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Identifying prognostic biomarkers 
in oral squamous cell carcinoma: 
an integrated single‑cell 
and bulk RNA sequencing study 
on mitophagy‑related genes
Minsi Li 1,2, Yi Wei 1,2, Wenhua Huang 4, Cen Wang 1, Shixi He 1,3, Shuwen Bi 5, Shuangyu Hu 1,3, 
Ling You 2,3 & Xuanping Huang 1,2*

Oral squamous cell carcinoma (OSCC) has an extremely poor prognosis. Recent studies have 
suggested that mitophagy‑related genes (MRGs) are closely correlated with the development and 
occurrence of cancer, but the role they play in oral cancer has not yet been explained.We conducted a 
comprehensive analysis of integrated single‑cell and bulk RNA sequencing (RNA‑seq) data retrieved 
from Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) database. 
Multiple methods were combined to provide a comprehensive understanding of the genetic expression 
patterns and biology of OSCC, such as analysis of pseudotime series, CellChat cell communication, 
immune infiltration, Gene Ontology (GO), LASSO Cox regression, gene set variation analysis (GSVA), 
Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), Tumor 
Mutation Burden (TMB) and drug sensitivity assessments. The findings of this study demonstrated 
significantly greater activity of MRGs in NK cells than in other cells in OSCC. A reliable prognostic 
model was developed using 12 candidate genes strongly associated with mitochondrial autophagy. T 
stage, N stage and risk score were revealed as independent prognostic factors. Distinctively enriched 
pathways and immune cells were observed in different risk groups. Notably, low‑risk patients were 
more responsive to chemotherapy. In addition, a nomogram model with excellent predictive ability 
was established by combining the risk scores and clinical features. The activity of MRGs suggest the 
potential for the development of new targeted therapies. The construction of a robust prognostic 
model also provides reference value for individualized prediction and clinical decision‑making in 
patients with OSCC.

Keywords Mitochondrial autophagy, Single-cell RNA sequencing, Prognostic biomarkers, Immune, Oral 
squamous cell carcinoma

OSCC is a common type of tumor that has received worldwide attention, with 177,757 deaths and 377,713 new 
cases as of  20201. The Global Cancer Observatory estimates that the number of patients with OSCC will continue 
to increase until  20301.

More than 90% of oral malignant tumors are squamous cell  carcinomas2, which can be categorized based on 
their anatomical location: the tongue, mouth floor, buccal mucosa, hard palate, gingiva, lips, posterior molar 
triangle and alveolar  ridge3. Despite significant advancements in therapy and diagnosis, OSCC still has an 
extremely poor prognosis. The five-year survival rate is less than 60%, and the postoperative quality of life can 
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be unsatisfactory. Oral cancer also constitutes a significant portion of the global cancer  burden4. Therefore, 
identifying potential molecular biomarkers and therapeutic targets is crucial for early diagnosis of OSCC and 
improving clinical treatment outcomes.

Mitochondria are the main energy producers within cells, and their normal functioning is crucial for pro-
cesses such as cell proliferation, metabolism, migration and death. Any interference or damage during this period 
causes mitochondrial dysfunction, leading to the occurrence of  tumors5. Mitochondrial autophagy is a type of 
selective autophagy that aims to maintain cellular homeostasis by selectively clearing excess or functionally 
impaired mitochondria to maintain a balance between the number and quality of mitochondria. Autophago-
somes specifically encapsulate and fuse with lysosomes containing excess or damaged mitochondria, resulting 
in mitochondrial  degradation6. The maintenance of mitochondrial homeostasis and cell survival rely on the 
dynamic balance of mitochondrial autophagy, which also aids in cell survival during inflammatory conditions. 
Therefore, mitochondrial autophagy may be a potential anticancer target in tumor cells. Recent research has 
demonstrated that mitochondrial autophagy promotes cancer cell death. He et al. discovered a potential antitu-
mor drug, tanshinone IIA, which inhibits the protein kinase pathway activated by adenosine monophosphate, 
inactivates parkin, and reduces mitochondrial autophagy activity, thereby promoting apoptosis in colorectal 
cancer  cells7. Chang et al8 reported that upregulated expression of the protooncogene ROS 1 (located in mito-
chondria) is associated with the invasiveness of OSCC. Upregulation of ROS1 promotes fragmented changes in 
mitochondrial morphology, improves the respiratory levels of cancer cells, and reduces mitochondrial biogenesis, 
thereby enhancing OSCC invasiveness. There are many differences between the mitochondria in cancer cells and 
those in normal  cells9, and these findings can guide the study of cancer cell apoptosis and lead to the exploration 
of novel targets for OSCC treatment.

