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Optimizing encoding strategies 
for 4D Flow MRI of mean 
and turbulent flow
Pietro Dirix *, Stefano Buoso  & Sebastian Kozerke 

For 4D Flow MRI of mean and turbulent flow a compromise between spatiotemporal undersampling 
and velocity encodings needs to be found. Assuming a fixed scan time budget, the impact of trading 
off spatiotemporal undersampling versus velocity encodings on quantification of velocity and 
turbulence for aortic 4D Flow MRI was investigated. For this purpose, patient-specific mean and 
turbulent aortic flow data were generated using computational fluid dynamics which were embedded 
into the patient-specific background image data to generate synthetic MRI data with corresponding 
ground truth flow. Cardiac and respiratory motion were included. Using the synthetic MRI data as 
input, 4D Flow MRI was subsequently simulated with undersampling along pseudo-spiral Golden 
angle Cartesian trajectories for various velocity encoding schemes. Data were reconstructed using 
a locally low rank approach to obtain mean and turbulent flow fields to be compared to ground 
truth. Results show that, for a 15-min scan, velocity magnitudes can be reconstructed with good 
accuracy relatively independent of the velocity encoding scheme ( SSIM

U
= 0.938± 0.003) , good 

accuracy ( SSIM
U
≥ 0.933 ) and with peak velocity errors limited to 10%. Turbulence maps on the 

other hand suffer from both lower reconstruction quality ( SSIM
TKE

≥ 0.323 ) and larger sensitivity to 
undersampling, motion and velocity encoding strengths ( SSIM

TKE
= 0.570± 0.110) when compared 

to velocity maps. The best compromise to measure unwrapped velocity maps and turbulent kinetic 
energy given a fixed 15-min scan budget was found to be a 7-point multi-V

enc
 acquisition with a low 

V
enc

 tuned for best sensitivity to the range of expected intra-voxel standard deviations and a high V
enc

 
larger than the expected peak velocity.
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Aortic stenosis (AS), if not treated, is associated with elevated morbidity and mortality1,2. Timely diagnosis 
and treatment of AS is therefore of critical importance. However, accurately gauging the severity of the disease 
remains a challenge2. As AS is characterized by abnormal flow patterns3–5 and irreversible pressure drops6–9, 
quantifying aortic velocity and turbulence fields is considered an important readout for risk assessment and 
patient stratification5,10.

Time-resolved volumetric phase-contrast magnetic resonance imaging (4D Flow MRI) has facilitated the 
measurement of aortic flow patterns11,12. Despite notable efforts in sequence design13–15, undersampling and 
associated image reconstruction techniques14,16–21, 4D Flow MRI data still suffers from limited spatiotemporal 
resolution and artifacts. Also, given that patients with aortic stenosis typically present with large peak veloci-
ties, single high-Venc acquisitions are suboptimal due to velocity-to-noise limitations (VNR). Low-Venc acquisi-
tions allow to increase the sensitivity to velocity but require unwrapping of phase maps22,23. Various multi-Venc 
approaches have been proposed to improve the precision of velocity measurements22,24–27 and to increase the 
sensitivity to turbulence13,28,29. It is commonly accepted that increasing the number of velocity encoding points 
is beneficial for both turbulence and velocity quantification28,30. A dual-Venc 7-point normal encoding proposed 
by Schnell et al.22 has been shown to improve quantification of flows across a relatively large range of velocities. 
Additionally, Callaghan et al.25 demonstrated that for identical scan times, multi-Venc acquisitions outperform 
multiple averages of high single-Venc scans. However, any additional velocity encoding point results in increased 
scan time. To counteract the scan time increase, advanced acceleration techniques have been proposed31–33.

Although many studies exist on accelerated flow quantification using 4D Flow MRI, only few of them inves-
tigate quantification of turbulence. A single-Venc 7-point ICOSA velocity encoding scheme was successfully used 
by Ha et al.34 to discriminate between healthy volunteers and a stenotic patient based on turbulence indicators. 
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Walheim et al.35 employed a highly-accelerated 19-point triple-Venc encoding scheme for combined quantifica-
tion of velocity and turbulence in under 10 min. The aforementioned works, however, lack access to ground-
truth data and consequently, a systematic study on accuracy and precision. In particular, the interplay between 
encoding directions, encoding strengths, undersampling and breathing motion has not been addressed so far.

While in-vitro phantom studies have been conducted28,36,37, the complexity of cardiac and vascular anatomy 
and its hemodynamics cannot be fully represented in-vitro, thereby impacting the performance of spatiotemporal 
undersampling and reconstruction approaches. The optimization of 4D Flow MRI therefore requires realistic 
biophysical simulation.

Previous works have shown both the ability to generate patient-specific simulations from MR 
measurements38,39 and the feasibility of generating realistic 4D Flow MRI data associated with known ground 
truth which could be used in design and optimization approaches37,40–42, especially when considering velocity and 
turbulence fields. Computational fluid dynamics (CFD) allows to simulate realistic blood flow in aortic shapes 
and, by simulating the acquisition process, corresponding MR signals can be generated, providing ground truth 
and 4D Flow MRI data pairs. The complex-valued magnetization can be computed by solving the Bloch equa-
tions in the Lagrangian frame of reference43,44 which allows for the evaluation of specific MRI sequences while 
inherently considering flow-induced displacement and dephasing artifacts45. Of note, to accurately compute 
MRI signals for turbulent flows, tracking of a large number of material points is necessary, making these simula-
tions computationally excessive. Alternatively, synthetic MRI images can be generated using a model equation, 
directly incorporating pointwise velocity and turbulence data from CFD, thereby significantly reducing the 
computational cost40,46.

