation-
ships or field measurements, introducing inherent uncertainties into the model simulations. To address this chal-
lenge, only those constants and calibration processes were involved and used in our study which are previously 
used by several researchers (References of each were given in material and methods section of the manuscript). 
Furthermore, efforts are made to calibrate the model using observed ET data or independent validation datasets 
of lysimeter, thereby improving the accuracy of the simulated ET values.

Various researchers were involved in the use of Landsat 8 and 9 datasets and its relationship with ET in MPT 
 study47,78–83. Kerr et al.84 and Lo et al.85 conducted ET estimations solely using NDVI data, whereas Srivastava 
et al.86 established a correlation between integrated NDVI and plant transpiration. Danodia et al79 tested S-SEBI 
model for estimating crop evapotranspiration  (ETc) using Landsat-8 data, proved to be effective in estimating and 
monitoring  ETc or consumptive water use over a large area in North India. The results (r = 0.85, RMSE = 0.026, 
NSME = 0.602 and d = 0.86) aligned with current study. potential evapotranspiration  (ETp) and single crop coeffi-
cient  (Kc) can be accurately calculated using Landsat 8 and Sentinel-2 data through the energy balance  equation78. 
The same relationship was also concluded by Khaldi et al.47, Paul et al.80, Aryalekshmi et al.83, Guerschman 
et al.87. Guerschman et al.87 calibrated CMRSET model to estimate daily  ETa observed at the flux towers with a 
relative RMSE/R2 ranging between 0.15/0.96 (with Sentinel-2) to 0.26/0.93 (VIIRS), furthermore, our research 
findings closely correspond with one another. The current study has examined the association between ET and 
NDVI, confirming a significant positive correlation. This finding supports our assertion that higher ET values 
correlate with lower LST values, and vice versa. Kumar et al.88 evaluated the applicability of the simplified surface 
energy balance index (S-SEBI) method for estimating spatially distributed daily evapotranspiration (ET) using 
crop coefficient-based coupled Hargreaves–Samani for paddy and potato crop. Our finding shows as promising 
resulting with higher R-squared and lower RMSE value.

The validation of the Modified Priestley-Taylor (MPT) model for other crops and land surfaces by utilizing 
readily available EEFlux products. These products provided valuable satellite-based ET estimates that served as 
independent datasets for validating the performance of the MPT method across diverse land covers and crop 
types beyond those covered by ground-based  measurements89–92. The results obtained from comparing the MPT 
model outputs with EEFlux-derived ET estimates were incorporated into the manuscript, providing additional 
insights into the model’s performance across various agricultural and land use settings. This comprehensive vali-
dation approach, which combines ground-based measurements with satellite-derived data, strengthens the reli-
ability and applicability of the MPT model for estimating evapotranspiration in different environmental contexts.

The precise estimation of evapotranspiration (ET) using the modified Priestley-Taylor (MPT) model holds 
significant implications for agricultural water management strategies. By accurately quantifying ET, farmers and 
water resource managers can make more informed decisions regarding irrigation scheduling, optimizing water 
use efficiency, and mitigating water stress in agricultural fields. The MPT model’s ability to capture the nuances 
of ET dynamics, as demonstrated in our study, provides a valuable tool for assessing crop water requirements 
and guiding irrigation practices. Moreover, by understanding spatiotemporal variations in ET, stakeholders can 
develop targeted interventions to address water scarcity challenges and enhance agricultural productivity sustain-
ably. Overall, our findings contribute to advancing precision agriculture techniques and supporting evidence-
based water management policies, ultimately fostering more resilient and sustainable agricultural systems.
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Conclusion
This research offers valuable insights into the intricate dynamics of daily evapotranspiration (ET) and energy 
fluxes within the agricultural domain of Udham Singh Nagar district, Uttarakhand, India. The study provides 
land cover and land classification map of the study area during the rabi season of 2022–23, which gives insights 
of the prevailing topographical, environmental, and agricultural conditions during the study period. The study 
also provides the spatiotemporal variation of NDVI and ET values over the Udham Singh Nagar district, which 
can be utilized for water budgeting, water productivity and irrigation scheduling of the different crops. The find-
ing shows December, characterized as one of the coldest months, experiences limited thermal conditions that 
suppress the ET process. Subsequently, as temperatures gradually ascend, the ET process commences a gradual 
intensification, towards the month of April. Therefore, Udham Singh Nagar shows highest ET during April month 
due to optimal hydrothermal condition.