scRNA-seq is a cutting-edge technique that allows for the analysis of transcriptomes in individual cells, 
providing comprehensive transcriptional information for the entire  genome10. It is well suited for exploring the 
heterogeneity of immune  cells11. Additionally, scRNA-seq allows for the concurrent detection of gene expression 
signatures in thousands of single  cells12. We used scRNA-seq in this study to analyze distinct cell populations 
in human oral cancer, investigate their mitochondrial autophagy-related gene activity and expression patterns, 
and further investigate the function of these heterogeneous cells as well as their communication with other cell 
types within the tumor microenvironment. Drawing from a substantial dataset of tumor transcriptome informa-
tion and clinical data from the TCGA, we identified genes linked to survival and characterized their prognostic 
features. The prognostic significance of these genes was further validated across various risk subgroups and 
patient cohorts.

Methods
Download and organization of conventional transcriptome data
Figure 1 outlines the workflow of the research. By utilizing the TCGA database and Bioconductor package 
“TCGAbiolinks” (version 2.25.0)13, we downloaded OSCC whole-genome expression profile data and clini-
cal information in the TPM format (https:// portal. gdc. cancer. gov/). The “VarScan2 Variant Aggregation and 

Figure 1.  Research flowchart.

https://portal.gdc.cancer.gov/
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Masking” tool was used to predict single nucleotide mutation (SNV) data. The TCGA-HNSC dataset (n = 566) 
included 522 tumor samples, 44 normal control samples. By selecting “Primarist” and “Osser Andil-Defined-
sitsitesInlip, Olarcal Cavetiende Fernks”, we obtained 71 oral cancer samples and 13 oral control samples. This 
study respects the data access strategies of each database.

Download and processing of scRNA‑seq data
We obtained the scRNA-seq dataset GSE103322 for oral cancer from the GEO website (https:// www. ncbi. nlm. 
nih. gov/ geo/). The dataset included 18 patients’ oral cancer specimens. The dataset was read using “Seurat” (ver-
sion 4.2.0) 14, and the data were normalized by the “normalizedata” function. By balancing average expression 
with dispersion, genes with high variation were identified in single cells. Then, principal component analysis 
(PCA) was conducted using “FindClusters” based on the shared nearest neighbor (SNN) modular optimization 
clustering algorithm to generate 19 clusters on 30 significant principal components (PCs) with a resolution of 0.4. 
The “Runtsne” algorithm performs t-distributed stochastic neighbor embedding (t-SNE). t-SNE-1 and t-SNE-2 
demonstrate cell aggregation. To identify differentially expressed genes (DEGs), we used “FindAllMarkers” with 
default parameters set by Seurat to the normalized gene expression data. Subsequently, through cell type-specific 
biomarkers we identified cell clusters, calculated and evaluated the proportion of cell types.

Score of mitophagy‑related genes
Using the R package  AUCell15, each cell was scored based on GSEA with 73 selected mitochondrial autophagy-
related genes (Table S1)16 and their corresponding area under the curve (AUC) values. This generated gene 
expression rankings for each cell, enabling estimation of the proportion of highly expressed genes. Cells that 
expressed a greater number of genes exhibited a higher AUC score. Subsequently, “ggplot2” (version 3.3.5) was 
utilized to map the area under the curve (AUC) of each cell to the t-SNE embedding, visualizing activated cell 
clusters.

Constructing cell trajectories via pseudotime analysis
Pseudotime analysis generates a pseudotime graph through analysis of reverse graph embedding for genes defined 
by the user by Monocle  217, a leading tool for scRNA-seq analysis and time inference. This approach provides 
insights into branching and linear differentiation processes. A pseudotime trajectory was constructed using 
genes with high dispersion and expression (estimated value of dispersion ≥ 1 and average expression ≥ 0.1)18. 
The parameters of the DDRTree algorithm were selected using default values. To examine the branching events 
in greater depth, we utilized branch expression analysis modeling, which was integrated into Monocle 2. This 
approach facilitates the identification of all genes with notable branch-specific expression and visualizes them as 
a heatmap, enabling quantitative analysis of gene expression changes during cell fate  decisions17.

