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CGJO: a novel complex‑valued 
encoding golden jackal 
optimization
Jinzhong Zhang , Gang Zhang *, Min Kong , Tan Zhang  & Duansong Wang 

Golden jackal optimization (GJO) is inspired by mundane characteristics and collaborative hunting 
behaviour, which mimics foraging, trespassing and encompassing, and capturing prey to refresh a 
jackal’s position. However, the GJO has several limitations, such as a slow convergence rate, low 
computational accuracy, premature convergence, poor solution efficiency, and weak exploration and 
exploitation. To enhance the global detection ability and solution accuracy, this paper proposes a 
novel complex-valued encoding golden jackal optimization (CGJO) to achieve function optimization 
and engineering design. The complex-valued encoding strategy deploys a dual-diploid organization 
to encode the real and imaginary portions of the golden jackal and converts the dual-dimensional 
encoding region to the single-dimensional manifestation region, which increases population 
diversity, restricts search stagnation, expands the exploration area, promotes information exchange, 
fosters collaboration efficiency and improves convergence accuracy. CGJO not only exhibits strong 
adaptability and robustness to achieve supplementary advantages and enhance optimization 
efficiency but also balances global exploration and local exploitation to promote computational 
precision and determine the best solution. The CEC 2022 test suite and six real-world engineering 
designs are utilized to evaluate the effectiveness and feasibility of CGJO. CGJO is compared with three 
categories of existing optimization algorithms: (1) WO, HO, NRBO and BKA are recently published 
algorithms; (2) SCSO, GJO, RGJO and SGJO are highly cited algorithms; and (3) L-SHADE, LSHADE-
EpsSin and CMA-ES are highly performing algorithms. The experimental results reveal that the 
effectiveness and feasibility of CGJO are superior to those of other algorithms. The CGJO has strong 
superiority and reliability to achieve a quicker convergence rate, greater computation precision, and 
greater stability and robustness.

Keywords  Golden jackal optimization, Complex-valued encoding, Global exploration, Local exploitation, 
Experimental results

The primary intention of optimal operation is to fulfil certain decision constraints and identify the optimal 
implementation. When solving some large-scale and complex combinational optimization issues, conventional 
techniques present inherent weaknesses, such as low computational productivity, poor optimization precision, 
premature convergence, exponentially increasing time and combinatorial explosion. However, evolutionary algo-
rithms not only have simple framework operations, good parallelism, strong robustness, easy expansion, strong 
self-organization, high calculation accuracy and strong stability but can also effectively realize complementary 
advantages between algorithms or optimization strategies to acquire accurate global values. Some evolutionary 
algorithms include the walrus optimizer (WO)1, hippopotamus optimization (HO)2, sand cat swarm optimization 
(SCSO)3, Newton‒Raphson-based optimizer (NRBO)4, black-winged kite algorithm (BKA)5, linear population 
size reduction-success-history adaptation for differential evolution (L-SHADE)6, ensemble sinusoidal incor-
porated with L-SHADE (LSHADE-EpSin)7, covariance matrix adaptation evolution strategy (CMA-ES)8, and 
golden jackal optimization (GJO)9.

Mohapatra et al. utilized a modified GJO to accomplish the functions and engineering designs; this method-
ology exhibited remarkable reliability and dependability in delivering the solution10. Zhang et al. introduced an 
enhanced GJO to accomplish an infinite impulse response network; this methodology achieved greater compu-
tational efficiency and greater recognition precision11. Zhang et al. designed a revised GJO to segment images, 
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and this methodology displayed good robustness and adaptability to prevent search stagnation and increase 
segmentation quality12. Hanafi et al. integrated a binary GJO to accomplish intrusion detection in the Internet 
of Things; this methodology achieved excellent superiority and practically acquired the maximum percentage 
accuracy and the finest detection effect13. Ghandourah et al. created a GJO to anticipate the thermal properties 
of solar stills; this methodology deployed extensive investigation and extraction to transmit a higher prediction 
accuracy and faster calculation efficiency14. Wang et al. mentioned a reinforced GJO to segment COVID-19 
images; this methodology revealed good durability and feasibility in promoting the computation rate and seg-
mentation precision15. Das et al. deployed the GJO to predict feature selection of software failure; this meth-
odology has substantial relevance and dependability to achieve high classification precision and optimization 
efficiency16. Snášel et al. introduced an elite-opposition GJO to accomplish multiobjective engineering issues; 
this methodology exhibited certain superiority and resiliency in generating globally accurate values 17. Hous-
sein et al. devised a modified GJO to segment skin cancer images; this methodology has strong feasibility and 
practicality18. Zhang et al. utilized binary GJO with a stochastic canvas map and cosine resemblance for select-
ing features, and this methodology demonstrated substantial superiority in terms of the convergence rate and 
calculation accuracy19. Lu et al. proposed a refined GJO and random configuration network to accomplish fault 
diagnosis of power transformers; this methodology provided excellent reliability and exploitation to increase the 
optimization accuracy and calculation efficiency20. Nanda et al. utilized an altered GJO based on a sine cosine 
and adopted a scaling factor to design an adaptive fuzzy PIDF controller; this methodology showed significant 
robustness and superiority to create better control parameters21. Wang et al. provided an adaptive GJO to iden-
tify abnormal user behaviour; this methodology exhibited great dependability and superiority in achieving the 
optimal parameters and the best actual value22. Yang et al. mentioned an upgraded GJO to achieve the finest 
distribution of parking locations for wine turbines and electric automobiles; this methodology had excellent 
predictability for decreasing grid energy losses and minimizing the objective value23. Najjar et al. combined GJO 
with a long short-term model to forecast the tribological properties of alumina-coated alumina; this methodology 
exhibited exceptional durability and superiority to acquire the ideal optimization solution24. Mahdy et al. utilized 
the GJO to design an integrated wave electricity and photovoltaic system supplying turbocharging stations; this 
methodology displayed good reliability and stability to mimic and maximize the issue25. Wang et al. described a 
customized GJO to segment aerial images; this methodology exhibited extensive investigation and exploitation 
to generate a greater computation rate and superior segmentation quality26. Wang et al. mentioned multistrategy 
GJO to accomplish function optimization and engineering design; this methodology exhibited strong global 
detection ability to avoid search stagnation and determine the best solution27. Zhang et al. deployed GJO with a 
lateral inhibition strategy to accomplish image matching; this methodology has strong reliability and depend-
ability to achieve an accurate registration rate and superior exploration accuracy28. Sundar Ganesh et al. released 
a modified GJO to accomplish photovoltaic parameter estimation; this methodology utilized exploration and 
exploitation to increase computational efficiency and determine the optimal parameter29. Bai et al. constructed 
an enhanced GJO to accomplish function optimization and engineering design; this methodology exhibited 
remarkable superiority and reliability in efficiently completing a global search and achieved the best convergence 
accuracy30. Zhong et al. delivered a multiobjective GJO to resolve dynamic economic emission dispatch; this 
methodology featured strong superiority and robustness to complete the optimal scheduling solution31. Elhoseny 
et al. implemented a modified multistrategy GJO to accomplish function optimization and engineering design; 
this methodology exhibited strong adaptability and robustness to increase the solution efficiency and convergence 
accuracy32. Alharthi et al. introduced a modified GJO with chaotic maps to accomplish chemical data classifica-
tion; this methodology exhibited superior evaluation efficiency and classification accuracy33. Li et al. integrated 
a cross-mutation GJO to accomplish function optimization and engineering design; this methodology exhibited 
strong effectiveness and feasibility to achieve a quicker convergence rate and greater computational precision34. 
In summary, research on the GJO has focused mainly on algorithm improvement and application. (1) The 
modified GJO uses efficient exploration strategies, effective encoding forms or hybrid optimization methods to 
realize supplementary advantages and enhance the optimization efficiency, which are applied to achieve func-
tion optimization and engineering design. These modified algorithms can effectively avoid search stagnation 
and promote solution efficiency, which balances exploration and exploitation to improve the convergence speed 
and calculation accuracy. (2) The modified GJO exhibits strong stability, robustness, feasibility, scalability, and 
parallelism to solve various large-scale and complex frontier problems, such as artificial intelligence, systems 
control, pattern recognition, engineering technology and network communication. The modified GJO method 
exhibits strong adaptability and robustness to promote computational precision and determine the best solution.

