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On complexity of colloid cellular 
automata
Andrew Adamatzky 1,4*, Nic Roberts 2, Raphael Fortulan 1, Noushin Raeisi Kheirabadi 1, 
Panagiotis Mougkogiannis 1, Michail‑Antisthenis Tsompanas 1, Genaro J. Martínez 3, 
Georgios Ch. Sirakoulis 1,4 & Alessandro Chiolerio 1,5

The colloid cellular automata do not imitate the physical structure of colloids but are governed 
by logical functions derived from them. We analyze the space‑time complexity of Boolean circuits 
derived from the electrical responses of colloids‑specifically ZnO (zinc oxide, an inorganic compound 
also known as calamine or zinc white, which naturally occurs as the mineral zincite), proteinoids 
(microspheres and crystals of thermal abiotic proteins), and their combinations in response to 
electrical stimulation. To extract Boolean circuits from colloids, we send all possible configurations of 
two‑, four‑, and eight‑bit binary strings, encoded as electrical potential values, to the colloids, record 
their responses, and infer the Boolean functions they implement. We map the discovered functions 
onto the cell‑state transition rules of cellular automata‑arrays of binary state machines that update 
their states synchronously according to the same rule‑creating the colloid cellular automata. We 
then analyze the phenomenology of the space‑time configurations of the automata and evaluate 
their complexity using measures such as compressibility, Shannon entropy, Simpson diversity, and 
expressivity. A hierarchy of phenomenological and measurable space‑time complexity is constructed.
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A liquid computer is a device that uses incompressible fluid to process information via mechanical, electrical, 
optical, or chemical means. The implementation of computation in liquid media has a history spanning over 
120 years, from hydraulic algebraic machines developed in the 1900s to fluid maze solvers and droplet logics in 
the late 2000s. For an overview, please  see1. Advantages of liquid computing include reconfigurability and flex-
ibility, scalability, potential for reduced energy consumption, bio-compatibility and integration with biological 
systems, intrinsic parallelism, innovative data storage and retrieval, and novel computation paradigms. While 
liquid-based computers are still largely experimental and face several technical challenges, they offer intriguing 
advantages that could revolutionise various fields of computing and  technology2–5.

Recently a new sub-domain of liquid computing emerged—computing with colloids (mixtures where micro-
scopically dispersed insoluble particles liquids). The rise of colloid computers started from the liquid cybernetic 
systems, conceptualised as colloidal autonomous soft holonomic processors have demonstrated intriguing fea-
tures, including autolographic  capabilities2,3. Our previous experiments with ZnO colloids under controlled 
laboratory conditions demonstrated their potential as electrical analog neurons, successfully implementing 
synaptic-like learning and Pavlovian  reflexes2,5. Additionally, the computational capabilities of Fe3O4 ferrofluid 
for digit recognition further exemplify the versatility of liquid-based  systems4.

One of the key developments in colloid computing became mining of Boolean circuits in  colloids6,7. The 
technique is based on selecting a pair of input sites, applying all possible combinations of inputs, where logical 
values are represented by electrical characteristics of input signals, to the sites and recording outputs, represented 
by electrical responses of the substrate, on a set of the selected output sites. The approach belong to the family 
of reservoir  computing8–12 and in materia  computing13–17 techniques of analysing computational properties of 
physical and biological substrates.

In our experimental laboratory  studies6,7 we discovered a range of 4-, 6- and 8-ary Boolean functions. In 
present paper, we evaluate dynamics and complexity of the functions using one-dimensional cellular automata 
(CA). CA, despite their simple rules and structure, can exhibit complex behaviour. This makes them an excel-
lent tool for evaluating the inherent complexity of n-ary Boolean functions by mapping the functions onto the 
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CA rules and observing the resulting dynamics. CA can generate a variety of patterns based on initial states and 
transition rules. By encoding n-Boolean functions into CA rules, we study the patterns that emerge, providing 
a visual and dynamic representation of the function’s complexity. This is particularly useful for understanding 
how simple functions can lead to complex behaviours and vice versa.