In the study at hand we investigate the impact of undersampling, velocity encoding strategy and breathing 
motion on the quantification of velocity and turbulence using a patient-specific synthetic 4D Flow MRI dataset 
as input.

Methods
Ground-truth velocity and turbulent flow fields were generated using CFD based on the time-resolved anatomy 
of a patient with aortic stenosis. Complex-valued PC-MRI data were derived using a signal model and embed-
ded into the patient-specific background in the expiratory state. To simulate respiratory motion, the data were 
warped using breathing motion patterns from the patient. Subsequently, prospective sequential filling of k-space 
according to a pseudo-spiral Cartesian trajectory47 was performed and data were reconstructed using a locally 
low-rank (LLR) approach35,48. The details of these steps are presented in the following paragraphs. Additional 
details on the method are available in the supplemental material.

Synthetic 4D Flow MRI data generation
In this work we simulated undersampled 4D Flow MRI data using the methods outlined in Fig. 1. Details on 
segmentation, boundary conditions and simulation of turbulent flow in the aorta can be found in our previous 
work49 (Fig. 1a,b). Instantaneous CFD flow fields, including velocity and Reynolds stress tensor were downsam-
pled to MRI resolution for each cardiac phase and cycle and a signal equation was used to synthesize 4D Flow 
MR data for each encoding direction nv . Synthesized aortic data was embedded into a 4D Flow MRI background, 
resulting in MR images with realistic background and ground truth aortic foreground (Fig. 1c). Eight coils29 
with complex sensitivities C were simulated using the Biot-Savart law50. Data were converted to k-space using 
the Fourier transform F  . This set of fully sampled k-spaces constituted a pool of data that was prospectively 
undersampled and reconstructed using a locally low rank35 approach (Fig. 1d,e). To investigate the impact of 
breathing motion, registration of expiratory and inspiratory states was performed on the 5D Flow MRI data and 
the displacement field was used on the images to impose motion (Fig. 1f).

Ground‑truth data generation
A previously developed approach for personalized patient-specific CFD simulations49 was utilized to gener-
ate data. In this study, a subject with moderate aortic stenosis51 (echocardiographic peak velocity = 3.1 m/s) 
was obtained upon written informed consent and approval of the ethics committee of the Canton of Zurich, 
Switzerland, and according to institutional guidelines. All data were acquired on a 1.5T MR system (Philips 
Healthcare, Best, The Netherlands) using a cardiac receive array. The data included a 5D Flow MRI scan 
( 2.5× 2.5× 2.5 mm3, 40 ms) , 9 cine balanced steady-state free precession (BSSFP) slices acquired along the 
ascending aorta and the arch ( 1× 1× 5 mm3, 20 ms) and a cine 2D PC-MRI scan with three-directional velocity 
encoding acquired one diameter downstream of the aortic valve ( 1.5× 1.5× 8mm3, 20 ms) . A custom-made 
dynamic segmentation tool was used to extract aortic lumen from cine images and generate a fully hexahedral 
computational mesh as well as extract inflow boundary conditions from 2D PC-MRI slices49. Hemodynamic 
simulations were performed by solving the three-dimensional, unsteady and incompressible Navier–Stokes equa-
tions in a moving domain. Blood was assumed Newtonian and incompressible with density ρ = 1060 kg/m3 and 
kinematic viscosity μ = 3.5 mPa∙s. A large eddy simulation (LES) model in the arbitrary Lagrangian–Eulerian 
(ALE) framework as implemented in OpenFOAM® v1806 was employed. The subgrid scheme selected was the 
wall-adapting local-eddy viscosity (WALE) subgrid-scale (SGS) model and Spalding’s wall function was used. 
Second-order central differences and backward Euler schemes were used for spatial and temporal discretization. 
Adaptive time stepping was used to reduce simulation times. A total of Nhb = 30 heart beats were simulated and 
Ncp = 80 cardiac phases were saved per beat. Fully-sampled 4D Flow MRI data was generated by computing 
magnitude and phase values as reported previously49. The simplified MR signal model reads:
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where U  is the velocity vector, R is the Reynolds stress tensor, S0 is a complex-valued reference image, 
kv,i = kv,i

−→
e i =

[
kvx , kvy , kvz

]
i
∈ R

1×3 represents flow sensitivity along the ith direction with encoding 
velocity frequency kv,i = π/[Venc]i . η is complex Gaussian noise with zero mean and standard deviation 
ση =

∣∣SROI
∣∣ · (SNR)−1 with SROI being the mean noise-free signal in the region of interest, defined as the full 

fluid domain for all simulations. Downsampling to MR resolution was performed by projection to a fine grid 
( 0.65× 0.65× 0.65 mm3) with subsequent k-space low-pass filtering. The synthetic aortic data was then embed-
ded back into the in-vivo 4D Flow MRI data. For all simulations, an SNR of 20 was assumed35,52.