Although the above modified versions of the original GJO have enhanced the convergence speed and calcula-
tion accuracy to a certain extent, they still cannot efficiently achieve a balance between global exploration and 
local exploitation to avoid search stagnation and determine the best solution. The no-free-lunch (NFL) theorem 
states that there is no specific optimization algorithm that can resolve all optimization issues. More advanced and 
superior algorithms will continue to emerge in the improvement and application of the GJO, which motivates 
us to establish a novel CGJO for function optimization and engineering design. The complex-valued encoding 
mechanism is introduced into the basic GJO to encode the real and imaginary portions of the golden jackal and 
renew the position information, which increases population diversity, restricts search stagnation, expands the 
exploration area, promotes information exchange, fosters collaboration efficiency and improves convergence 
accuracy. The main contributions can be summarized as follows: (1) Complex-valued encoding golden jackal 
optimization (CGJO) is proposed to resolve the global optimization problem. (2) The complex-valued encoding 
mechanism increases population diversity, restricts search stagnation, expands the exploration area, promotes 
information exchange, fosters collaboration efficiency and improves convergence accuracy. (3) CGJO is compared 
with various optimization algorithms, including recently published, highly cited, and highly performing algo-
rithms. (4) CGJO is tested against the CEC 2022 test suite and six real-world engineering designs by performing 
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simulation experiments and analysing the results. (5) CGJO exhibits strong effectiveness and feasibility and 
outperforms the other algorithms.

The remainder of this article is divided into the following sections. Section “Golden jackal optimization” 
reveals the GJO. Section “Complex-valued encoding golden jackal optimization” describes the CGJO. Section 
“Simulation evaluation and result analysis” proposes comparative experiments and result analysis. Section “CGJO 
for engineering design” introduces the comparative experiments and result analysis. Section “Conclusions and 
future research” summarizes the findings, research limitations, and recommendations for future research.

Golden jackal optimization
The jackal collaborative hunting procedure is depicted in Fig. 1.

Search domain
In GJO, the search agent is distributed arbitrarily, and the jackal population is initialized arbitrarily. The initial 
search agent is established as:

where Y0 represents the initial population location of the golden jackal, rand ∈ [0, 1][0, 1] , Ymin and Ymax represent 
the lower and upper boundaries, respectively.

The optimal and suboptimal search agent portrays a jackal pair, and the prey matrix is established as:

where Yi,j represents the jth dimension of the ith prey, n represents the prey size, and d represents the question 
dimension. The fitness matrix FOA is established as:

where f  portrays the fitness function. The jackal pair renews and captures the prey according to the correspond-
ing prey position.

Foraging the prey (exploration)
Jackals utilize their distinctive predatory abilities to perceive, track and capture prey; however, the target occa-
sionally cannot be caught quickly and escapes. Hence, the male jackal leads the female jackal to search for prey, 
thereby facilitatig a more efficient the hunting process. The positions are established as:

where t  represents the current iteration, Prey(t) represents the prey location, YM(t) and YFM(t) represent the 
locations of the male and female jackals, and Y1(t) and Y2(t) represent the renewed locations of the male and 
female jackals, respectively.

The prey’s energy to avoid E is established as:

(1)Y0 = Ymin + rand(Ymax − Ymin)

(2)Prey =











Y1,1 Y1,2 · · · Y1,d

Y2,1 Y2,2 · · · Y2,d

...
...

...
...

Yn,1 Yn,2 · · · Yn,d











(3)FOA =











f (Y1,1;Y1,2;Y1,d)

f (Y2,1;Y2,2;Y2,d)

...
f (Yn,1;Yn,2;Yn,d)











(4)Y1(t) = YM(t)− E ·
∣

∣YM(t)− rl · Prey(t)
∣

∣

(5)Y2(t) = YFM(t)− E ·
∣

∣YFM(t)− rl · Prey(t)
∣

∣

(6)E = E1 · E0

Fig. 1.   (A) Pair of golden jackals; (B) Foraging prey; (C) Trespassing and encircling prey; (D,E) Trapping prey.
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where E1 represents the energy of the prey, and E0 represents the initial energy of the prey.

where r is a stochastic value in [0,1].

where T represents the maximum number of iterations, c1 = 1.5 , and E1 linearly decreases from 1.5 to 0.
The stochastic value rl based on the Levy distribution is established as:

The Levy flight LF portrays the fitness function.

where µ and v portray stochastic values in (0,1), β = 1.5.
The jackal pair’s renewed position is established as:

Encircling and trapping the prey (exploitation)
The jackal can pounce, surround and devour the prey. The positions are established as follows:

where Prey(t) represents the prey location, YM(t) and YFM(t) represent the locations of the male and female jack-
als, respectively, and Y1(t) and Y2(t) represent the renewed locations of the male and female jackals, respectively. 
The renewed location is established as Eq. (11).

The pseudocode of GJO is listed in Algorithm 1.

(7)E0 = 2 · r − 1

(8)E1 = c1 · (1− (t
/

T))

(9)rl = 0.05 · LF(y)

(10)LF(y) = 0.01× (µ× σ)

�

(

�

�

�
v(1/ β)

�

�

�
); σ =





Ŵ(1+ β)× sin (πβ
�

2)

Ŵ

�

1+β
2

�

× β ×
�

2
β−1
2

�





1/ β

(11)Y(t + 1) =
Y1(t)+ Y2(t)

2

(12)Y1(t) = YM(t)− E ·
∣

∣rl · YM(t)− Prey(t)
∣

∣

(13)Y2(t) = YFM(t)− E ·
∣

∣rl · YFM(t)− Prey(t)
∣

∣
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Algorithm 1.    GJO.

Complex‑valued encoding golden jackal optimization
In natural ecosystems, chromosomes of sophisticated cellular structures are regularly composed of double or 
multiple strands. Complex-valued encoding uses mainly diploid technology to describe one allele of a chromo-
some and alter its position independently of the real and imaginary portions. This technology can enhance algo-
rithmic parallelism, tap population diversity, avoid premature convergence, expand the feature space, improve 
the search efficiency and increase the information capacity. For an issue with M distinct factors, the structure 
is established as35,36:

where (RP , IP) represents the gene of an organism with a diploid structure and RP and IP represent the real and 
imaginary parts of the complex-virtual encoding, respectively. The chromosome structure of the organism is 
outlined in Table 1.

Initializing the complex‑valued encoding population
Assume that the defined span is [Ak ,Bk], k = 1, 2, ..,M , and that stochastics generate M modulus and M 
arguments.

(14)Yp = Rp + iIp, p = 1, 2, 3, ...,M

(15)ρk ∈
[

0,
Bk − Ak

2

]

, k = 1, 2, ...,M

Table 1.   Chromosome model of the organism.

Gene1 Gene2 Genei GeneM

(RP1, IP1) (RP2, IP2) ... (RPM , IPM )
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The M complex values are established as:

The GJO uses M real and imaginary parts to alter the jackal location.

The altering methodology of CGJO
Foraging prey

	(1)(1)	 Alter the real portions:

	(1)(1)	 Alter the imaginary portions:

Encircling and trapping prey

	(1)(1)	 Alter the real portions:

	(1)(1)	 Alter the imaginary portions:

where PreyR and PreyI indicate the real and imaginary portions of the prey, respectively. YR and YI indicate the 
real and imaginary portions of the golden jackal, respectively.

The methodology for computing the fitness value
The fitness value of the complex value is established as:

where Yk represents the converted authentic variable.