Methods
Experimental techniques on mining Boolean functions are described in full details  in6,7. Here we briefly outline 
an overall approach, based on the example  of7. Colloids of ZnO and proteinoids have been prepared as detailed 
 in6,7. The hardware was built around an Arduino Mega 2560 (Elegoo, China) and a series of AD9833 program-
mable signal generators (Analog, USA). This setup can send sequences of 2, 4, and 8-bit strings to the colloid 
sample, with the strings encoded as step voltage inputs: − 5 V representing a logical ‘0’ and 5 V representing 
a logical ‘1’. In Fig. 1a, a PC programs a Control Unit (CU) and receives readings from an analog-to-digital 
converter (ADC). The CU, shown as a grey box connected to a standard laboratory power supply in Fig. 1b, 
contains the Arduino Mega and multiple amplifiers. To generate the 2, 4, and 8-bit strings without redesigning 
or rewiring the CU, multiple programmable signal generators were incorporated. This is abstracted in Fig. 1c, 
where only one generator and its output are depicted for simplicity. Activation of these generators is controlled 
by the Arduino Mega, which is programmed through the PC and also depicted within the CU entity in Fig. 1c. 
To search for 2-, 4-, and 8-input Boolean circuits, we used respective electrodes. These were 10 µm platinum 
rods inserted 5 mm apart into the colloid container. Data acquisition (DAQ) probes, separated by 5 mm, fed 2 
differential outputs to a Pico 24 ADC. Its 3rd channel received a pulse on each input state change. Refer to Fig. 1 
for the apparatus schematic. The strings counted from binary 00 to 11, 0000 to 1111, or 00000000 to 11111111, 
changing state every 15 s. All possible electrode states were tested. For two bits, states sequentially altered every 
15 s between 00, 01, 10, and 11. Similarly, all states of the four- and eight-bit strings were sequentially applied. 
Samples from 2 channels were taken at 1 Hz throughout the experiment. Peaks for each channel were located 
for 10 thresholds, from 100 to 600 mV in 50 mV steps, for each input state from 0000 to 1111. Most commonly 
found Boolean functions extracted from ZnO nanoparticle are listed in Table 1. Boolean functions derived  in7 
are presented in Table 1(abc), and the functions derived  in6 in Table 1(def). Most frequent Boolean functions 
discovered in proteinoid colloids are shown in Table 2(abc) and mixture of ZnO and proteinoids in Table 2(def).

We evaluate complexity of the functions discovered via complexity of the space-time configurations of one-
dimensional cellular automata (CA) governed by these functions. We call these CA ‘colloid cellular automata’ 
because their space-time evolution is governed by Boolean functions implemented by colloids and their mixtures 
in laboratory experiments. We consider an array Z of finite state automata, called cells, where every cell takes 
states ‘0’ or ‘1’ and updates its state depending on the states of its two, four or eight immediate neighbours. All 
cells update their states by the same rule and in discrete time. For example, a cell with index i, xi ∈ Z , updates its 
state at time t as a function of states of its two neighbours xt+1 = f (xti−1, x

t
i+1) (representing variables A and B in 

Tables 1ad and 2ad), four neighbours: xt+1 = f (xti−2, x
t
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in Tables 1cf and 2cf). For example the function f25 = (A · B · D · C)+ (C · D · A · B) is represented in a cell-state 
transition rule as xt+1 = (xti−2 · x
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i−1) . We evolved automata of 500 cells 

in 500 iterations of simultaneous cell-state transition.
To evaluate complexity of the cellular automata we used Shannon  entropy19–21, Simpson’s diversity (commonly 

used in ecological studies to evaluate biodiversity of  populations22–24), Lempel-Ziv  complexity25, space filling 
and  expressiveness26,27. Let matrix L represent time-space configuration of a 1D CA governed by state-transition 
rules derived from colloids. Let W = {0, 1}9 be a set of all possible configurations of a 9-node neighbourhood Bx 
including the central node x. Let B be a configuration of matrix L, we calculate a number of non-quiescent neigh-
bourhood configurations as η =

∑
x∈L ǫ(x) , where ǫ(x) = 0 if for every resting x all its neighbours are in the state 

‘0’, and ǫ(x) = 1 otherwise. The Shannon entropy H is calculated as H = −
∑

w∈W (ν(w)/η · ln(ν(w)/η)) , where 
ν(w) is a number of times the neighbourhood configuration w is found in configuration B. Simpson’s diversity 
S is calculated as S =

∑
w∈W (ν(w)/η)2 . Simpson diversity linearly correlates with Shannon entropy for H < 3 ; 

relationships becomes logarithmic for higher values of H as we previously demonstrated  in28. The assessment 
of Lempel-Ziv complexity (compressibility), denoted as LZ, is based on the size of space-time configurations 
saved as PNG files representing configurations. This approach suffices because the ’deflation’ algorithm utilised 
in PNG lossless compression, as outlined  in29–31, is a derivative of the classical Lempel–Ziv 1977 algorithm, as 
described  in25. Space filling D is a ratio of non-zero entries in B to the total number of cells/nodes. This is used 
to estimate expressiveness. Expressiveness E is calculated as the Shannon entropy H divided by space-filling ratio 
D, the expressiveness reflects the ‘economy of diversity’.