A reference band-limited measurement was obtained without breathing motion and without noise by down-
sampling cycle-to-cycle and temporally averaged CFD data49 to MRI resolution and was used throughout the 
study as the target when computing error metrics.

Data undersampling and reconstruction
The fully-sampled complex-valued synthetic MRI data was undersampled as outlined in Fig. 2. For each cardiac 
phase ncp , heart beat nhb and velocity encoding point nv , instantaneous image data It ∈ C

Nx×Ny×Nz was obtained, 
where Nx × Ny × Nz are the dimensions of the imaging volume. These images were then multiplied by coil 
sensitivity maps C ∈ C

Nx×Ny×Nz×Ncoil , with Ncoil = 8 . Upon Fourier transform, the instantaneous k-space data 
was obtained Sk ∈ C

Nx×Ny×Nz×Ncp×N
hb
×Nv×Ncoil , forming a pool of k-space data that was used to simulate MR 

(1)S
(
kv,i

)
= S0e

−
k
T
v,i

Rkv,i

2 e−jkv,iU + η,

Fig. 1 .   Summary of the 4D Flow MRI synthesis process. (a) Acquisition of in-vivo MR data including cine 
BSSFP slices acquired along the aorta, a 2D PC-MRI slice acquired one aortic diameter downstream of the 
aortic valve and a 5D Flow MRI scan. (b) Generation of a dynamic aortic mesh based on the BSSFP slices, 
extraction of velocity profiles from the 2D PC-MRI slice, simulation of blood flow using CFD and synthesis of 
MRI signals49. (c) Embedding of simulated 4D Flow MRI of the aorta into the background extracted from the 
expiratory state of the respiratory-resolved 5D Flow MRI input data. (d) Simulated acquisition of k-space points 
based on a pseudo-spiral trajectory. (e) Reconstruction of undersampled data (LLR) and analysis of flow related 
fields. (f) Extraction of respiratory motion from registration of the expiratory and inspiratory states of the 5D 
Flow MRI data and subsequent application of respiratory displacement on the synthetic data to create synthetic 
motion corrupted 4D Flow data.
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acquisitions. A pseudo-spiral Cartesian undersampling trajectory was used to sample the k-space pool29. With 
a TR = 5 ms and 10 ( ky , kz)-samples acquired per spoke per MR cardiac phase, a temporal resolution of 50 ms 
was simulated. Each ( ky , kz)-sample had an associated CFD cardiac phase and CFD cardiac cycle determined by 
the ordering at which each sample was acquired (for each MR cardiac phase, 4 CFD cardiac phases were used 
to populate 10 points in k-space, see Fig. 2). K-space was iteratively filled by sampling each k-space point in 
the trajectory, as shown in Fig. 2, from the target fully sampled k-space signal pool Sk . After each cardiac cycle 
(see Fig. 2a), a new one was randomly selected (see Fig. 2b) and the whole process was repeated until a target 
k-space undersampling factor was achieved. A constant RR-interval of 950 ms was assumed, resulting in a total 
of Ncp,MRI = 19 cardiac phases. For each acquisition, an undersampled k-space Sku ∈ C

Nx×Ny×Nz×Ncp,MRI×Nv×Ncoil 
was obtained. Temporal and beat-to-beat averaging was integrated into the final k-space by simulating the 
acquisition process which allowed to inherently include beat-to-beat variability. By repeating the acquisition of 
k-space 20 times using different trajectories and cardiac cycle orderings, scan-to-scan variability based on the 
same underlying flow can be investigated.

The undersampled k-space data was reconstructed using a locally low-rank35 approach as implemented in 
the Berkeley Advanced Reconstruction Toolbox (BART)53:

where Î  are the reconstructed images, ���∗ denotes the nuclear norm, � is the regularization factor and the 
operator Rb selects the b-th out of Nb isotropic blocks of size Pb.

Multi-point six-directional velocity encoded data were processed using Bayesian multipoint unfolding13 to 
obtain velocity U  , Reynolds stress tensor R , turbulent kinetic energy TKE and kinetic energy KE . In case of 
multi-point or single-point three-directional velocity encoding, only U  , TKE and KE could be obtained. Phase 
unwrapping is intrinsically included in Bayesian multipoint unfolding13. For standard 4-point velocity encoding, 
phase unwrapping using the band-limited reference was performed if required.