(16)θk = [−2π , 2π], k = 1, 2, ...,M

(17)YRk + iYIk = ρk(cos θk + i sin θk), k = 1, 2, ...,M

(18)Y1R(t) = YMR(t)− E ·
∣

∣YMR(t)− rl · PreyR(t)
∣

∣

(19)Y2R(t) = YFMR(t)− E ·
∣

∣YFMR(t)− rl · PreyR(t)
∣

∣

(20)YR(t + 1) =
Y1R(t)+ Y2R(t)

2

(21)Y1I (t) = YMI (t)− E ·
∣

∣YMI (t)− rl · PreyI (t)
∣

∣

(22)Y2I (t) = YFMI (t)− E ·
∣

∣YFMI (t)− rl · PreyI (t)
∣

∣

(23)YI (t + 1) =
Y1I (t)+ Y2I (t)

2

(24)Y1R(t) = YMR(t)− E ·
∣

∣rl · YMR(t)− PreyR(t)
∣

∣

(25)Y2R(t) = YFMR(t)− E ·
∣

∣rl · YFMR(t)− PreyR(t)
∣

∣

(26)YR(t + 1) =
Y1R(t)+ Y2R(t)

2

(27)Y1I (t) = YMI (t)− E ·
∣

∣rl · YMI (t)− PreyI (t)
∣

∣

(28)Y2I (t) = YFMI (t)− E ·
∣

∣rl · YFMI (t)− PreyI (t)
∣

∣

(29)YI (t + 1) =
Y1I (t)+ Y2I (t)

2

(30)ρk =
√

Y2
Rk + Y2

Ik , k = 1, 2, ...,M

(31)Yk = ρksgn

(

sin

(

YIk

ρk

))

+
Bk + Ak

2
, k = 1, 2, ...,M
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The solution procedure of CGJO
The CGJO increases the population diversity, improves algorithmic parallelism, accelerates global exploration 
and promotes optimization. The pseudocode of CGJO is listed in Algorithm 2. The flowchart of the CGJO is 
shown in Fig. 2.

Start

End

Check and modify the boundary if the prey 
exceeds the search domain

t=t+1

Initialize the random prey population

Obtain the real and imaginary parts via Eq.(17), 
convert to real variables  via Eqs. (30) and (31) 

t< T?

|E|<1?

Restore the best prey Y1

t<T?

Refresh the avoiding energy E  via Eqs.(6-8), 
refresh the random value rl via Eqs.(9-10)

 Exploration phase 
Refresh the real and imaginary parts of the 

prey position via Eqs.(4), (5) and (11)

Calculate  the fitness value of each prey, 
refresh Y1 if there is a superior solution

 Exploitation phase 
Refresh the real and imaginary parts of the 
prey position via Eqs.(12), (13) and (11)

Calculate  the fitness value of each prey, 
obtain the best prey Y1

Conver to the real variables via Eqs. (30) and (31) 

Yes

No

YesNo

Yes

No

Fig. 2.   Flowchart of the CGJO.
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Algorithm 2.   CGJO.

Computational complexity of the CGJO
Time complexity The time complexity is established to estimate the amount of resources consumed when each 
algorithm operates independently, which directly relates the question’s operational scale to the computational 
time. The big-O notation is a practical methodology for demonstrating the algorithm’s directness and depend-
ability. The CGJO contains three primary processes: initialization, estimation of the fitness function, and altera-
tion of the jackal position. In CGJO, n represents the population size, T represents the maximum number of 
iterations, and d represents the question dimension. The initialization involves O(n) . Each process consists of 
estimating the fitness function and altering the jackal position O(T × n)+ O(T × n× d) . Complex-valued 
encoding enhances algorithmic parallelism, taps population diversity, avoids premature convergence, expands 
the feature space, improves the search efficiency and increases the information capacity. CGJO exhibits excellent 
durability and dependability to acquire complementary advantages and regulates exploration and exploitation 
to promote computational precision. The time complexity of CGJO is O(n× (T + T × d + 1)).

Space complexity the space complexity is utilized to store the space exhausted by the CGJO. In CGJO, n rep-
resents the population size, and d represents the question dimension. CGJO not only exhibits strong adaptability 
and robustness to achieve supplementary advantages and enhance optimization efficiency but also balances 
global exploration and local exploitation to promote computational precision and determine the best solution. 
The space complexity of the CGJO involves O(n× d).
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Simulation evaluation and result analysis
Experimental setup
The mathematical evaluations were performed with Windows 10 with an Intel Core i7-8750H 2.2 GHz CPU, a 
GTX1060, and 8 GB of memory.

Parameter settings
The algorithm’s parameters are a set of distinctive experimental values that are extracted from the original papers.

WO: stochastic value rand ∈ [0, 1] , danger factors A ∈ [0, 2] , R ∈ [−1, 1] , stochastic values r1−5 ∈ (0, 1) , 
migration step control factor β ∈ [0, 1] , distress factor p ∈ (0, 1) , standard deviation σy = 1 , control value 
α = 1.5 , range θ ∈ [0,π ].

HO: stochastic values r1−6 ∈ (0, 1) , integer I1,2 ∈ [1, 2] , stochastic value ω ∈ [0, 1] , stochastic value ν ∈ [0, 1] , 
constant value θ = 1.5.

SCSO: constant value SM = 2 , sensitivity range rG ∈ (0, 2) , stochastic value rand ∈ [0, 1] , range θ ∈ [0, 2π] , 
stochastic value R ∈ [−1, 1].

NRBO: stochastic value δ ∈ [−1, 1] , stochastic values a, b ∈ (0, 1) , stochastic values r1,2 ∈ (0, 1) , stochastic 
value θ1 ∈ (−1, 1) , stochastic value θ2 ∈ (−0.5, 0.5).

BKA: stochastic value rand ∈ [0, 1] , constant value p = 0.9 , stochastic value r ∈ [0, 1] , Cauchy mutation 
C(0, 1) , δ = 1 , µ = 0.

L-SHADE: Pbest = 0.1 , Arc rate = 2 , learning rate c = 0.8 , threshold max _nfes/2.
LSHADE-EpSin: Pbest = 0.1 , Arc rate = 2 , learning rate c = 0.8 , threshold max _nfes/2.
CMA-ES: parent number µ =

⌊

�
/

2
⌋

 , weight factor w = log(mu+ 0.5)− log(1 : mu) , step size σ = 0.3× 200.
GJO: stochastic value r ∈ [0, 1] , constant value c1 = 1.5 , initial state E0 ∈ [−1, 1] , energy decrease E1 ∈ [0, 1.5] , 

default factor β = 1.5 , stochastic values u, v ∈ (0, 1).
GJO-based on ranking-based mutation operator (RGJO)37: stochastic value r ∈ [0, 1] , constant value c1 = 1.5 , 

initial state E0 ∈ [−1, 1] , energy decrease E1 ∈ [0, 1.5] , default factor β = 1.5 , stochastic values u, v ∈ (0, 1) , 
scaling factor F = 0.7.

GJO-based on the simplex method (SGJO)38: stochastic value r ∈ [0, 1] , constant value c1 = 1.5 , initial state 
E0 ∈ [−1, 1] , energy decrease E1 ∈ [0, 1.5] , default factor β = 1.5 , stochastic values u, v ∈ (0, 1) , stochastic value 
k ∈ (0, 1) , reflectivity α = 1 , expansion factor γ = 1.5 , compression factor β1 = 0.5 , contraction factor β2 = 0.2.

CGJO: stochastic value r ∈ [0, 1] , constant value c1 = 1.5 , initial state E0 ∈ [−1, 1] , energy decrease 
E1 ∈ [0, 1.5] , default factor β = 1.5 , stochastic values u, v ∈ (0, 1).

Benchmark functions
CGJO is implemented to accomplish the CEC 2022 benchmark functions39,40, which confirms its practicality 
and feasibility. Table 2 outlines the CEC 2022 test suite.

Experimental result analysis
The population size is 50, the maximum number of iterations is 1000, and the number of separate runs is 30. Best, 
Std, Mean, Median and Worst represent the optimal value, standard deviation, mean value, median value and 
worst value, respectively41. The ranking is based on the standard deviation. The robustness of the optimizaiton 
algorithms is to maintain the stable ability in term of noise and outliers. For noise in data sets, the optimization 
algorithms utilize the following strategies: (1) gradient smoothing, (2) momentum method, (3) adaptive learning 
optimizer, (4) smooth optimization objective function, (5) robust loss function. For outliers in data sets, the opti-
mization algorithms utilize the following strategies: (1) delete outliers, (2) replace outliers, (3) convert outliers.

The simulation results of different algorithms for the CEC 2022 test functions are outlined in Table 3. For F1 
and F2, compared with those of the basic GJO, the optimal values, standard deviations, mean values, median 
values and worst values of RGJO, SGJO and CGJO are significantly greater. The CGJO method is superior and 
reliable for identifying the ideal global value. The various evaluation indicators and computational solutions of 

Table 2.   Description of CEC2022 test suite.