Results
CA presented by majority of functions from Tabs. 1 and 2 evolve to all-0 or all-1 state, an example of evolution to 
all-0 states is shown in Fig. 2a. These are ‘trivial’ functions. Let us consider the positions of the functions within 
Wolfram’s classification of CA  behaviour32. Most functions discovered belong to Class I, which is characterised 
by automata exhibiting simple dynamics and evolving to a stable state where all cells are in the same state. Func-
tions f1 , f10 (Fig. 2b), f39 , f28 , f35 (Fig. 2g), f40 (Fig. 2h), f12 (Fig. 3a), f14 (Fig. 3b), f19 (Fig. 3c), f20 (Fig. 3d), f37 
(Fig. 4c), f3 , f6 , f38 (Fig. 2c), f4 , f9 , f13 , f15 , f17 , f18 (Fig. 2d) and the function f37 (Fig. 4c) belong to the class II: 
the automata fall into global cells do not update their state or update them cyclically from ‘0’ to ‘1’. Space-time 
dynamics of class III CA is by quasi-random behaviour and difficult predictability of the successions of the global 
states. The following functions can be related to the class III CA: f7 (Fig. 2e), f8 (Fig. 2f), f21 (Fig. 4a), f36 and f45 
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(Fig. 4b). No functions from those discovered in laboratory experiments seem to belong to class IV, where 
the space-time dynamics of automata show gliders (compact patterns translating in space) with non-trivial 

Fig. 1.  (a) A scheme of the experiments. PC—laptop for generating sequences; CU—control unit, the dashed 
section is a breakdown of a single channel; ADC—analogue to digital  converter18. (b) experimental setup. (c) 
A schematic of the inside of the unit control box. (d) A close-up photo of the colloid dish and the electrodes 
interfacing it.  From7.
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interactions between the gliders. CA governed by functions presented in Fig. 2c,d demonstrate travelling compact 
patterns however these patterns emerge due to asymmetry of the functions.

Complexity measures of the functions discussed are shown in Table 3. Complexity measures — Shannon 
entropy, Simpson index and expressiveness—are consistent with each other as seen in scatter plots for Shannon 
entropy H vs. expressiveness E (Fig. 5a), Shannon entropy H vs. Simpson index S (Fig. 5b). Person correlation 
coefficients r(H ,E) = 0.57 , coefficient of determination R2 = 0.3234 , shows moderate positive linear correlation 

Table 1.  Most commonly found Boolean functions, φ is a frequency of the functions’ discovery, extracted 
from ZnO nanoparticle. Boolean functions derived  in7 are shown in (abc), and the functions derived  in6 in 
(def) (ad) Two-inputs, (be)Four-inputs. (cf) Eight inputs.

(a)

f φ

f1 = A+ B 73

f2 = A+ B 45

f3 = A+ B 37

f4 = A+ B 33

f5 = A · B 8

f6 = B · A 6

f7 = (A · B)+ (B · A) 4

f8 = (A · B)+ (A · B) 3

f9 = A · B 3

f10 = A · B 2

(b)

f φ

f11 = (A · B)+ (B · A · C)+ (B · C · D) 7

f12 = (C · D · B)+ (A · B · D)+ (B · A · D)+ (D · A · C) 6

f13 = (A · B · D)+ (B · A · C · D) 6

f14 = (A · D)+ (A · B · C · D)+ (B · A · C)+ (C · A · B) 5

f15 = (A · B · D)+ (B · A · C)+ (B · C · D) 5

f16 = A · D · B · C 5

f17 = A · B · C · D 5

f18 = (B · C · D)+ (B · C · A)+ (C · D · A)+ (A · B · C · D) 5

f19 = (A · D · B)+ (B · D · A)+ (A · B · C)+ (B · A · C)+ (D · A · C) 5

f20 = (D · A)+ (D · B)+ (B · A · C) 5

(c)