(2)Î = argminI��FCI − S
k
u�

2

2 + �

∑
�RbI�∗

Fig. 2.   Schematic of k-space sampling based on CFD based synthetic k-space data pools. A pseudo-spiral 
trajectory was simulated for successively acquired k-space profiles. After each cardiac cycle (a), a new cardiac 
cycle (b) was randomly selected to continue the acquisition. Different Venc were acquired sequentially for each 
scan. The gradient waveform is for illustrative purposes; in this work each TR was simulated using Eq. (1).
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Undersampled synthetic data based on a 3-point feet-head dual-Venc encoding ( Venc = 0, 0.5, 2 m/s , see Fig. 3) 
was used to test the impact of the LLR regularization parameters on global image magnitude, intra-voxel standard 
deviation (IVSD, σ ) and velocity in the aorta. Optimal values for � and Pb with respect to the fully sampled refer-
ence were studied using the following structural similarity indices (SSIM): SSIMI , SSIMuFH and SSIMσFH ; which 
are quality metrics based on the image magnitude ( 

∣∣∣̂I
∣∣∣ ), feet-head velocity in the aorta ( uA

FH
 ), and feet-head IVSD 

in the aorta ( σA
FH

 ), respectively. As shown in Table 1, optimal values of � depend on the undersampling factor, 
and they range between 0.01 and 0.17, consistent with literature16,35. While regularization parameters are often 
tuned with respect to quality of the image magnitude, differences are seen depending on the target metric. When 
optimizing based on image magnitude ( 

∣∣∣̂I
∣∣∣ ), SSIMσFH decreased up to 23%, when compared to optimizations for 

u
A
FH

 and σA
FH

 . Based on these results, a dual reconstruction approach was adopted in this work. The image phase 

Fig. 3.   Summary velocity encoding strategies including 3-point dual-Venc , 4-point single-Venc , 7-point 
single-Venc , 7-point dual Venc , 13-point dual-Venc and 19-point triple-Venc . Non diagonal terms of the Reynolds 
stress tensor can only be recovered if non-diagonal encoding points are included in the encoding strategy 
(7-point single-Venc , 13-point dual-Venc and 19-point triple-Venc).

Table 1.   Summary of optimal regularization � and block size Pb for various undersampling factors Ru and 
for optimal reconstructions of image magnitude ( |I| ), feet-head velocity in the aorta ( uA

FH
 ) and feet-head 

intravoxel standard deviation in the aorta ( σA
FH

). In this table SSIM of velocity (SSIMuFH) is the selected quality 
metric for uA

FH
 and SSIM of IVSD (SSIMσFH) is the quality metric for σA

FH
.

Ru = 1.93 Ru = 3.37 Ru = 6.22 Ru = 9.07 Ru = 18.14

∣∣∣̂I
∣∣∣

� 0.010 0.029 0.066 0.094 0.170

Pb 8 32 32 32 16

SSIMuFH 0.981 0.962 0.891 0.830 0.718

SSIMσFH 0.910 0.831 0.680 0.558 0.364

u
A
FH

� 0.011 0.018 0.033 0.052 0.084

Pb 2 2 4 8 16

SSIMuFH 0.985 0.973 0.941 0.896 0.765

SSIMσFH 0.926 0.878 0.800 0.708 0.408

σ
A
FH

� 0.013 0.023 0.037 0.052 0.110

Pb 2 2 4 4 4

SSIMuFH 0.985 0.972 0.940 0.888 0.729

SSIMσFH 0.926 0.880 0.803 0.718 0.471



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:19897  | https://doi.org/10.1038/s41598-024-70449-9

www.nature.com/scientificreports/

was reconstructed using optimal regularization parameters for uA
FH

 , while the magnitude was reconstructed 
using those for σA

FH
 . Exemplary optimally reconstructed images for various undersampling factors are presented 

in Fig. S1 of the Supplemental Material. 

Respiratory motion
To obtain respiratory motion fields, the acquired 5D Flow MRI data was binned into 3 respiratory states29,54, 
and the image registration toolbox pTVreg55 was used to extract breathing-related displacement fields. A fully 
sampled reference scan was simulated using the approach presented in Fig. 2 and subsequently warped using 
the displacement fields to create 20 breathing states between end-inspiration and end-expiration. Static tissue 
including the spine was used to constrain deformations. The data was converted back to k-space to form a new 
motion informed k-space pool containing an additional dimension representing breathing motion. Motion cor-
rupted synthetic 4D Flow MRI data was then obtained by applying the sampling approach presented in Fig. 2 on 
the motion informed k-space pool while additionally accounting for a simulated respiratory frequency of 0.3 Hz 
with a 0.04 Hz jitter. This process mimics a free-breathing acquisition. The respiratory motion amplitudes ( δb ) 
tested were 15, 30 and 100% of the maximum range to study the impact of respiratory binning. For 100% motion 
amplitude, the maximum and mean displacement of the ascending aorta were 4.6 and 3.0 mm, respectively.

Encoding strategies
Multiple encoding schemes were simulated assuming a scan time of 15 min, with Venc-dependent echo times (TE) 
of 1.7, 1.4, and 1 ms, resulting in repetition times (TR) of 5, 4.7, and 4.3 ms for Venc = 0.5, 1 and 2 m/s , respec-
tively. Improved scan efficiency for Venc = 1 and 2 m/s , within a fixed scan budget, was achieved by increasing the 
number of sampled k-space points by 6% and 14%, respectively, compared to an acquisition with Venc = 0.5 m/s . 
For multi-Venc acquisitions, a single TR must be used for all encoding points; thus, the TR and corresponding scan 
efficiency were set to the value corresponding to the lowest Venc in the encoding scheme. Undersampling factors 
( Ru ) assuming Venc = 0.5 m/s were 1.93, 3.37, 6.22 and 9.07 for 4, 7, 13 and 19-point acquisitions, respectively. 
Single-, dual- and triple-Venc encoding refer to the number of different velocity encoding strengths per encoding 
direction while “ n-point encoding” refers to the total number of velocity encoding points. Figure 3 graphically 
summarizes all the encoding strategies investigated in this work.