Function type No. Name Dim [lb,ub] Fmin

Unimodal function F1 Shifted and full rotated Zakharov function 10 [− 100, 100] 300

Basic functions

F2 Shifted and full rotated Rosenbrock’s function 10 [− 100, 100] 400

F3 Shifted and full rotated expanded Schaffer’s F6 function 10 [− 100, 100] 600

F4 Shifted and full rotated non-continuous Rastrigin’s function 10 [− 100, 100] 800

F5 Shifted and rotated Levy function 10 [− 100, 100] 900

Hybrid functions

F6 Hybrid function 1 ( N = 3) 10 [− 100, 100] 1800

F7 Hybrid function 2 ( N = 6) 10 [− 100, 100] 2000

F8 Hybrid function 3 ( N = 5) 10 [− 100, 100] 2200

Composite functions

F9 Composite function 1 ( N = 5) 10 [− 100, 100] 2300

F10 Composite function 2 ( N = 4) 10 [− 100, 100] 2400

F11 Composite function 3 ( N = 5) 10 [− 100, 100] 2600

F12 Composite function 4 ( N = 6) 10 [− 100, 100] 2700
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Function Result WO HO SCSO NRBO BKA L-SHADE LSHADE-EpSin CMA-ES GJO RGJO SGJO CGJO

F1

Best 300.2130 309.0403 333.8662 396.4065 300.0094 300.0152 300.0000 302.1946 453.9769 338.3932 386.9419 300.0000

Std 2.094482 63.68451 984.8224 192.7886 1.401565 105.4176 25.71657 54.86285 1947.696 924.0128 1496.385 0.000215

Mean 301.7536 392.7228 993.1696 691.5273 300.5281 325.1675 311.4229 375.5500 2563.964 931.5736 1948.520 300.0001

Median 300.8786 381.6787 487.1169 654.6331 300.1015 300.8597 300.0000 365.5108 2807.546 472.5906 1805.048 300.0000

Worst 308.5147 569.9658 4181.704 1230.933 306.5481 878.5424 421.8946 456.1776 6465.073 2987.586 4589.390 300.0010

Rank 3 6 10 8 2 7 4 5 12 9 11 1

F2

Best 400.5629 400.0001 400.2925 405.9872 400.0035 400.0074 404.1600 400.0142 404.7350 406.6700 402.3776 400.0000

Std 25.35779 31.68464 29.22815 25.47904 22.22227 27.20730 24.31578 24.15667 33.54314 15.96363 21.56903 2.000642

Mean 418.2928 426.3870 429.0072 434.6420 412.8991 418.5663 417.0360 415.5301 440.2734 417.1255 430.6919 400.7227

Median 408.9161 408.9477 412.2485 422.1621 404.0980 407.8979 408.9161 405.5960 435.8737 411.1550 431.8252 400.0000

Worst 480.7356 495.8649 495.8306 482.5962 470.7846 475.8162 493.0350 472.6120 575.3141 462.2972 471.6199 408.9162

Rank 7 11 10 8 4 9 6 5 12 2 3 1

F3

Best 600.0140 602.1127 602.1440 609.0012 602.8699 600.0000 600.0040 600.3814 600.5514 600.1314 600.8426 600.0000

Std 0.457946 10.27817 9.795200 6.434381 9.824822 9.131703 6.450363 9.146592 5.000873 3.383262 6.821077 0.445899

Mean 600.3644 622.2184 614.8414 620.6831 622.0874 604.2571 606.4856 615.2597 606.3282 602.5358 610.0306 600.2296

Median 600.1908 622.1951 613.3532 620.9781 622.7726 601.0723 604.0961 614.8622 605.6116 601.9710 608.7197 600.0003

Worst 601.4496 646.9043 633.1736 635.0505 642.2783 645.4015 626.1610 635.6286 624.6561 617.7707 631.5368 601.4292

Rank 2 12 10 5 11 8 6 9 4 3 7 1

F4

Best 810.9445 805.9699 808.9784 811.0988 805.9814 813.9294 806.9647 806.0095 813.3037 806.8717 807.8969 801.9899

Std 14.04259 5.396266 7.784118 7.323493 6.687331 4.306356 12.78127 5.813394 7.901317 9.905784 7.372880 2.855758

Mean 836.1125 817.0386 827.1662 823.8555 816.1229 830.9425 828.7686 817.2325 825.2856 823.2192 820.0838 805.5197

Median 842.4192 817.9093 826.2285 822.9933 815.4265 832.8336 827.7392 817.9326 823.6994 822.4298 820.5300 804.9748

Worst 857.8684 822.8844 851.0162 841.6521 831.5766 834.5938 853.7272 828.4747 845.2458 840.7523 836.6837 814.1466

Rank 12 3 8 6 5 2 11 4 9 10 7 1

F5

Best 900.0004 905.0733 902.3788 915.1520 919.6402 900.0001 900.0895 904.0899 900.1978 900.7320 900.8247 900.0000

Std 7.715744 122.7705 144.5363 91.92995 99.29072 173.7207 66.81567 96.53977 52.21143 26.49567 103.4000 0.501842

Mean 905.4919 1072.338 1040.274 1031.534 1051.707 973.6975 930.2084 1008.645 949.9401 928.3395 972.0397 900.2903

Median 902.2257 1049.968 990.4654 1005.998 1029.869 907.1389 912.4313 967.4609 944.1190 921.9169 937.8981 900.0448

Worst 930.2473 1301.413 1498.419 1267.069 1311.645 1547.236 1260.983 1205.418 1181.579 1011.977 1387.504 901.8173

Rank 2 10 11 6 8 12 5 7 4 3 9 1

F6

Best 1853.377 1837.090 2256.018 1831.892 1847.444 1892.581 2068.054 1840.095 2699.547 2568.864 1899.819 1801.281

Std 2094.489 13.31805 1787.439 816.7388 51.14942 2106.705 2259.031 133.1741 3152.739 1966.148 2138.362 6.698119

Mean 3592.650 1862.297 5009.795 2417.740 1906.827 4550.676 6130.589 1964.579 7805.693 7865.330 6613.351 1808.098

Median 2537.631 1860.987 4738.463 2054.819 1891.225 4238.307 8008.654 1910.241 8241.257 8478.329 7784.935 1805.246

Worst 8149.948 1898.149 8161.201 5680.465 2041.014 8075.045 8302.557 2379.799 20197.61 10454.86 8582.073 1827.493

Rank 8 2 6 5 3 9 11 4 12 7 10 1

F7

Best 2019.814 2025.612 2021.096 2028.559 2009.913 2001.014 2020.051 2011.278 2006.108 2005.136 2019.102 2000.624

Std 8.935128 14.87673 16.90291 14.13199 17.29082 6.804628 12.53495 10.02943 15.62914 11.48178 16.13403 10.31403

Mean 2027.167 2045.541 2044.349 2048.825 2034.301 2019.113 2030.410 2029.520 2038.903 2028.652 2040.280 2009.799

Median 2024.573 2043.629 2043.175 2046.883 2030.952 2020.640 2025.530 2025.512 2037.238 2026.384 2038.803 2004.169

Worst 2054.966 2099.220 2101.257 2092.758 2087.734 2031.233 2077.322 2048.982 2064.026 2051.679 2073.154 2028.009

Rank 2 8 11 7 12 1 6 3 9 5 10 4

F8

Best 2200.146 2221.711 2204.057 2215.898 2205.488 2204.057 2202.302 2204.365 2206.531 2221.365 2205.534 2202.540

Std 7.791932 3.404702 6.758460 37.92741 23.33226 30.85052 7.454976 8.783942 6.394057 2.649609 6.045754 9.436423

Mean 2221.129 2227.332 2226.092 2241.120 2230.485 2228.670 2221.824 2217.682 2225.710 2225.740 2223.800 2217.860

Median 2222.120 2227.186 2227.470 2229.764 2226.335 2223.870 2221.856 2222.505 2227.176 2225.818 2225.425 2224.145

Worst 2237.383 2233.770 2238.416 2357.012 2350.202 2389.572 2231.188 2229.478 2234.448 2231.039 2231.402 2226.252

Rank 7 2 5 12 10 11 6 8 4 1 3 9

F9

Best 2529.284 2529.296 2529.285 2529.718 2529.284 2529.284 2529.284 2529.285 2529.302 2529.342 2516.820 2529.284