f21 = (A · B · F · C · E)+ (A · D · F · C · E)+ (A · G ·H · B · C)+ (B · D · E · A · F)+ (B · E ·H · A · C)+ (C · D · E · B · F)+ (D · E ·H · B · G)+ (D · F ·H · A · B)
+ (B · C · D · F · G · H)+ (B · C · D · G ·H · F)+ (B · E · A · G · H)+ (C · F · B · G · H)+ (E ·H · A · C · F)+ (F ·H · B · D · E)
+ (A · C · E · G · B · D)+ (A · E · F · G · C · D)+ (B · D · E · G · C · F)+ (B · E · F · G · A · D)+ (C · F · G ·H · D · E)
+ (A · C · D · E · F ·H · G)+ (B · C · E · G · H)+ (C · B · D · F · G)+ (D · C · E · F ·H)+ (E · A
· B · D ·H)+ (E · B · D · G · H)+ (B · C · D · A · E · G)+ (B · D · F · C · G · H)

+ (B · D · G · A · C · E)+ (B · E ·H · C · F · G)+ (C · D · G · B · E ·H)+ (C · E · F · D · G · H)+ (C · G ·H · A · E · F)+ (D · E · F · A · B · C)+ (B · D · E · F · G · H)

+ (B · F · A · D · E · G)+ (C · D · A · B · E · H)+ (C ·H · D · E · F · G)+ (A · C · E · G · D · F ·H)+ (A · B · C · F
· G · H)+ (D · A · B · C · E · G)+ (G · A · C · D · E ·H)

(d)

Function φ

f22 = A+ B 35

f23 = A · B 3

(e)

f φ

f24 = A+ B+ C + D 16

f25 = (A · B · D · C)+ (C · D · A · B) 6

f26 = (C · D)+ (A · B · D) 4

f27 = A+ B+ D 2

(f)

f φ

f28 = A+ B+ C + D + E + F + G 4

f29 = A · C · D · E · F · G ·H · B 2

f30 = A+ C + D + E + F +H + (B · G)+ (G · B) 1

f31 = C + D + E + F +H + (A · B)+ (A · G)+ (B · G)+ (G · A · B) 1
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and r(H , S) = 0.9518 , R2 = 0.9059 , shows strong positive linear correlation. While Shannon entropy H vs space 
filling D (Fig. 5c) show very weak negative correlations, r(H ,D) = −0.1722 , R2 = 0.0297.

Based on measures calculated we can construct the following hierarchies of complexity:

• CA representing 2-ary functions.

• LZ: {f8, f7} ≫ {f1, f3, f4} > f11 > f2
• H: {f8, f7} ≫ f1 > f2 ≫ {f11, f3, f4}
• S: {f8, f7} > f1 ≫ {f3, f4} > {f2, f11}
• E: f7 > f8 ≫ {f1, f4, f3} > {f2, f11}

• CA representing 4-ary functions.

• LZ: f20 > f19 > {f12, f14} > f40
• H: f12 > {f14, f20} > {f19, f40}
• S: {f12, f20} > f14 > {f19, f40}
• E: f20 > {f12, f14} > {f19, f40}

Table 2.  The four most common extracted sum-of-products Boolean expressions with varying thresholds for 
the dispersed proteinoids (abc) and mixture of ZnO and proteinoids (def), (ad) 2-bit input string, (be) 4-bit 
input string, (cf) 8-bit input string.

(a)

f φ

0 (False) 19

f22 = A+ B 16

f23 = A · B 3

(b)

f φ

f24 = A+ B+ C + D 23

f32 = A · B · C · D 4

f33 = A+ B+ (C · D) 3

f34 = (A · B)+ (B · D)+ (C · D)+ (A · C · D) 3

(c)

f Count

f35 = A+ B+ C + D + E + F + G +H 19

f36 = (A · E)+ (B ·H)+ (C · G)+ (D · F)+ (E · D)+ (F · C)+ (G · B)+ (H · A) 4

f37 = A · B · C · D · E · F ·H · G· 2

(C · B)+ (C · D)+ (D · E)+ (E · G)+ (F ·H)+ (G · F)∨

f38 = (H · E)+ (A · B · C)+ (A ·H · B)+ (B ·H · C 1

(d)

f φ

f23 = A · B 21

f22 = A+ B 14

B 2

A 1

(e)

f φ

f39 = A+ B+ C 15

f40 = (A · B)+ (B · C)+ (D · A) 7

f41 = A · B · D · C 5

f42 = (A · B · C)+ (A · D · B)+ (B · D · C) 4

(f)

f φ

f43 = A+ B+ C + D + E + F + G +H 6

f44 = A · B · C · D · E · F · G ·H 3

f45 = (A · D)+ (B · G)+ (C · F)+ (D · E)+ (E · C)+ (F · B)+ (G · A)+ (G ·H) 2

f46 = (A+ C + D + E + (B · F)+ (B · G)+ (B ·H)+ (F · G)+ (F ·H)+ (G ·H) 1
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• CA representing 8-ary functions.