Cellular communication analysis
Cell communication analysis was employed to determine the incoming and outgoing communication pathways 
and ligand‒receptor  pairs19,20. In this study, we used CellChat (version 1.1.3) to calculate and analyze intercel-
lular communication for each cell type in OSCC samples, maintaining the software’s default parameters with a 
significance threshold of P ≤ 0.05. The Benjamini–Hochberg (BH) method was used to correct the adjusted P 
value and conduct an in-depth analysis of NK cells, revealing the extent of communication among all signaling 
pathways and visualizing them.

GO and KEGG pathway enrichment
GO analysis can achieve the goal of annotating and classifying genes according to their different  functions21. 
KEGG is a biological informatics resource utilized to explore rich and significantly altered metabolic pathways in 
gene  lists22. GO and KEGG analyses of DEGs related to mitochondrial autophagy in OSCC were also conducted 
using “clusterProfiler (version 4.2.2)” (adjusted p value < 0.05)23.

Development and validation of prognostic models
To evaluate the prognostic significance of DEGs linked to mitochondrial autophagy in OSCC and identify key 
genes associated with patient survival, we used univariate Cox regression analysis to assess the association 
between each gene and overall survival (OS) in tumor samples. Genes (P ≤ 0.05) were considered strongly asso-
ciated with OS for further analysis. A total of 442 patients were randomly separated into training or validation 
cohorts at a 7:3 ratio. Then, least absolute shrinkage and selection operator (LASSO)-Cox regression  analysis24was 
applied to these prognostic candidates in training cohorts. Finally, by choosing the optimal penalty parameter λ 
correlated with the minimum tenfold crossvalidation, we established a twelve-gene optimal prognostic model. 
The following formula was used to calculate the risk score:

(Coef (genei): risk coefficient, Expression (genei): gene expression level).
A median split approach was used to assign patients to different risk groups. The Kaplan–Meier (KM) method 

is a nonparametric method for assessing intergroup survival differences. We utilized the receiver operating char-
acteristic (ROC) curve to validate the effectiveness of this prognostic model. The area under the curve (AUC) 
varies from 0.5 to 1, with a closer value to 1 indicating superior performance.

riskScore =

n
∑

i=1

Coef
(

genei
)

∗ Expression
(

genei
)

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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GSEA and GSVA
GSEA is a computational method that examines whether a predefined set of genes displays any notable distinc-
tions in terms of their expression patterns across two distinct biological  conditions25. The algorithm arranges 
all genes in order based on log2FC through “clusterProfiler (version 4.2.2)”, with 1000 gene set permutations 
performed for each analysis (adjusted p value < 0.05). This study employed “c2. cp. kegg. v7.5.1. symbols” as the 
guide gene set and was stored in the Molecular Signatures  Database25,26.To compare the biological functional 
disparities between high and low risk groups, GSVA (version 1.42.0) was performed and visualized through 
“pheatmap (version 1.0.12)” (adjusted p value < 0.05).

Nomogram model
We sourced clinical data on patient tumor stage, sex and age from the TCGA. We performed univariate and mul-
tivariate Cox regression analyses using risk scores derived from clinical data and prognostic models. To predict 
OS at one, three, and five years, we developed a nomogram model using the “RMS” package and evaluated its 
performance through calibration curves and time-dependent receiver operating characteristic (ROC) curves, 
emphasizing its clinical and prognostic significance.

Immune infiltration
Single-sample gene set enrichment analysis (ssGSEA) allows the calculation of individual enrichment scores 
for every pair of samples and specific gene  sets27. These scores represent the extent to which genes within a 
specific gene set are coordinated in a given sample. We sourced 28 distinct immune cell types from the Tumor 
and Immune System Interactions Database (TISIDB)28 (Table S2) and calculated the relative enrichment score. 
We employed “ggplot2”29 to visualize the differences in immune infiltration among the different risk groups, 
providing a comprehensive analysis of immune cell responses within tumors.