The impact of undersampling ( Ru ) and breathing motion ( δb ) was studied using a dual-Venc 7-point encod-
ing ( Venc = 0.5, 2m/s ) approach. Where the two Venc were individually reconstructed as well as combined using 
Bayesian multipoint unfolding13.

Data analysis
The assessment of image quality was based on the normalized root mean square error (nRMSE) and SSIM with 
a spatial Gaussian weighting56 as implemented in Python’s scikit-image library, where the target fields where 
obtained from the band-limited reference. Using SSIMU , SSIMI, SSIM∠ , SSIMTKE , SSIMRxy , SSIMRxz , and SSIMRyz 
the similarity of velocity magnitude, image magnitude, image phase, TKE, and the non-diagonal terms of the 
Reynolds stress tensor (RST) with respect to the reference were calculated. Additionally, the vectorial normalized 
root-mean-square error of velocity ( −→U rmse ) was obtained:

where U  is the reconstructed velocity field, U I is the reference velocity field and mean() is a spatial averaging 
operator in the region of interest defined by the aorta. A directional error metric ( 

−→
θ err ) was also defined21:

Velocity related metrics included peak velocity ( Umax ), divergence ( ∇ · U  ), kinetic energy integrated across 
the aorta (iKE) and velocity-to-noise ratio (VNR)28 defined as:

where ‖U‖ is the velocity magnitude averaged across multiple scanning repetitions and |U |σ is the correspond-
ing standard deviation. VNR measures scan-to-scan variability of velocity. Turbulent kinetic energy in [ J/m3] 
was defined as:

Note that computation of TKE does not require the knowledge of the whole RST, as only the diagonal terms 
are needed. Hence, for a normal encoding scheme with 3 directions TKE was obtained as:

where σkv represents the intra-voxel standard deviation (IVSD) along the main directions. We also analyzed 
integrated TKE ( iTKE ) in [ mJ] obtained by integrating TKE across the aorta. In order to measure scan-to-scan 
variability of TKE, we define the turbulence-to-noise ratio ( TNR)28:

(3)
−→
U rmse =

√
mean

(
�U − U I�

2
)
/mean

(
�U I�

2
)
,

(4)
−→
θ err = mean

(
1−

∣∣U · U I
∣∣

�U��U I�

)

(5)VNR = �U� · �U�−1
σ

,

(6)TKE =
1

2
Tr(R).

(7)TKE =
1

2

(
σ 2
kv,x ,

+ σ 2
kv,y

+ σ 2
kv,z

)
,
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where TKE is TKE averaged across multiple scanning repetitions and TKEσ is the corresponding standard 
deviation of TKE such that a large TNR corresponds to low scan-to-scan variability. All velocity and turbulence 
related metrics are reported for a single cardiac phase corresponding to the largest iKE and iTKE, respectively.

Results
Impact of encoding strategy
Flow metrics are summarized in Fig. 4. With respect to CFD ground-truth, the band-limited reference yields an 
underestimation of Umax and iKE by 5 and 14%, respectively, while iTKE is overestimated by 96% due to partial 
volume effects and intravoxel phase dispersion caused by velocity gradients49. For the undersampled MRI, Umax 
varied between 1.965 and 2.070 ms−1 and mean SSIMU , −→U rmse and 

−→
θ err were in the range [0.933, 0.943], [14.966, 

17.284], and [3.398, 4.278], respectively. With respect to the band-limited reference, errors in iKE varied between 
2.6 and 20.8% while errors in iTKE varied between − 22.1 and 62.9%.

Mean SSIMTKE varied between 0.323 and 0.680. Arrow (c) in Fig. 4 highlights the significant influence of a 
poorly chosen Venc on turbulence quantification. Values of SSIMRxy , SSIMRxz and SSIMRyz varied between 0.085 
and 0.322. VNR and TNR were directly proportional to the chosen Venc , as indicated by arrows (a) and (b) in 
Fig. 4. Maximum VNR and TNR were obtained for a 7-point encoding scheme with Venc = 0.5m/s and a 4-point 
encoding scheme with Venc = 0.5m/s , respectively. Minimum values were obtained using a 4-point encoding 
scheme with Venc = 2m/s for VNR and a 7-point encoding scheme with Venc = 2m/s for TNR. Examples of 
reconstructed flow fields can be found in Figs. S2, S3 and S4 in the Supplemental Material.