Std 5.638001 27.88118 38.44790 45.09513 10.80021 26.82598 27.34192 11.00908 37.87201 20.53752 37.16811 0.000480

Mean 2530.742 2539.096 2573.604 2549.163 2532.186 2534.182 2540.255 2532.885 2590.920 2541.329 2574.247 2529.285

Median 2529.284 2530.712 2570.678 2532.682 2529.285 2529.284 2529.840 2529.323 2586.795 2530.852 2572.177 2529.284

Worst 2555.055 2676.217 2676.218 2688.228 2575.421 2676.216 2654.833 2584.141 2661.531 2598.267 2684.591 2529.287

Rank 2 8 11 12 3 6 7 4 10 5 9 1

Continued
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CGJO are superior to those of WO, HO, SCSO, NRBO, BKA, L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO 
and SGJO. CGJO has great computational efficiency and worldwide detection ability to minimize premature 
convergence and acquire the exact solution. The CGJO portrays tremendous stability and reliability in achieving 
the optimal ranking. The CGJO can enhance parallelism, tap population diversity and improve optimization 
efficiency, which uses detection and exploitation to obtain the highest convergence accuracy. For F3 and F5, 
CGJO not only exhibits obvious superiority and reliability in expanding the optimization space and avoiding 
search stagnation but also adjusts exploration and exploitation to identify the exact global solutions. The con-
vergence speed and calculation accuracy of the modified GJO are greatly enhanced. The overall optimization 
ability and evaluation indicators of CGJO are superior to those of WO, HO, SCSO, NRBO, BKA, L-SHADE, 
LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO, and CGJO exhibits strong stability and robustness. The 
greater minor standard deviation and higher ranking of the CGJO highlight that CGJO delivers good depend-
ability and reliability to satisfy complementary advantages and resolve the function optimization. For F4 and 
F6, the overall search efficiency and optimization accuracy of RGJO and SGJO are improved compared with 
those of the basic GJO. CGJO exhibits strong effectiveness and robustness in achieving suboptimal solutions 
close to the exact solutions. The optimal values, standard deviations, mean values, median values and worst 
values of CGJO are superior to those of WO, HO, SCSO, NRBO, BKA, L-SHADE, LSHADE-EpsSin, CMA-ES, 
GJO, RGJO and SGJO. CGJO has better computational accuracy and superior stability. The optimal ranking of 
CGJO results in good stability and durability. For F7, the standard deviations of CGJO are worse than those of 
WO, L-SHADE and CMA-ES, but the optimal, mean, median and worst values of CGJO are superior to those of 
WO, HO, SCSO, NRBO, BKA, L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO. CGJO employs a 
distinctive encoding methodology to enrich the information capacity and strengthen the detection ability. The 
ranking of CGJO is slightly lower than those of WO, L-SHADE and CMA-ES. For F8, the various evaluation 
indicators and computational solutions of CGJO are relatively superior to those of WO, HO, SCSO, NRBO, BKA, 
L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO. The standard deviation of CGJO is superior to 
those of L-SHADE, BKA and NRBO but inferior to those of WO, HO, SCSO, LSHADE-EpsSin, CMA-ES, GJO, 
RGJO and SGJO. For F9, the standard deviations, mean values, median values and worst values of RGJO, SGJO 
and CGJO are significantly greater than those of the basic GJO. The optimal value of RGJO is worse than that of 
GJO. The various evaluation indicators and computational solutions of CGJO are superior to those of WO, HO, 
SCSO, NRBO, BKA, L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO. CGJO employs a distinctive 
search structure to extend the optimization field and increase the detection efficiency. The ranking of the CGJO 
is the smallest, and the stability and reliability of this algorithm are better. For F10 and F11, the various evalua-
tion indicators and computational solutions of RGJO, SGJO and CGJO are superior to those of GJO. The optimal 
values, median values and worst values of CGJO are more substantial than those of WO, HO, SCSO, NRBO, BKA, 
L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO. The standard deviations, mean values and rankings 
of CGJO are superior to those of SCSO, NRBO, BKA, L-SHADE, LSHADE-EpsSin, GJO and SGJO. The SCGJO 
uses the diploid’s two-dimensional properties to alter the jackal’s position, which not only effectively broadens 
the exploration area and elevates the population diversity but also inhibits early convergence and realizes the 
ideal solution. For F12, the optimal values, standard deviations, mean values, median values and worst values of 
RGJO, SGJO and CGJO are significantly greater than those of the basic GJO. The various evaluation indicators 
and computational solutions of CGJO are superior to those of HO, SCSO, NRBO, LSHADE-EpsSin, GJO and 
SGJO. The CGJO has a relatively lower standard deviation and higher ranking. The CGJO uses the combination 
of the encoding method and GJO to renew the jackal’s position, which expands the feature space, enhances 

Function Result WO HO SCSO NRBO BKA L-SHADE LSHADE-EpSin CMA-ES GJO RGJO SGJO CGJO

F10

Best 2500.380 2500.310 2500.243 2500.600 2500.287 2500.300 2500.309 2500.232 2500.264 2500.258 2500.277 2500.129

Std 53.08442 58.56622 61.74547 65.72414 152.1823 59.28609 55.13067 32.79990 65.03680 49.56434 60.61817 52.26189

Mean 2529.112 2538.413 2549.923 2584.702 2586.506 2548.008 2533.263 2509.176 2573.219 2524.863 2568.261 2539.432

Median 2500.667 2500.806 2500.643 2621.824 2557.539 2500.669 2500.842 2500.606 2616.846 2500.475 2611.576 2500.452

Worst 2655.657 2640.275 2650.202 2660.031 3320.076 2630.024 2641.328 2641.782 2659.347 2645.954 2631.369 2613.195

Rank 4 6 9 11 12 7 5 1 10 2 8 3

F11

Best 2600.007 2600.266 2601.602 2727.274 2601.056 2600.006 2600.000 2600.868 2725.064 2601.889 2729.011 2600.000

Std 85.52615 0.131058 112.9647 193.6496 184.4764 133.2479 130.6780 197.0677 231.0027 96.85016 153.7786 95.26248

Mean 2685.394 2600.488 2754.460 2938.447 2736.044 2800.915 2777.929 2790.890 2975.151 2768.101 2874.727 2868.126

Median 2750.427 2600.473 2750.678 2817.340 2601.965 2900.019 2751.075 2731.390 2936.940 2750.749 2804.882 2900.000

Worst 2900.361 2600.791 3000.161 3283.128 3212.722 2912.044 3000.000 3224.199 3393.431 3238.380 3319.115 2920.119

Rank 2 1 5 10 9 7 6 11 12 4 8 3

F12

Best 2861.405 2859.684 2861.491 2860.832 2859.548 2859.369 2862.709 2862.702 2863.501 2858.654 2853.100 2862.815

Std 1.125053 16.89455 5.643342 16.75704 2.477016 2.958105 8.720153 1.997828 6.464481 2.260551 7.872567 3.402234

Mean 2863.880 2873.135 2868.240 2870.974 2864.815 2865.393 2868.651 2865.402 2867.216 2863.594 2859.540 2867.872

Median 2863.881 2867.464 2866.657 2866.173 2865.214 2865.080 2866.135 2865.167 2865.074 2864.955 2858.464 2867.186

Worst 2866.662 2946.815 2890.094 2937.095 2873.360 2875.762 2903.422 2871.809 2898.388 2865.937 2898.802 2876.834

Rank 1 12 7 11 4 5 10 2 8 3 9 6

Table 3.   Simulation results of different algorithms for the CEC 2022 test functions.
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the optimization efficiency and increases the information capacity. CGJO has good stability and durability for 
identifying the optimal value.

The Wilcoxon rank-sum test is implemented to evaluate whether there is a noticeable discrepancy between 
CGJO and other methodologies42,43. p < 0.05 indicates a significant discrepancy, p ≥ 0.05 indicates no significant 
discrepancy, and N/A indicates “not applicable”. The Wilcoxon signed rank-sum test for CEC 2022 between each 
algorithm and CGJO is outlined in Table 4.