Drug sensitivity assessment and TMB
We downloaded the half-maximal inhibitory concentration (IC50) and corresponding gene expression data 
from the Genomics of Disease Study (GDSC) database (https:// www. cance rrxge ne. org/)30. To predict the poten-
tial therapeutic drug sensitivity of patients with high- and low-risk OSCC, we employed “OncoPredict (ver-
sion 0.2)”31. “Maftools” was employed to visualize the landscape of somatic mutations across distinct clusters, 
encompassing single nucleotide polymorphisms, insertions, deletions, tumor mutation burden, and mutation 
 frequency32. Genes that were frequently mutated and ranked within the top 20 in mutation frequency were 
deemed the principal driver genes for malignant  tumors33.

Statistical analysis
Survival analysis was conducted using the Kaplan–Meier (KM) curve and log-rank test to compare the survival 
rates between the two groups. All survival curves were generated using the ‘survminer’ package. Either one-way 
analysis or double-tailed t tests of variance were used to establish significant quantitative disparities in variables 
with a normal distribution. The Kruskal–Wallis test or Wilcoxon test was applied to assess significant differ-
ences in data with abnormal distributions. R version 4.3.0 was utilized for diverse statistical analyses, with the 
significance threshold set to P < 0.05.

Results
Single‑cell dimensionality reduction, clustering and annotation
To explore the sources of the highly expressed genes, we analyzed the OSCC cell population using the scRNA-seq 
dataset GSE103322, which included 4,541 single-cell transcriptomes from a sample of 18 patients. These cells 
were subsequently grouped into 19 clusters (Fig. 2B). The two most significantly differentially expressed genes 
in each cluster were displayed using a heatmap (Fig. 2C). The distinct cell types were annotated according to 
cell-specific biomarkers and expression patterns (Table S2). As shown in Fig. 2D, nine cell types were identified: 
epithelial cells, macrophages, and T cells. The proportions of the various cell types in each patient sample are 
presented in Fig. 2E. Specific genes of each cell type were visualized using point plots (Fig. 2F).

Determination of mitochondrial autophagy activity and pseudotime analysis
The identification of active cell subpopulations at single-cell resolution relies on the expression patterns of MRGs. 
After determining the optimal threshold for active cells, 1,354 active mitochondrial autophagic cells were identi-
fied (Fig. 3A). The activity of MRGs in NK cells was markedly greater than that in other cell types (p < 0.0001; 
Fig. 3B). Using the identified NK cells, we established a pseudotime cell trajectory to identify the important gene 
expression programs that determine OSCC progression. The transcriptional states in the trajectory revealed 
different processes (Fig. 3C–F). To elucidate the molecular basis of this transformation, we explored the genes 
that determine the branching of OSCC cells. The highly expressed genes in Cell fate 1 were enriched mainly in 
GO CC pathways such as “CatSper complex”, “condensed chromosome” and “male germ cell nucleus” (Fig. 3G).

Cellular communication analysis
To further elucidate the comprehensive role of these immune cells, intercellular communication analysis was 
conducted. The interactions between these cell types are shown in Fig. 4A–B. Further research was conducted 
on potential efferent and afferent signals and specific ligand–receptor pairs in these nine cell types. As shown in 
Fig. 4C–D, NK cells have the least number of signaling receptors; however, they are the main signaling providers, 
and the potential signaling pathways in NK cells include FGF, LEP, CSF3, EDN and ANGPTL3. Subsequently, 

https://www.cancerrxgene.org/
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specific signaling pairs between NK cells and other types of cells were studied. The findings revealed that 
the strongest interaction between NK cells and other cell types occurred through the MIF (CD74 + CXCR4) 
ligand–receptor pair from NK cells to T cells, B cells, and DCs (Fig. S1). The ligand MIF was expressed in various 
cells, as was the receptor CD74. The receptor CXCR4 is predominantly expressed in T cells, B cells, macrophages, 
DCs and NK cells, whereas CD44 is expressed in all cell types except endothelial cells (Fig. S1). These preliminary 
results elucidate the potential interactions between NK cells and other cell types and will help us further explore 
the comprehensive function of NK cells in OSCC.

Enrichment analysis of DEGs in OSCC
There were 1,192 DEGs between NK cells and other cell types (| Log2-fold change |> 0.25, adjusted p value < 0.05; 
Table S3). The top 10 upregulated genes (CHRNA1, DLK1, MYF5, MUSK, CHRDL2, DES, SGCA.2, APOC1, 
SERPINA3, and MEG3) in NK cells and the top 10 downregulated genes (ARHGDIB, SRGN, PTPRC, LAPTM5, 
LCP1, IL2RG, CD53, SAMSN1, RGS1, and CD2) are shown in heatmaps (Fig. 5A).