Through rigorous validation against lysimetric data, particularly focusing on chickpea cultivation, the Modi-
fied Priestley-Taylor (MPT) model demonstrates commendable concordance, underscored by an impressive 
 R2 value of 0.71. Moreover, the model’s robust performance is evident across various metrics, including the 
Nash–Sutcliffe Model Efficiency (NSME) and the Agreement Index (d), affirming its accuracy in capturing 
ET dynamics. The temporal evolution of daily ET values, validated with a robust  R2 value of 0.84, elucidates 
a compelling cadence intricately influenced by climatic factors. Notably, the detailed analysis of ET variations 
reveals a progressive trend mirroring the shifting climatic dynamics across different seasons. This understanding 
of spatiotemporal variations in energy fluxes and daily ET rates enhances our comprehension of agroclimatic 
dynamics, offering invaluable insights for informed water resource management strategies in Udham Singh 
Nagar and analogous agricultural landscapes. In conclusion, this study not only validates the efficacy of the 
MPT model in ET estimation but also contributes substantively to the broader understanding of agricultural 
hydrology and climatic influences.

Limitations
However, it is essential to acknowledge existing limitations and outline future prospects, particularly regarding 
the generalizability of the model to other regions and different crops. In regions with similar environmental 
conditions and land use patterns to the study area, the MPT model may be directly transferable with minimal 
adjustments. However, when extending the model’s application to regions with distinct agro-climatic contexts, 
recalibration and recalculation of model coefficients may be necessary to account for differences in meteorologi-
cal parameters, soil properties, and crop characteristics. For instance, while the MPT model relies on temperature 
data as a key input parameter to estimate ET, its applicability to hilly regions is limited due to the significant influ-
ence of elevation on temperature variations. In hilly terrains, elevation gradients can induce substantial changes 
in temperature, resulting in spatially heterogeneous thermal conditions across the landscape. Consequently, the 
MPT model’s performance may be compromised in such areas, as it may not adequately capture the nuanced 
temperature dynamics associated with elevation changes. In summary, while the MPT model exhibits utility in 
estimating ET in flat or gently sloping agricultural landscapes with homogeneous surface conditions, its appli-
cability to hilly regions necessitates careful consideration of topographic influences and potential recalibration 
efforts. Recognizing the inherent limitations of the model in mountainous terrains underscores the importance 
of tailored approaches and alternative modeling frameworks for accurate ET estimation in such environments.

The validation and performance assessment of the MPT model were conducted using lysimetric data specific 
to chickpea crop. It doesn’t mean that the MPT model is unable to estimate the ET values of other crops. It can 
estimate values of different crops pertaining in the study area such as wheat, sugarcane etc. However, to check 
the reliability of the model over different crop types with varying physiological characteristics and water use 
patterns demands further investigation. Another limitation of this method is that unavailability of finer resolu-
tion data such as daily or weekly. Finer temporal resolutions, such as daily or weekly assessments, may provide 
deeper insights into short-term variability and crop water requirements.

Future prospects
Future research endeavours could focus on conducting transferability studies to assess the model’s performance 
across diverse agro-climatic regions and cropping systems. Comparative analyses in contrasting environments 
would elucidate the model’s robustness and identify potential limitations. Additionally, altering the model param-
eters to different crop species through crop-specific calibration could enhance its accuracy and applicability across 
a broader spectrum of agricultural landscapes. Apart from these, leveraging advanced remote sensing techniques 
and high-resolution datasets can further refine the spatial and temporal representation of ET dynamics, facilitat-
ing broader-scale applications and monitoring.

Data availability
The datasets generated during analysed of the current study are not publicly available due to institution policy 
but are available from the corresponding author (Dinesh Kumar Vishwakarma) on reasonable request.
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