The convergence graph of each methodology is shown in Fig. 3. The convergence graph can directly and 
objectively reflect the convergence precision. The CGJO has a good detection capacity and optimization efficiency 
to accomplish the most effective solution. For the unimodal function F1, CGJO exhibits strong superiority and 
reliability to avoid premature convergence and achieve the exact solution. The optimal, mean, median and worst 
values of the CGJO change little. The CGJO has a faster convergence speed and higher calculation accuracy. For 
basic functions F2, F3, F4 and F5, the various evaluation indicators and computational solutions of the CGJO 

Table 4.   Wilcoxon signed rank-sum test for CEC 2022 between each algorithm and CGJO.

Function

CGJO vs

WO HO SCSO NRBO BKA L-SHADE LSHADE-EpSin CMA-ES GJO RGJO SGJO

F1 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 6.09E−03 3.02E−11 3.02E−11 3.02E−11 3.02E−11

F2 6.12E−10 1.29E−09 9.92E−11 3.69E−11 3.65E−08 3.82E−09 2.53E−10 1.31E−08 4.50E−11 8.99E−11 9.92E−11

F3 8.15E−05 3.02E−11 3.02E−11 3.02E−11 3.02E−11 2.49E−06 1.29E−09 6.07E−11 9.92E−11 6.01E−08 4.98E−11

F4 4.08E−11 5.07E−10 4.08E−11 3.34E−11 1.17E−09 3.28E−11 1.46E−10 3.47E−10 3.34E−11 3.16E−10 1.33E−10

F5 1.34E−07 2.94E−11 2.94E−11 2.94E−11 2.94E−11 1.29E−08 1.34E−08 2.94E−11 1.07E−10 1.30E−10 7.96E−11

F6 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11 3.02E−11

F7 5.86E−06 4.50E−11 2.61E−10 3.02E−11 2.03E−07 2.61E−02 5.19E−07 6.53E−08 1.56E−08 3.01E−07 7.77E−09

F8 8.07E−05 2.77E−05 1.25E−04 1.31E−08 4.71E−04 2.84E−02 4.38E−02 4.29E−03 1.04E−04 1.24E−03 1.44E−02

F9 9.33E−04 3.02E−11 3.69E−11 3.02E−11 3.83E−05 1.24E−03 1.59E−05 4.50E−11 3.02E−11 3.02E−11 8.48E−09

F10 4.21E−02 6.10E−03 1.03E−02 2.15E−06 3.56E−04 7.96E−03 1.99E−02 5.49E−03 2.84E−04 4.04E−03 1.52E−02

F11 5.60E−07 1.07E−07 1.44E−03 6.52E−04 9.92E−05 9.58E−04 1.87E−06 3.78E−02 2.46E−02 2.32E−06 1.54E−02

F12 6.01E−08 4.64E−02 6.63E−05 1.96E−02 1.32E−04 1.11E−03 2.71E−02 1.06E−03 1.22E−02 1.73E−07 6.72E−10
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Fig. 3.   Convergence graph of each methodology.
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are superior to those of the WO, HO, SCSO, NRBO, BKA, L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO 
and SGJO, and the particular functions of the CGJO determine the exact global solutions. The CGJO has good 
stability and durability. The CGJO has better convergence frequency and computational numerical accuracy, 
which has superiority and reliability to eliminate search stagnation and acquire an appropriate solution. For 
hybrid functions F6, F7 and F8, compared with those of the basic GJO, the optimal values, standard deviations, 
mean values, median values and worst values of the CGJO are significantly greater. The various evaluation 
indicators and computational solutions of the CGJO are superior to those of WO, HO, SCSO, NRBO, BKA, 
L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO, and CGJO has obvious superiority and stabil-
ity. CGJO has elevated computational efficiency and an attractive detection capability for discovering the most 
accurate solution. For composite functions F9, F10, F11 and F12, CGJO exhibits superior durability and stability 
for identifying an accurate solution. The various evaluation indicators and computational solutions of the CGJO 
are substantially greater than those of the GJO, which are superior to those of the WO, HO, SCSO, NRBO, BKA, 
L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO methods. CGJO can enhance algorithmic parallel-
ism, tap population diversity, avoid premature convergence, expand the feature space, improve search efficiency 
and increase information capacity. CGJO is durable and reliable for identifying the ideal solution.

The ANOVA graph of each methodology is shown in Fig. 4. The standard deviation can directly and objec-
tively exhibit stability and reliability. The comparatively low standard deviation reveals that the method not only 
has favourable strength and durability but also integrates detection and mining to obtain an exact or subaccurate 
solution. The standard deviation, the basis for ranking, is an accurate measure of optimization efficiency and 
stability. For the unimodal function F1, CGJO is sufficiently stable and durable to provide supplementary advan-
tages and balances exploration and extraction to increase computational precision and yield the best solution. 
The CGJO has strong stability and the best ranking. For basic functions F2, F3, F4 and F5, the various evalua-
tion indicators and computational solutions of the CGJO are superior to those of the WO, HO, SCSO, NRBO, 
BKA, L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO, and the CGJO can determine the exact 
global subsolution of the partial functions, which highlights that the CGJO exhibits excellent search efficiency 
to promote the optimization ability. The standard deviation and the ranking of CGJO are superior to those of 
WO, HO, SCSO, NRBO, BKA, L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO, which highlights 
that CGJO has remarkable reliability and superiority in determining the best solution. For hybrid functions F6, 
F7 and F8, the various evaluation indicators and computational solutions of the CGJO are substantially better 
than those of the GJO. The standard deviations and rankings of the CGJO are relatively good, and the CGJO has 
great reliability and dependability. For composite functions F9, F10, F11 and F12, the CGJO not only exhibits 
great stability and reliability to supervise exploration and extraction and strengthen the optimization perfor-
mance but also utilizes the diploid mechanism to encode the golden jackal individual and determine the exact 
solution. The CGJO method exhibits outstanding detection capability and optimization efficiency for identifying 
the most accurate solution. Compared with those of the GJO, the computational solutions of the CGJO have 
changed significantly. The standard deviation of CGJO is relatively better than that of WO, HO, SCSO, NRBO, 
BKA, L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO. CGJO uses an efficient search mechanism 

Fig. 4.   ANOVAs of each methodology.
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and stability to acquire accurate values. CGJO employs the diploid’s two-dimensional properties to renew the 
jackal position and maximize the detection efficiency. CGJO not only combines exploration and extraction to 
broaden the optimization area and enrich the information capacity but also exhibits good stability and durability 
to prevent early convergence and identify accurate solutions.

CGJO for engineering design
To demonstrate dependability, CGJO is implemented to accomplish ten engineering designs: cantilever beam44, 
three-bar truss45, tubular column46, piston lever47, tension/compression spring48 and gear train49.

Cantilever beam
The main goal is to mitigate the ultimate beam’s poundage, as shown in Fig. 5. There are five constraints, and a 
constant thickness is maintained ( t = 2

/

3 ). The structure is as follows:
Consider

Minimize

Subject to

Variable range

The statistical values of the cantilever beam are outlined in Table 5. The CGJO method exhibits remarkable 
robustness and durability in identifying the most significant decision variables and the smallest values. The 
statistical significance of CGJO outweighs those of other methodologies, which highlights that CGJO has good 
optimization efficiency and convergence precision.

Three‑bar truss
The primary intention is to mitigate the ultimate truss’s poundage, as portrayed in Fig. 6. There are two con-
straints: sections A1 and A2 . The structure is as follows:

Consider

Minimize

Subject to

(32)x = [x1 x2 x3 x4 x5]

(33)f (x) = 0.6224(x1 + x2 + x3 + x4 + x5)

(34)g(x) =
61

x31
+

37

x32
+

19

x33
+

7

x34
+

1

x35
≤ 1

(35)0.01 ≤ x1, x2, x3, x4, x5 ≤ 100

(36)x = [x1 x2] = [A1 A2]

(37)f (x) = (2
√
2x1 + x2)× l

(38)g1(x) =
√
2x1 + x2√

2x21 + 2x1x2
P − σ ≤ 0

(39)g2(x) =
x2√

2x2 + 2x1x2
P − σ ≤ 0

(40)g3(x) =
1

√
2x2 + x1

P − σ ≤ 0

Fig. 5.   Cantilever beam.
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Variable range

The statistical values of the three-bar truss are outlined in Table 6. The ideal outcomes of CGJO are superior 
to those of alternative methodologies. CGJO employs the two-dimensional properties of the diploid mechanism 
to inhibit premature convergence and acquire the most favourable statistical values, which highlights that CGJO 
has robust detection ability and reliability.