Figure 2.  Shows the cell subpopulations identified from the scRNA-seq data. (A) t-SNE map of the distribution 
of 18 OSCC samples. (B) t-SNE map shows the distribution of 19 cell subsets in OSCC. (C) Heatmap displaying 
genes specifically expressed in the cell cluster. (D) Annotated t-SNE map of oral cancer cell subpopulations. (E) 
The histogram displays the distributions of different cell types in 18 OSCC patients. (F) Expression of key genes 
across different cell types.
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By comparing OSCC samples with normal samples, 2214 genes were found to be differentially expressed. The 
differences in the expression of these genes between the two samples were statistically significant (| Log2-fold 
change |> 1,adjusted pvalue < 0.05; Table S4). The top 10 upregulated genes (PTHLH, MMP9, LAMC2, INHBA, 
MMP12, MMP1, CA9, COL1A1, MMP13, and MMP11) and the top 10 downregulated genes (CRISP3, AQP5, 
STATH, PLA2G2A, LTF, PIP, ZG16B, SMR3B, MUC7, and BPIFB2) in the OSCC samples are displayed in heat-
maps (Fig. 5B). Intersection of the two sets of DEGs resulted in 227 hub genes (Fig. 5C, Table S5).

To explore the biological functions associated with the marked genes, our group conducted enrichment 
analysis of the GO entries (Table S6) and KEGG pathways (Table S7). GO results revealed that the genes were 
concentrated in pathways related to skin development (GO:0,043,588), epidermal development (GO:0,008,544), 

Figure 3.  The identification of mitochondrial autophagy activity subgroups and the transcriptional trajectory 
analysis of the cells in Fig. 3 reveal the transcriptional patterns of the NK cells. (A) The area under the curve 
(AUC) for mitochondrial autophagy-related genes was 0.14. (B) The activity of MRGs appears to differ 
significantly between NK cells and other cell types. (C) Pseudotime color gradient transitions from dark blue 
to light blue. (D) Pseudotime trajectory of OSCC cell distribution displayed based on sample patient sources. 
(E) The pseudotime trajectory is divided into three different states using Monocle2. (F) Stacked bar charts 
displaying the distribution of patients in different states. (G) The heatmap shows DEGs in different branches 
(cell fate). The GO pathways significantly enriched in different gene clusters are shown on the left of the 
heatmap.
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and extracellular matrix organization (GO:0,030,198) (BP) (Fig. 5D). The enriched KEGG pathways included 
ECM-receiver interaction (hsa04512), focal adhesion (hsa04510), and small-cell lung cancer (hsa05222) (Fig. 5E).

Development and evaluation of prognostic models
Through single-factor Cox analysis, we identified key genes related to prognosis, ultimately identifying 28 genes 
linked to OSCC prognosis (p < 0.05; Table S8). Next, The OSCC samples (n = 442) were classified randomly into 
two groups: a training group(n = 301) and a validation group(n = 141). LASSO regression analysis was also con-
ducted on the training dataset to eliminate redundant genes and establish a random number seed of four. Twelve 
genes associated with the prognosis of patients with OSCC were identified (Table S9). Based on the median risk 
value, the samples were divided into high-risk and low-risk groups to assess the stability of the 12-gene model. 
Figure 6A displays the expression levels of the 12 genes, survival time, and risk score distribution in the training 
dataset. The results revealed a more dense distribution of deaths and higher expression levels of the COBL and 
AREG genes in the high-risk group. This indicates that patients in the high-risk group may have more severe 
disease than those in the low-risk group. Figure 6B and C display the KM survival curves for different patient 
populations in both the training and validation datasets. The results showed that patients in the high-risk group 
had a significantly worse prognosis than did those in the low-risk group, further validating the effectiveness of 
our 12-gene model in predicting patient prognosis. To further evaluate the predictive performance of our model, 
receiver operating characteristic (ROC) curves were generated to assess its ability to predict patient prognosis. 
Figure 6D and E display the ROC curves for both the training and validation datasets. In the training cohort, 
the area under the curve (AUC) values at 1, 3, and 5 years were 0.674, 0.669 and 0.665, respectively (Fig. 6D). In 
the validation dataset, the area under the curve (AUC) values at 1, 3, and 5 years were 0.725, 0.715, and 0.733, 
respectively (Fig. 6E). These data demonstrated that our model has good predictive performance and can be 
used to distinguish between high-risk and low-risk patients effectively.