Impact of undersampling
A dual-Venc 7-point encoding scheme with Venc = 0.5 and 2m/s was simulated (including rescans) to study 
the impact of various undersampling factors. The results are summarized in Fig. 5, including individual recon-
structions for each Venc and Bayesian combination of both encodings. For the case with Venc = 0.5m/s, mean 
SSIMTKE decreased from 0.680 to 0.448 when considering undersampling factors from 1.93 to 18.14, while mean 
SSIMU decreased from 0.933 to 0.886. Mean −→U rmse , 

−→
θ err and ∇ · U  increased from 17.260 to 22.795, 3.844 to 

5.077 and 8.937 to 14.113, respectively. Similarly, a decrease of 65.5 and 41.2% in VNR and TNR was observed. 
Undersampling factor also directly correlated to iTKE increase, with an overestimation up to a 40.6% when 
moving from Ru = 1.93 to Ru = 18.14 . Mean peak velocities between 2.065 and 1.981 ms−1 were obtained for 
all reconstructions with Venc = 0.5m/s . On the other hand, reconstructions with Venc = 2m/s resulted in mean 
peak velocities between 2.0 and 1.697 ms−1, as pointed by arrow (a) in Fig. 5, equivalent to an underestimation 
of Umax of up to 17.8%. In general, high-Venc acquisitions were of lower quality than their low-Venc counterparts. 
The addition of regularization in undersampled images ( Ru ≤ 9.07 ) contributes to smoother fields, as can be 
seen with arrow (b) in Fig. 5, for the case of ∇ · U .

Impact of breathing motion
In order to estimate the influence of motion of flow quantification, a dual-Venc 7-point encoding scheme with 
Venc = 0.5 and 2m/s was simulated (without rescans) including respiratory motion for various undersampling 
factors; the results are summarized in Figs. 6 and 7. Individual Venc reconstructions as well as Bayesian com-
bination were included. VNR and TNR measurements are not presented as only single scans were simulated. 
For the case with Venc = 0.5m/s , mean SSIMTKE decreased from 0.636 to 0.498 when considering respiratory 
motion ranges from 0 to 100%, mean SSIMU decreased from 0.926 to 0.898, and mean −→U rmse , 

−→
θ err and ∇ · U  

increased from 17.775 to 19.871, 4.050 to 4.255, and 9.301 to 10.902, respectively. Peak velocities between 
2.048 and 1.994 ms−1 were obtained for all respiratory motion ranges. On the other hand, reconstructions with 
Venc = 2m/s resulted in peak velocities between 1.958 and 1.856 ms−1, equivalent to an underestimation of Umax 
up to 10.1%. In the case of Venc = 0.5m/s, a motion range of 30% resulted in differences for SSIMU , SSIMTKE 
and Umax of + 1.2, + 0.3 and − 1.3%, respectively, when compared to a motionless acquisition. On the other hand, 
a motion range of 100% resulted in differences of − 1.9, − 20.4 and − 2.6%. For Venc = 2m/s , differences with 
δb = 30% amounted to − 0.8, + 2.8 and − 2.8%, while with δb = 100% they were − 8.6, − 37.7 and − 5.2%. For all 
undersampling factors, flow quality metrics were lower when comparing simulations with δb = 100% (Fig. 7) 
and simulations without respiratory motion57,58 (Fig. 5). Only Umax correlated linearly with increase of breathing 
motion (see Fig. 6: arrow (a)), other metrics were only mildly affected when δb was assumed between 0 and 30% 
(see Fig. 6: arrow (b)). Exemplary reconstructed velocity and TKE maps for various degrees of undersampling and 
δb = 100% are presented in Fig. S5 in the Supplemental Material. Figure 7 presents the impact of undersampling 
on simulated data with δb = 100% . Arrows (a) and (b) demonstrate the negative impact of undersampling on 
the resulting reconstructed data. 

Discussion
In this work we investigated the impact of encoding strategies on quantification of flow and turbulence. We 
combined ground truth simulated patient-specific aortic foreground data with patient-specific backgrounds to 
simulate realistic 4D Flow MRI without and with respiratory motion.

Our results confirmed that regularization parameters depend on the target reconstruction metric and the 
undersampling factor (Table 1). In particular, optimizing regularization on the image magnitude alone can lead 
to significant errors in reconstructed flow fields. For undersampling factors of up to 9, variations in SSIMuFH and 
SSIMσFH were less than 2% between the two optimal parameter sets used, suggesting that simultaneous recon-
struction of phase and magnitude with a fixed setting of regularization parameters can be adequate.

(8)TNR = TKE · TKE−1
σ ,
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Fig. 4.   Flow metrics depending on the encoding strategy. The horizontal axis lists the encoding strategies; 
e.g. “4p(1)” refers to a 4-point encoding scheme with a single Venc of 1m/s . In particular, Ref. and 19p-FS 
correspond to the band-limited reference and the 19-point fully sampled scans, respectively. Peak velocity 
( Umax ), integrated kinetic energy ( iKE ), velocity-to-noise ratio ( VNR) , SSIM of velocity ( SSIMU ), integrated 
turbulent kinetic energy ( iTKE) , turbulence-to-noise ratio ( TNR ) and SSIM values of TKE and non-diagonal 
RST terms ( SSIMTKE , SSIMRxy , SSIMRxz , SSIMRyz ) are shown. In the CFD ground-truth, values for Umax , iTKE 
and iKE were 2.17 ms−1, 3.548 mJ and 60.297 mJ, respectively. Additional data can be found in Tables S1 and S2 
in the Supplemental Material. A video representing reconstructed flow fields and error metrics for some of the 
encoding strategies is available in the online Supplemental Material.
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Figure 4 shows that, for a fixed scan time of 15 min, high quality reconstructed velocity maps ( SSIMU ≥ 0.933 , 
−→
U rmse ≤ 17.284 , 