LZ: f21 > f36 > f37
H: f21 > {f37, f36}
S: f21 > f37 > f36
E: f37 ≫ f21 > f36

For CA governed by 2-ary functions, LZ hierarchy shows that functions f8 and f7 have the highest complex-
ity, significantly higher than the others, f1, f3 , and f4 have moderate complexity, f11 lower, and f2 the lowest. In 
Shannon complexity hierarchy f8 and f7 again rank highest, f1 is slightly lower, followed by f2 ; functions f11, f3 , 
and f4 rank lowest and are grouped together. Simpson index ordering indicates that f8 and f7 have the highest 
structural complexity, f1 follows, with f3 and f4 significantly lower, and f2 and f11 the lowest. Order of expressive 
complexity puts function f7 as the highest, slightly higher than f8 ; functions f1, f4 , and f3 are moderate, while f2 
and f11 rank the lowest.

Fig. 2.  Functions with two-arguments and those functions with four or eight arguments which produce alike 
patterns. Space (1D CA array) states are horizontal, and time (progressing from top to bottom) is vertical: 
x0
1
x0
2
. . . x0

500
 x1
1
x1
2
. . . x1
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Fig. 3.  Functions with four-arguments and those functions with eight arguments which produce alike patterns. 
Space (1D CA array) states are horizontal, and time (progressing from top to bottom) is vertical.

Fig. 4.  Functions with eight-arguments. Space (1D CA array) states are horizontal, and time (progressing from 
top to bottom) is vertical.
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For CA governed by 4-ary functions, the order of compressibility demonstrates that function f20 has the 
highest complexity, followed by f19 , functions f12 and f14 have moderate complexity, and f40 the lowest. Shannon 
complexity demonstrates that function f12 ranks highest, with f14 and f20 following, f19 and f40 are the lowest. 
In Simpson hierarchy functions f12 and f20 are highest, followed by f14 , and f19 and f40 rank the lowest. In the 
expressiveness hierarchy function f20 is highest, with f12 and f14 in the middle, and f19 and f40 the lowest.

In CA governed by 8-ary functions, compressibility hierarchy is the following. Function f21 has the highest 
complexity, followed by f36 f and f37 . In the Shannon entropy and Simpson index hierarchies function f21 is 
highest, with f37 and f36 being equal and lower. Expressiveness hierarchy shows that function f37 is significantly 
higher, followed by f21 , and f36 the lowest.

Functions f8 and f7 are consistently ranked highest across multiple criteria for 2-ary functions, indicating 
their higher complexity or influence. Function f21 is ranked highest in the majority of criteria for 8-ary func-
tions. Different criteria (LZ, H, S, E) can yield different hierarchies. For instance, in 4-ary functions, f12 is ranked 
highest by H and S but not by LZ or E. Expressiveness measure E seems to have distinct rankings compared to 
others, especially in the 8-ary functions.

Functions which produce CA patterns with absolute highest Liv-Zempel complexity, Shannon entropy and 
Simpson diversity are f21 (Table 1c and Fig. 4a), f8 (Table 1a and Fig. 2f) and f7 (Table 1a and Fig. 2e). A func-
tion with highest expressiveness is f37 (Table 2c and Fig. 4c). Whilst space-time configurations of CA governed 
by f37 shows complex local dynamics, the global dynamics is dull. This shows that the expressiveness might be 
not a reliable measure of global complexity. If we normalise values of LZ, H and S complexity measures by a 
number of terms or literals, we will fine that functions f7 and f8 are most complex functions, relative to formula 
complexity and in terms of space-time dynamics, discovered in colloids.