GSEA and GSVA
We used pathway information from the MsigDB database as a reference for GSEA of DEGs. We selected the most 
significant pathway based on the normalized enrichment score and used the FDR-adjusted P value to control for 
errors. The results showed that three pathways were highly enriched in the high-risk group: HYPERTROPHIC_
CARDIOMYOPATHY_HCM (NES = 2.1171, adjusted P = 0.0163, FDR = 0.0177; Fig. 7A), FOCAL_ADHESION 
(NES = 2.0956, adjusted P = 0.0163, FDR = 0.0117; Fig. 7B), and DILATED_CARDIOMYOPATHY (NES = 2.0596, 
adjusted P = 0.0163, FDR = 0.0117; Fig. 7C). In contrast, three pathways were significantly enriched in the low-
risk group: DRUG_METABOLISM_CYTOCHROME_P450 (NES = -1.8336, adjusted P = 0.0181, FDR = 0.013; 
Fig. 7D), GLUTATHIONE_METABOLISM (NES = -1.8679, adjusted P = 0.0181, FDR = 0.013; Fig. 7E), and 
METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 (NES = -1.9868, adjusted P = 0.0181, 

Figure 4.  Communication mode of OSCC cells. (A) The network graph illustrates the frequency of interactions 
between different OSCC cell types. (B) The network graph demonstrates the strength of interactions among 
OSCC cell types. (C) The heatmap depicts the signaling pathways associated with OSCC cell types. (D) The 
heatmap depicts the signaling pathways associated with OSCC cell types.
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FDR = 0.013; Fig. 7F). Additionally, pathway activity heatmaps were generated using the 5 pathways associated 
with the genes exhibiting the greatest difference between the high-risk subgroup and low-risk subgroup (Fig. 7G, 
Supplementary Table S11).

Nomogram
Univariate (Fig. 8A) and multivariate (Fig. 8B) Cox regression analyses were conducted to evaluate the clini-
cal characteristics of patients. Both analytical approaches consistently indicate that the risk score serves as an 
independent prognostic risk factor for patients. Furthermore, a multivariate Cox regression analysis was used 
to devise a Nomogram, and the findings reveal that the risk score possesses substantial predictive value in fore-
casting clinical outcomes (Fig. 8C). The AUC values (1-, 3- and 5 years) are 0.730, 0.706, and 0.670, respectively 
(Fig. 8D), indicating its reliability and effectiveness in prognostic prediction.

Immune infiltration analysis
Table S12 shows the infiltration degree of 28 immune cell subsets. In addition, we also displayed the proportions 
of 28 immune cell subsets through a histogram, revealing the heterogeneity of immune cells in oral cancer. Figure 
S2 shows that most immune cells exhibited a positive correlation, while CD56bright NK cells and myeloid-
derived suppressor cells exhibited a negative correlation. We also found significant differences in immune cells, 
including activated B cells, immature B cells, central memory CD8 + T cells, activated CD8 + T cells, gamma 
delta T cells, T follicular helper cells, eosinophils, and neutrophils (P < 0.05), between the high-risk and low-risk 
groups. To further explore the relationships between specific genes and their corresponding immune cells, we 
analyzed the significant correlation between each central gene and its corresponding immune cell . AREG gene 
is negatively correlated with activated B cells (R =  − 0.3615, P < 0.001) , while FLT1 gene is positively correlated 
with central memory CD8 + T cells (R = 0.4756, P < 0.001)(Fig. S2).

TMB and drug sensitivity analysis
TMB result shows the top 20 genes with the highest mutation frequency in both groups are the same. The gene 
with the highest mutation frequency is TP53, followed by TTN (Fig. S3).Patients with low-risk scores may be 

Figure 5.  Enrichment analysis of DEGs in OSCC. (A) The heatmap shows the genes with significant differential 
expression in NK cells in OSCC. (B) The heatmap shows that 20 DEGs were significantly differentially expressed 
in OSCC. (C) Wayne plot displaying key genes. (D) GO analysis of the key genes. (E) KEGG analysis of the key 
genes.
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more sensitive to the reactions of Dihydronotenone_1827, GNE-317_1926, and Sabutoclax_1849, indicating that 
chemotherapy is a promising option for the low-risk scoring group (Fig. S3, Table S13).