Tubular column
The primary intention is to mitigate the installation and material expenses, as portrayed in Fig. 7. There are two 
constraints: the average diameter ( d ) and breadth ( t  ). The structure is as follows:

Consider

(41)l = 100cm, P = 2kN
/

cm2, σ = 2kN
/

cm2

(42)0 ≤ x1, x2 ≤ 1

Table 5.   Statistical values of the cantilever beam.

Algorithm

Optimal variable

Optimal costx1 x2 x3 x4 x5

SCSO3 6.0164 5.3060 4.4935 3.5059 2.1516 1.3399524

CSO3 6.7628 5.1583 5.6537 2.9279 1.8854 1.3970239

GWO3 6.0103 5.3557 4.4827 3.5022 2.1248 1.3400590

GSA3 5.6052 4.9553 5.6619 3.1959 3.2026 1.4115575

PSO3 6.0040 5.2950 4.4915 3.5125 2.1710 1.3399830

BWO3 6.2094 6.2094 6.2094 6.2094 6.2094 1.9373625

KOA50 6.016 5.3092 4.4943 3.5015 2.1527 1.339956

FLA50 5.5907 5.5357 4.3654 3.83 2.3748 1.353859

COA50 6.5562 5.412 4.516 3.168 2.0082 1.351601

GTO50 6.0237 5.3041 4.488 3.5046 2.1534 1.33996

RUN50 6.0155 5.3088 4.4933 3.5041 2.1520 1.339957

WOA50 5.7240 5.5860 4.6935 3.3631 2.1942 1.345389

DO50 6.0220 5.3091 4.4932 3.4980 2.1515 1.339958

POA50 6.0157 5.3088 4.4981 3.4977 2.1534 1.339957

CSA51 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999

MDWA51 5.9120 5.3783 4.4797 3.5480 2.1674 1.3372

FFA51 4.9987 4.9995 4.9937 5.7251 4.9983 1.6005

SCA51 6.2001 5.6914 4.3141 3.5473 1.9471 1.3506

AOA52 6.01513 5.02525468 4.25398594 3.312993832 2.037547058 1.3685

CGO52 6.01513 5.3093 4.495 3.50142 2.15278 1.33997

CGJO 6.0274 5.3386 4.4905 3.4837 2.1349 1.3356

Fig. 6.   Three-bar truss.
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Minimize

Subject to

(43)x = [x1 x2] = [d t]

(44)f (x) = 9.82x1x2 + 2x1

Table 6.   Statistical values of the three-bar truss.

Algorithm

Optimal variable

Optimal costA1 A2

GA53 0.788915 0.407569 263.8958857

PSO53 0.788669 0.408265 263.8958434

ICA53 0.788625 0.408389 263.8958452

GWO53 0.788648 0.408325 263.8960063

WSA53 0.788683 0.408227 263.8958434

ESOA54 0.788192 0.409618 263.896

DE54 0.788675 0.408248 263.896

QANA54 0.788675 0.408248 263.895

MPEDE54 0.78924889 0.40662803 263.896

LSHADE55 0.785249 0.410335 263.8915

WOA55 0.78860276 0.408453070 263.8958

TEO55 0.7886618 0.4082831 263.8958

HGSO 55 0.778254 0.440528 264.1762

HGS55 0.7884562 0.40886831 263.8959

AO-TSA56 0.790512 0.403105 263.9010

TSA56 0.797520 0.387339 264.3067

BO56 0.792187 0.398517 263.9159

GMO57 0.7886775 0.4082415 263.8958434

KABC57 0.7886 0.4084 263.8959

DMMFO57 0.788687421 0.408213541 263.8958435

CGJO 0.78192 0.42682 263.88416

Fig. 7.   Tubular column.
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Variable range

The statistical values of the tubular column design are outlined in Table 7. The selection factors and expense of 
CGJO are superior to those of alternative methodologies. CGJO promotes algorithmic parallelism and increases 
population diversity to increase convergence efficiency, highlighting that CGJO is an efficient and predictable 
approach.

Piston lever
The primary intention is to mitigate the level and recognize the portions, as portrayed in Fig. 8. There are four 
constraints: H , B , X and D . The structure is as follows:

Consider

(45)g1(x) =
P

πx1x2σy
− 1 ≤ 0

(46)g2(x) =
8PL2

π3Ex1x2(x
2
1 + x22)

− 1 ≤ 0

(47)g3(x) =
2.0

x1
− 1 ≤ 0

(48)g4(x) =
x1

14
− 1 ≤ 0

(49)g5(x) =
0.2

x2 − 1
≤ 0

(50)g6(x) =
x2

0.8
− 1 ≤ 0

(51)σy = 500kgf
/

cm2, E = 0.85× 106kgf
/

cm2, P = 2500kgf , L = 250cm

(52)2 ≤ x1 ≤ 14, 0.2 ≤ x2 ≤ 0.8

Table 7.   Statistical values of the tubular column design.

Algorithm

Optimal variable

Optimal costd t

CSA46 5.451163397 0.291965509 26.531364472

MFPA58 5.4512 0.29197 26.49995

AGQPSO59 5.451156 0.29196 26.531328

FPA60 5.45116 0.291965 26.49948

KH61 5.451278 0.291957 26.5314

BOA61 5.448426 0.292463 26.512782

HFBOA61 5.451157 0.291966 26.499503

EM62 5.452383 0.29190 26.53380

HEM62 5.451083 0.29199 26.53227

KOA50 5.4512 0.2920 26.499497

FLA50 5.4801 0.2905 26.563266

COA50 5.4511 0.2920 26.501823

GTO50 5.4512 0.2920 26.499497

RUN50 5.4512 0.2920 26.499497

GWO50 5.4511 0.2920 26.499770

SMA50 5.4512 0.2920 26.499538

DO50 5.4512 0.2920 26.499497

POA50 5.4512 0.2920 26.499497

FA52 N/A N/A 26.52

AOS52 N/A N/A 26.5313783

CGJO 5.4532 0.2919 25.5615



18

Vol:.(1234567890)

Scientific Reports |        (2024) 14:19577  | https://doi.org/10.1038/s41598-024-70572-7

www.nature.com/scientificreports/

Minimize

Subject to

Variable range

The statistical values of the piston lever are outlined in Table 8. The CGJO generates real and imaginary parts 
to renew the jackal position and broaden the feature space. The statistical values of the CGJO are significant and 
optimal, which highlights that the CGJO has strong reliability and superiority in determining the best value.

Tension/compression spring
The primary intention is to mitigate the ultimate spring’s poundage, as portrayed in Fig. 9. There are three con-
straints: line thickness ( d ), average thickness ( D ) and reactive size ( N ). The structure is as follows:

Consider

(53)x = [x1 x2 x3 x4] = [H B D X]

(54)f (x) =
1

4
πx23(L2 − L1)

(55)g1(x) = QL cos θ − RF ≤ 0

(56)g2(x) = Q(L− x4)−Mmax ≤ 0

(57)g3(x) =
6

5
× (L2 − L1)− L1 ≤ 0

(58)g4(x) =
x3

2
− x2 ≤ 0

(59)R =
|−x4(x4 sin θ + x1)+ x1(x2 − x4 cos θ)|

√

(x4 − x2)2 + x21

(60)F =
πPx23
4

(61)L1 =
√

(x4 − x2)2 + x21

(62)L2 =
√

(x4 sin θ + x1)2 + (x2 − x4 cos θ)2

(63)θ=45o, Q = 10000lbs, L = 240in, Mmax = 1.8× 106lbs in, P = 1500psi

(64)0.05 ≤ x1, x2, x4 ≤ 500, 0.05 ≤ x3 ≤ 120

Fig. 8.   Piston lever.
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Minimize

Subject to

Variable range

(65)x = [x1 x2 x3 ] = [d D N]

(66)f (x) = (x3 + 2)x2x
2
1

(67)g1(x) = 1−
x32x3

71785x41
≤ 0

(68)g2(x) =
4x22 − x1x2

12566(x2x
3
1 − x41)

+
1

5108x21
≤ 0

(69)g3(x) = 1−
140.45x1

x22x3
≤ 0

(70)g4(x) =
x1 + x2

1.5
− 1 ≤ 0

Table 8.   Statistical values of the piston lever.