−→
θ err ≤ 4.278 ) can be obtained for all tested encoding schemes, independently of the number 

Fig. 5.   Flow and turbulence metrics depending on the undersampling factor for two 4-point acquisitions 
with Venc = 0.5 and 2 m/s , respectively. The Bayesian combination of these measurements is also presented. 
The * indicates reconstructions performed using a single coil. Additional data can be found in Table S3 in the 
Supplemental Material. In the CFD ground-truth, values for Umax , iTKE and iKE were 2.17 ms−1, 3.548 mJ and 
60.297 mJ, respectively.
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of encoding points and strengths. These results, however, assumed perfect unwrapping for the low-Venc acquisi-
tions. Contrarily to velocity fields, SSIMTKE values were highly sensitive to the chosen encoding strategy with 
overestimation of iTKE as high as 223% with respect to CFD. Ha et al.28 argued that undersampled measurements 
inevitably yield statistically non-converged turbulence fields, causing discrepancies with respect to ground truth. 
The lower intensity of fluctuations in high-velocity regions might explain why this effect was less observable for 
velocity maps. This aspect also affected VNR and TNR; the larger the undersampling and Venc , the lower the 
values of these metrics28.

The velocity encoding strength had a large impact on IVSD estimation, and based on our results, Venc values 
between 0.3 and 0.8m/s allowed to capture the dynamic range of voxel-wise IVSD (where optimal sensitivity to 
IVSD was obtained assuming Vij

enc = σijπ)35. The range of IVSD in the aorta is case-specific and depends on the 
pathology. Therefore, methods to better estimate this range would facilitate the choice of Venc . In our case, IVSD 

Fig. 6.   Flow and turbulence metrics for a fully-sampled scan depending on respiratory motion range ( δb ) 
for two 4-point acquisitions with Venc = 0.5 and 2m/s , respectively. The Bayesian combination of these 
measurements is also presented. A single acquisition was simulated. Additional data can be found in Table S4 in 
the supplemental material. In the CFD ground-truth, values for Umax , iTKE and iKE were 2.17 ms−1, 3.548 mJ 
and 60.297 mJ, respectively.
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was underestimated for Venc = 0.5m/s and overestimated for Venc = 1m/s while the map was dominated by 
noise for Venc = 2m/s . Bayesian unfolding allowed to combine measurements acquired with different encoding 
strengths. However, the presence of high Venc values can be detrimental to the data combination process, particu-
larly for turbulence metrics. In the case of a multi-Venc 7-point acquisition ( Venc = 0.5, 2m/s ) with undersampling 
factor Ru = 3.37 , the corresponding SSIMTKE and iTKE were 0.631 and 6.965 mJ (+ 96% vs CFD), respectively. 
The same acquisition using a single-Venc 7-point acquisition ( Venc = 0.5m/s ) resulted in SSIMTKE and iTKE 
values of 0.666 and 5.594 mJ (+ 58% vs CFD). The penalization comes from the inclusion of acquisitions with 
noise-dominated IVSD maps. We also point out that choosing a Venc that underestimates peak IVSD does not 

Fig. 7.   Flow and turbulence metrics depending on the undersampling factor considering complete breathing 
motion ( δb = 100% ) for two 4-point acquisitions with Venc = 0.5 and 2m/s , respectively. The Bayesian 
combination of these measurements is also presented. A single acquisition was simulated. Additional data can 
be found in Table S4 in the supplemental material. In the CFD ground-truth, values for Umax , iTKE and iKE 
were 2.17 ms−1, 3.548 mJ and 60.297 mJ, respectively. A video representing reconstructed flow fields and error 
metrics for some of the data presented here and in Figs. 5 and 6 is available in the online supplemental material.
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necessarily mean that that iTKE will be underestimated, as limited temporal and spatial MR resolutions tend to 
cause overestimation of IVSD.

Reconstructed Rxy,Rxz and Ryz maps in this work presented SSIM values between 0.085 and 0.322, signifi-
cantly lower than SSIMTKE and SSIMU . The low quality of these maps casts doubt on the ability to use them to 
accurately compute flow metrics28,40,44,59,60.

By comparing metrics from a fixed scan budget 7-point ( Venc = 0.5m/s ) to a 4-point ( Venc = 0.5m/s ) acqui-
sition, VNR and SSIMU improved by 3.7 and 0.8%, respectively, while −→U rmse and 

−→
θ err decreased by 6.3 and 

5.7%, respectively. Similarly, TNR and SSIMTKE decreased by 10.2 and 2.1%, respectively. Therefore, the benefit 
of additional encoding directions improved velocity quantification for some metrics but did not compensate for 
the drawback of increased undersampling in the case of turbulence.

For all the scenarios tested in this work, low-Venc acquisitions demonstrated superior values of SSIMU , 
SSIMTKE , VNR, TNR and estimation of Umax . However, this superiority can only be exploited if accurate unwrap-
ping of the phase is achievable (Supplementary Fig. S6). Bayesian combination was able to unwrap phases for 
all undersampling factors with 6% of residual wrapped voxels and Umax underestimation of up to 6.5% when 
compared to ground truth.