Discussion
In this study, a total of 4541 cells were obtained from the single-cell transcriptome, and all the cells were classified 
into 19 clusters. According to the characteristics of each cluster, nine cell types were identified using cell-specific 
biomarker annotations. The expression patterns of mitochondrial autophagy-related genes were used to identify 
active cell subpopulations at the single-cell scale. We found that the activity of MRGs in different cell types in 
oral cancer is heterogeneous, with NK cells showing significantly greater activity than other cells. NK cells are a 
crucial component of the human innate immune system. They are cytotoxic and secrete various immunoregula-
tory cytokines and  chemokines34. Letai et al. reported that the mitochondrial apoptosis mechanism in tumor 
cells is important for efficient NK cell killing and that targeting mitochondrial apoptosis can enhance the tumor 

Figure 6.  A prognostic model constructed for the OSCC dataset. (A) The distribution of risk scores, heatmap 
of key genes and survival profiles in the OSCC dataset. (B, C) Survival curves of the high- and low-risk patients 
from the training dataset (B) and validation dataset (C) Yellow indicates the high-risk group, while green 
indicates the low-risk group. (D, E) Time-dependent ROC curves for 1-, 3-, and 5-year survival in the training 
cohort (D) and validation cohort (E).
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inhibitory function of NK  cells35. Research has also suggested that NK cells infiltrating liver cancer cells undergo 
mitochondrial rupture, resulting in loss of their own antitumor  function36. Combining the conclusions of the 
above studies with those of our study, it can be concluded that mitochondrial function is correlated with the 
dysfunction of tumor-invading NK cells, leading to the loss of tumor immune monitoring mechanisms.

Using GO enrichment analysis, we characterized the biological roles of key genes implicated in mitochondrial 
autophagy, providing novel insights into the regulatory mechanisms of these genes. GO analysis revealed that 
key genes might play potential roles in skin development, epidermal development, extracellular matrix tissue, 
and other processes. The KEGG pathways included “ECM-receiver interaction”, “focus adhesion”, and “small-
cell lung cancer”. Squamous cell carcinoma affects the skin and mucosa mainly. OSCC indicates that the site of 
cancer transformation is the oral cavity. Combining clinical and pathological features, OSCC usually does not 
metastasize in its early stages. As the diameter of the tumor increases, the tumor gradually enters the dermis 

Figure 7.  GSEA and GSVA revealed significantly enriched pathways. GSEA revealed that HYPERTROPHIC_ 
CARDIOMYOPATHY_ HCM (A), FOCAL_ ADHESION (B), DILATED_ CARDIOMYOPATHY (C), DRUG_ 
METABOLISM_ CYTOCHROME_ P450 (D), GLUTATHIONE_ METABOLISM (E), and METABOLISM_ 
OF_ XENOBIOTICS_ BY_ CYTOCHROME_ P450 (F) were significantly enriched. (G) A pathway heatmap 
demonstrating GSVA enrichment in different risk groups.
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and extends to a greater area and depth, invading the lymph nodes. If the patient’s condition progresses to an 
advanced stage and cancer cells start undergoing distant metastasis, other organs can be significantly affected, 
which can lead to failure and a very low probability of cure. The development and progression of OSCC from 
the surface to the inside are closely related to the enrichment results of the GOKEGG pathway, but the specific 
mechanisms of each pathway in OSCC still require further research.

We also analyzed the infiltration levels of 28 types of immune cells in both the high- and low-risk groups 
and found that the proportion of immune cells varied among individuals. Most immune cells were positively 
correlated with each other, whereas CD56bright natural killer cells and myeloid-derived suppressor cells were 
negatively correlated. We observed significant differences in immune cell expression between the high- and low-
risk groups (P < 0.05). Furthermore, significant correlations were observed between each hub gene and the cor-
responding immune cells. The AREG gene was strongly negatively associated with activated B cells (R = -0.3615, 
p < 0.001). The FLT1 gene was significantly associated with central memory CD8 T cells (R = 0.4756, p < 0.001).