Table 3.  Complexity of space-time patterns generated by CA derived from non-trivial Boolean functions 
mined in ZnO and proteinoids’ colloids: LZ is an LZ complexity measured via size of ZIP file of the space-time 
configurations, LZ/n is the complexity normalised by the input string size, H is Shannon entropy, S is Simpson 
diversity, D is a space filling, E is an expressiveness. (a) Two-arguments functions, (b) Four-arguments 
functions, (c) Eight-arguments functions.

(a)

f LZ LZ/n H S D E

f2 4 2 0.1 0.02 0.98 0.1

f11 9 4.5 0.07 0.02 0.98 0.1

f3 14 7 0.05 0.03 0.1 0.5

f4 14 7 0.05 0.03 0.1 0.5

f1 16 8 0.5 0.2 0.9 0.6

f7 57 28.5 1.9 0.8 0.4 4.8

f8 61 30.5 1.9 0.8 0.5 3.8

(b)

f LZ LZ/n H S D E

f12 11 2.75 1.4 0.7 0.6 2.3

f14 12 3 1.1 0.6 0.5 2.2

f19 22 5.5 0.7 0.5 0.5 1.4

f20 42 10.5 1.1 0.7 0.32 3.4

f40 9 4.5 0.7 0.5 0.5 1.4

(c)

f LZ LZ/n H S D E

f37 11 1.375 1.2 0.7 0.1 12.0

f36 36 4.5 1.1 0.5 0.5 2.2

f21 65 8.125 1.9 0.8 0.5 3.8
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Conclusion and discussion
The colloid automata—one-dimensional cellular automata (CA) governed by Boolean functions derived from 
ZnO, proteinoid, and their mixture, colloids—exhibit a rich spectrum of space-time evolution. Using complex-
ity measures such as Lempel-Ziv complexity, Shannon entropy, Simpson diversity, and expressiveness, we can 
construct families of complexity hierarchies based on the space-time configurations of these colloid CA. These 
hierarchies reflect the inherent complexities of the Boolean functions and provide a means to compare and 
understand their behaviour across different dimensions.

The most complex, in terms of CA dynamics, functions discovered are xor (function f7 ) and not xor 
(function f8 ). The xor gate is the most hard to find in natural non-linear systems, Boolean  gate33–35. Moreover, 
already in 1960s it was demonstrated that a linear perceptron can no learn xor  function36. The use of xor gates 
in modern circuit design offers several advantages, such as reduced representation size and improved testability, 
and optimal power  consumption37. CA governed by xor gate exhibit unpredictable dynamics, similar to that 
of that randomly generated  patterns38 and, when evolve from single non-zero state configurations produced 
fractal patterns—Sierpenski  gasket39. An evolution of rule f7 CA started from a single cell in state ‘1’ is shown 
in (Fig. 6a), a reflection from absorbing boundaries is seen. The same evolution, but from two cells in state ‘1’ 
(Fig. 6b), shows a new fractal derived from a collision. The newly formed fractal pattern has a higher density of 
non-quiescent cells than the parent fractal structures.

There are several limitations of the research which could be addressed in future studies. The research focuses 
solely on one-dimensional cellular automata. Extending this to two-dimensional or three-dimensional models 
could provide a more comprehensive understanding of the behaviour of colloid automata. The Boolean func-
tions derived from ZnO, proteinoids, and their mixtures may not fully capture the complexities of informa-
tion processing in real colloid systems. More sophisticated approaches incorporating physical and chemical 
interactions could yield more accurate results. The study is constrained by a finite set of states and rules, which 
might not encompass all possible behaviours of colloid systems. Exploring larger or infinite state spaces could 
reveal more complex dynamics. The reliance on specific complexity measures such as Lempel-Ziv complexity, 
Shannon entropy, Simpson diversity, and expressiveness might not capture all aspects of the system’s behaviour. 
Other measures or a combination of multiple metrics could provide a more holistic view. Measures like fractal 
dimension, Lyapunov exponents, or network-based metrics might offer new insights. Extending the research 

Fig. 5.  (a) Shannon entropy H vs expressiveness E, linear approximation E = 0.30874+ 2.5032 ∗H . 
(b) Shannon entropy H vs Simpson index S, linear approximation S = 0.058092+ 0.43781 ∗H . (c) Shannon 
entropy H vs space filling D, linear approximation D = 0.56455+ (−0.073223) ∗H.
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to higher-dimensional cellular automata could provide deeper insights into the spatial-temporal patterns of 
information processing in colloid systems, potentially revealing new patterns and behaviours.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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