We also observed VNR values that were generally an order of magnitude greater than TNR values, suggesting 
that voxel-wise scan-to-scan repeatability was significantly higher for velocity measurements compared to tur-
bulence measurements. It is important to mention that TNR values presented in this work were averaged across 
the aorta; in practice, TNR is spatially dependent and typically higher in regions of high turbulence. However, 
the use of spatially averaged TNR values allowed us to nonetheless compare sequences. These observations were 
also valid for VNR.

Simulated respiratory motion for single-Venc 4-point acquisitions allowed us to investigate the impact of 
binning on 5D Flow MRI. For a low-Venc and high-Venc acquisitions, turbulence and velocity metrics remained 
within a 8.9% error when assuming δb = 30% , compared to a motionless reference. Similarly, the difference 
increases to up to 55.8% when δb was assumed to be 100%. This might suggest that binning respiratory motion 
into 3 states provides sufficient respiratory resolution to contain errors to acceptable levels. By binning respira-
tory motion into equal bins in terms of displacement, the range of mean ascending aortic motion reduced to 
1.0mm, a sub-voxel (2.5 mm) displacement.

A limitation of this study is the use of a single patient-specific case, due to the large computational cost for 
simulating ground truth ( 20e3 CPU-hours and 0.62TB), storing the k-space pool (1.98TB) and storing individual 
k-space realizations (4.38GB). Although the errors computed in this work are case specific and would change 
when considering different flow conditions, the performance of each encoding scheme should not be affected 
drastically if the ratios between flow velocity and Venc are kept approximately the same. Also, the implementation 
of more complex approaches such as Eulerian–Lagrangian Bloch simulations would allow to include artifacts and 
sequence-specific features, but will further increase the computational cost of MRI synthesis43,44,61–64. Addition-
ally, only pseudo-spiral Cartesian trajectories with LLR reconstructions were tested. Alternative reconstruction 
approaches for highly undersampled 4D Flow MRI data such as TV29, k-t SPARSE SENSE19 and FlowVN16 can 
be used. Since LLR has been shown to be a good reference in some of the works, the results presented in this 
work are considered to be a good benchmark for a given undersampling factor. On the other hand, in the case 
of non-Cartesian radial65 or spiral66 trajectories, the inherent differences in k-space sampling with respect to 
Cartesian approaches might result in different spatiotemporal averaging that could affect, in particular, turbu-
lence quantification. Further work is needed to quantify these differences. Finally, only a single SNR value was 
tested. For the 4-point acquisition with Venc = 2 m/s , VNR values in this work are in agreement with in-vivo67 
and in-vitro28 measurements. Similarly, TNR values are in agreement with in-vitro28, suggesting that the noise 
level present in the dataset is adequate to represent realistic acquisitions. Since previous work has demonstrated 
the correlation between velocity and turbulence quantification and SNR35,49, we can reasonably expect that for 
the case of equal scan budgets, variations in SNR would lead to scaling of errors in hemodynamic parameters 
without impacting the general conclusions of this work. The effect of SNR on a fully sampled scan is presented 
in Supplementary Fig. S7.

To conclude, low-Venc acquisitions generally showed improvements in all quality metrics both for veloc-
ity and turbulence. However, unwrapping becomes increasingly difficult when noise, undersampling and high 
velocity gradients are present, compromising the potential usability of these acquisitions. Additional encoding 
directions improved velocity quantification but penalized turbulence measurement. In particular, the ability to 
measure non-diagonal terms of the RST by exploiting the additional encoding directions was negated by the 
low data quality obtained ( SSIMRxy < 0.248 , SSIMRxz < 0.214 and SSIMRyz < 0.176 ). Considering these results, 
we recommend to use dual-Venc 7-point normal encoding with a low-Venc ideally tuned to the expected IVSD 
with highest likelihood and a high Venc larger than the expected Umax . Adopting a dual-Venc 7-point normal 
encoding scheme allows to limit undersampling to acceptable levels when considering respiratory motion. If 3 
respiratory bins are reconstructed, as suggested by our results, the effective undersampling increases by a factor 
of 3, resulting in Ru ∼ 10.1 for a 15 min scan. Bayesian combination ( Ru = 9.07 ) allowed to extract unwrapped 
velocity fields and obtain an SSIMU of 0.919 (VNR = 32.868), a −→U rmse of 16.278%, a 

−→
θ err of 3.731%, an SSIMTKE 

of 0.547 (TNR = 4.473) and a Umax underestimation of 1.3%. Additionally, the low-Venc acquisition provided an 
improved SSIMTKE of 0.604 (TNR = 5.0). Compared to a similar fully sampled acquisition (~ 136 min), SSIMU , 
VNR, SSIMTKE and TNR were inferior by 2.648, 50.569, 14.129, and 29.537%, respectively. A comparison between 
the proposed encoding and CFD is presented in Supplemental Fig. S8 and a video is available in the online Sup-
plemental Material.
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Data availability
The dataset generated during and/or analyzed during the current study is available from the corresponding 
author on reasonable request.
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