AREG is a protein in the epithelial growth factor family that binds and activates the epithelial growth factor 
receptor EGFR, promotes the formation of homodimers or heterodimers with EGFR and triggers the phospho-
rylation of downstream signals within cells, thereby regulating cell proliferation and  differentiation37. AREG 
was first identified in the MCF-7 human breast cancer cell line. It was primarily characterized as a bifunctional 
growth factor that can inhibit the proliferation of tumor cell lines but also promotes the growth of normal cells, 
such as fibroblasts and  keratinocytes38. Multiple studies have demonstrated that AREG plays a crucial role in cell 
biology and tumor development. AREG is positively regulated in various tumors, including breast, liver, colon, 
lung, head and neck, prostate, stomach, bladder, and skin  tumors39. Studies have shown that AREG can act as a 
tumor-promoting factor and play a significant role in the development of numerous  tumors40. New research has 
also demonstrated that AREG expression is triggered by various mitochondrial stressors and that upregulation 
of AREG expression serves as a biomarker for mitochondrial damage in mouse models of liver injury.

FLT1, a member of the vascular endothelial growth factor receptor family, is a growth factor that stimulates 
endothelial cell proliferation and inhibits apoptosis, promoting  angiogenesis41. Therefore, it actively regulates 
both normal and pathological angiogenesis. Its expression is observed in most tumor tissues and is significantly 

Figure 8.  Risk score is an independent prognostic factor. The forest plot shows the results of univariate (A) 
and multivariate (B) Cox regression analysis on clinical features. (C) The column chart of the prediction model. 
The line segment represents the contribution of clinical factors to the outcome event, the total score represents 
the sum of corresponding individual scores for all variable values, and the bottom three lines represent the 
prognosis for 1-year, 3-year, and 5-year survival corresponding to each value point. (D) The time dependent 
ROC curves of the column chart model for 1 year, 3 years, and 5 years.
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associated with tumor growth, differentiation, recurrence, metastasis, and patient  survival42,43. Aggarwal et al. 
reported an increase in FLT1 expression at the site of the tumor and in the peripheral circulation of patients with 
OSCC, indicating a correlation between FLT1 expression and the occurrence, development, and distant spread 
of oral  cancer44. The risk model constructed in this research included 12 mitochondrial autophagy-related genes 
that potentially function and play roles in the tumor immune environment.

Mitochondria serve as the central hubs for metabolic signaling and are highly dynamic, undergoing continu-
ous morphological changes through fusion and fission reactions, along with alterations in their intracellular 
distribution. The involvement of these proteins in diverse cellular processes and the growing evidence for the 
therapeutic significance of mitochondrial autophagy in various diseases have placed them at the forefront of 
recent research. In the current scenario of widespread resistance to chemotherapeutic agents in clinical tumors, 
mitochondrial autophagy assumes a crucial role in the antitumor response. A recent study reported a positive 
correlation between increased mitochondrial autophagy in OSCC stem cells and cisplatin resistance, suggest-
ing that mitochondrial autophagy aids tumor cells in evading targeted destruction by chemical  agents45. These 
findings raise the prospect of utilizing mitochondrial autophagy as a potential treatment for OSCC. Our analysis 
revealed that patients with low risk scores exhibit high sensitivity to chemotherapy, suggesting that chemotherapy 
represents a promising option for this subset of patients. The present challenge lies in our inadequate understand-
ing of the molecular mechanisms underlying mitochondrial autophagy, which hinders our ability to distinguish 
its benefits from potential drawbacks in cancer therapy. The aforementioned conclusions are based solely on 
bioinformatics analysis and may offer novel insights into OSCC research; however, it is worth noting that there 
are some selection biases in the population datasets obtained from the GEO and TCGA cohorts, necessitating 
further validation through large-scale prospective studies.

Conclusion
In summary, this study revealed that the activity of MRGs in different cell types in oral cancer is heterogeneous, 
and the activity of MRGs in NK cells is markedly greater than that in other immune cells, suggesting the poten-
tial for the development of new targeted therapies. The construction of a robust prognostic model also provides 
reference value for individualized prediction and clinical decision-making in patients with OSCC.

Data availability
The datasets generated and/or analyzed during the current study are available in TCGA (https:// portal. gdc. 
cancer. gov/) and GEO databases (https:// www. ncbi. nlm. nih. gov/ geo/). The single-cell dataset is GSE103322. 
This article and supplemental material included all the data generated during this study. For further inquiries, 
please contact the corresponding author.
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