Algorithm

Optimal variable

Optimal costH B X D

PSO63 133.3 2.44 117.14 4.75 122

DE63 129.4 2.43 119.8 4.75 159

GA63 250 3.96 60.03 5.91 161

HPSO63 135.5 2.48 116.62 4.75 162

SCSO3 0.050 2.040 119.99 4.083 8.40901438899551

CSO3 0.050 2.399 85.68 4.0804 13.7094866557362

GWO3 0.060 2.0390 120 4.083 8.40908765909047

WAO3 0.099 2.057 118.4 4.112 9.05943208079399

SSA3 0.050 2.073 116.32 4.145 8.80243253777633

GSA3 497.49 500 60.041 2.215 168.094363238712

BWO3 12.364 12.801 172.02 3.074 95.9980864948937

GTO47 0.05 2.052859 119.6392 4.089713 8.41270

MFO47 0.05 2.041514 120 4.083365 8.412698

WOA47 0.051874 2.045915 119.9579 4.085849 8.449975

PDO52 0.05 0.144897318 120 4.11572157 4.602

DMOA52 0.05 0.125073578 120 4.116042166 4.695

AOA52 0.05 0.125073578 120 4.116042166 7.738

CPSOGSA52 500 500 120 2.578147082 4.6949

BBO52 129.4 2.43 119.8 4.75 4.6956

SCA52 0.05 0.144897318 120 4.11572157 4.6977

CGJO 0.05 0.154283913 120 4.105452537 4.5999

Fig. 9.   Tension/compression spring.
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The statistical values of the tension/compression springs are outlined in Table 9. The CGJO implements the 
encoding technique to strengthen the discovery efficiency and increase the information capability. The CGJO 
has the finest variables and the lowest objective value, highlighting that the CGJO exhibits good durability and 
high calculation accuracy.

Gear train
The main goal is to optimize the tooth size and reduce the ultimate cost, as shown in Fig. 10. There are four 
constraints: nA , nB , nC and nD . The structure is as follows:

Consider

Minimize

Variable range

(71)0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

(72)x = [x1 x2 x3 x4] = [nA nB nC nD]

(73)f (x) =
(

1

6.931
−

x3x2

x1x4

)2

Table 9.   Statistical values of the tension/compression spring.

Algorithm

Optimal variable

Optimal costd D N

SA6 0.0570 0.4953 6.2225 0.01321

GOA6 0.0516 0.3360 13.500 0.01389

HHO6 0.0570 0.4991 6.2180 0.01281

TSA64 0.051144 0.343751 12.0955 0.012674

MPA64 0.050178 0.341541 12.07349 0.012678321

TLBO64 0.050780 0.334779 12.72269 0.012709667

NGO64 0.0523593 0.372854 10.4093 0.012672

CSO3 0.0671 0.8482 2.4074 0.01682958

SCSO3 0.0500 0.3175 14.0200 0.012717020

CA65 0.05 0.317395 14.031795 0.012721

HPSO65 0.051706 0.357126 11.265083 0.0126652

CDE65 0.051609 0.354714 11.410831 0.0126702

AEO65 0.051897 0.361751 10.879842 0.0126662

ESOA54 0.05 0.317168 14.0715 0.01274345

QANA54 0.051926 0.362432 10.961632 0.01266625

MPEDE54 0.05956062 0.5767404 4.71717282 0.01374

NOA66 0.05169 0.35671 11.28932 0.0126652

GBO66 0.05187 0.36105 11.03921 0.0126658

GMO57 0.0514617 0.3512730 11.6154626 0.0126662

KABC57 0.0556 0.4575 7.148 0.013017

CGJO 0.050067 0.345798 11.806373 0.012664

Fig. 10.   Gear train.
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The statistical values of the gear train are outlined in Table 10. Compared with those of other methodolo-
gies, the objective variables of the CGJO have been extensively altered, which highlights that the CGJO exhibits 
remarkable reliability and adaptability to acquire an accurate solution.

Conclusions and future research
In this paper, CGJO is established to resolve the CEC 2022 test suite and six real-world engineering designs, 
and the purpose is to identify the global optimal exact solution of function optimization and the minimum cost 
of the engineering design. Complex-valued encoding employs the two-dimensional properties of the diploid 
methodology to describe one allele of a chromosome and renew the real and imaginary portions, which increases 
population diversity, restricts search stagnation, expands the exploration area, promotes information exchange, 
fosters collaboration efficiency and improves convergence accuracy. The CGJO has strong stability and robustness 
to overcome the low computational accuracy, premature convergence and poor solution efficiency. The CGJO 
combines GJO and complex-valued encoding to achieve complementary advantages and enhance computational 
efficiency. Therefore, CGJO not only exhibits fantastic stability and reliability to supervise exploration and extrac-
tion and strengthen the optimization performance but also utilizes the diploid mechanism to encode the golden 
jackal individual and determine the exact solution. The CGJO is compared with WO, HO, SCSO, NRBO, BKA, 
L-SHADE, LSHADE-EpsSin, CMA-ES, GJO, RGJO and SGJO. The experimental results reveal that the effective-
ness and feasibility of CGJO are superior to those of other algorithms. CGJO has strong superiority and reliability 
to achieve a quicker convergence rate, greater computation precision, and greater stability and robustness.

The proposed CGJO has several limitations: (1) CGJO may face potential challenges in terms of computational 
complexity, mathematical theory analysis, astringency verification, and parameter selection. The calculation 
efficiency and solution accuracy may decrease. (2) When resolving complex, large-scale, high-dimensional mul-
tiobjective optimization problems, the CGJO may be limited and unable to balance exploration and exploitation 
to determine the superior convergence speed and calculation accuracy. (3) CGJO has strong stability and robust-
ness for resolving the CEC 2022 test suite and six real-world engineering designs. However, the effectiveness and 
reliability of CGJO still need to be verified with more application datasets.

Future research on CGJO will focus on the following three aspects: (1) We will further study the mathematical 
theory, verify the algorithm astringency and select more effective control parameters through many experimental 
simulations. (2) We will introduce more effective search strategies (e.g., orthogonal opposition-based learning, the 
simplex method, the ranking-based mutation operator), unique encoding forms (e.g., quantum coding, discrete 
coding or binary coding), and hybrid swarm intelligence algorithms to achieve complementary advantages and 
avoid search stagnation, thereby increasing the overall convergence speed and calculation accuracy of the basic 
GJO. (3) According to the current situation of agricultural production in the Dabie Mountains in Anhui Province 
and the complex geographical environment of characteristic crops (e.g., Dendrobium, tea, rice, Chinese herbal 

(74)12 ≤ xi ≤ 60, i = 1, 2, ..., 4

Table 10.   Statistical values of the gear train design.

Algorithm

Optimal variable

Optimal costnA nB nC nD

GA53 49 19 16 43 2.70E−12

PSO53 34 13 20 53 2.31E−11

ICA53 43 16 19 49 2.70E−12

BBO53 53 26 15 51 2.31E−11

NNA53 49 16 19 43 2.70E−12

GWO53 49 19 16 43 2.70E−12

WSA53 43 16 19 49 2.70E−12

KOA50 44 20 16 50 2.700857E−12

FLA50 44 16 20 49 2.700857E−12

COA50 23 14 12 48 9.92158E−10

RUN50 44 17 19 49 2.700857E−12

SMA50 52 30 13 53 2.307816E−11

DO50 49 16 19 44 2.700857E−12

POA50 44 17 19 49 2.700857E−12

PDO52 48 17 22 54 2.70E−12

DMOA52 49 19 16 43 2.70E−12

AOA52 49 19 19 54 2.70E−12

CPSOGSA52 55 16 16 43 2.31E−11

SSA52 49 19 19 49 2.70E−12

SCA52 49 19 34 49 2.700857E−12

CGJO 57 18 19 45 1.876542E−19
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medicine), the CGJO can be used for intelligent detection and intelligent control of distinctive understorey crops. 
We will utilize underforest crop harvesting machinery and intelligence, underforest crop planting machinery 
and intelligence, precision plant protection equipment and intelligence to achieve underforest crop intelligent 
machinery and portable machinery and equipment.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request. All data generated or analyzed during this study are included directly in the text of this submitted 
manuscript. There are no additional external files with datasets.
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