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Generalising quantum imaginary 
time evolution to solve linear 
partial differential equations
Swagat Kumar * & Colin Michael Wilmott *

The quantum imaginary time evolution (QITE) methodology was developed to overcome a critical 
issue as regards non-unitarity in the implementation of imaginary time evolution on a quantum 
computer. QITE has since been used to approximate ground states of various physical systems. In this 
paper, we demonstrate a practical application of QITE as a quantum numerical solver for linear partial 
differential equations. Our algorithm takes inspiration from QITE in that the quantum state follows 
the same normalised trajectory in both algorithms. However, it is our QITE methodology’s ability to 
track the scale of the state vector over time that allows our algorithm to solve differential equations. 
We demonstrate our methodology with numerical simulations and use it to solve the heat equation in 
one and two dimensions using six and ten qubits, respectively.

Quantum computers promise a paradigm shift for computing technology through their capability to solve prob-
lems that are inaccessible with classical computers. It is well-understood that classical computers struggle to 
efficiently solve a class of problems known as optimisation, but a principal promise of quantum computing 
relates to the significant improvements they bestow on the computational time needed to solve such problems. 
Quantum computers can be applied to a range of optimisation problems that have widespread value in the 
real world, including scheduling and  planning1, biochemical and computational  biology2, and financial  risk3. 
Quantum computers were, however, originally proposed as a means to efficiently simulate quantum Hamilto-
nian  dynamics4. Hamiltonian simulation is a task contained in the BQP complexity  class5, which is significant 
because tasks in this class are believed to be intractable using classical computers. Many algorithms have been 
proposed for Hamiltonian  simulation6–11, and research has continued to improve the technique and performance 
of such simulations.

Gate-based quantum computers solve the Hamiltonian simulation problem by decomposing the unitary 
evolution operator into a series of smaller unitaries called quantum gates. The fundamental challenge is how 
to instruct the quantum computer on the gate set needed to approximate the unitary. Interestingly, the process 
to undertake Hamiltonian simulation has not yet found an established method of choice. It is achieved by 
either directly implementing the time evolution operator or by determining the eigenspectrum of the Hamil-
tonian. State-of-the-art approaches for the former include quantum  walks12,  qubitisation13 and quantum sig-
nal  processing10. The latter is an equally difficult approach, and includes the variational quantum eigensolver 
(VQE)14–16 and quantum imaginary time evolution (QITE)17,18. These algorithms approximate the ground state 
of the Hamiltonian and can be applied recursively to obtain the complete eigenspectrum.

Computing the ground state energy of a Hamiltonian is of immense importance, such as in the computation 
of molecular and material  energies19–21, and  wavefunctions22–25. Imaginary time evolution (ITE) is a successful 
classical method for determining the ground state of a Hamiltonian. By treating time as an imaginary number, the 
non-unitary time evolution operator generated by ITE does not represent a physical process. Classically solving 
the imaginary time Schrödinger equation inherits the same computational complexities seen in classical simula-
tions of quantum systems, namely the exponential overhead in maintaining the state of the system. This difficulty 
inspired the development of QITE as a technique to simulate imaginary time evolution on a quantum computer 
by evolving a quantum state in imaginary time. In the ideal case, QITE guarantees convergence to the ground 
state, and, indeed, it is a promising approach as attested by the increasing interest in its potential applications.

As a technique for pursuing the ground state of a Hamiltonian, QITE may be implemented in two ways. Vari-
ational  QITE17 is a hybrid quantum-classical algorithm that considers a system of differential equations linking 
to gradients of ansatz parameters in imaginary time and coefficients that depend on measurements of the ansatz, 
both of which contribute to an update rule for finding the ground state. Variational QITE is well suited for noisy 
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intermediate-scale quantum (NISQ) devices as it has a fixed cost ansatz circuit. Conversely, the imaginary time 
evolution may move out of the ansatz space, implying that convergence may not reflect the true ground state. 
Furthermore, designing a universal ansatz with a gate count that scales polynomially with the number of qubits 
is a challenge, explaining why most ansatzes are tailored to the Hamiltonian.

On the other hand, simulated  QITE18 outlines a quantum approach for simulating imaginary time evolution, 
by approximating the time evolution operator with Trotter products. This implementation of simulated QITE 
requires significantly fewer total measurements as compared to the VQE algorithms to achieve the same level of 
convergence. Simulated QITE with sufficiently large unitary domains does not suffer barren plateaus, as is the 
case in the variational approach. In contrast, simulated QITE generates circuit depth increases that grow linearly 
with each imaginary time step.

Research has principally reported on ITE and QITE as methodologies for producing the ground state of a 
system where, under such implementations, information on the state vector’s direction represents the key ingre-
dient in determining the ground state. More recently, QITE has been used as an approach for solving partial 
differential equations (PDEs)26–29, however, these implementations have been based on variational QITE, which, 
as mentioned above, may fail to converge if the PDE dynamics move out of the ansatz space. In this paper, we 
offer an alternative approach for solving linear PDEs that makes use of a simulated QITE implementation. Our 
extension offers a new avenue for exploration by enlarging the computational reach of the QITE methodology 
by our algorithm’s ability to track the trajectory and scale of the state vector over time. We demonstrate how 
to approximate solutions to linear PDEs discretised via finite differences. We also demonstrate our simulated 
QITE methodology via numerical simulations and use it to solve the heat equation in one and two dimensions.

Preliminaries
The time evolution of a quantum state, ψ(�x, t) , is governed by the Schrödinger equation, which takes the form

where Ĥ is a Hermitian linear differential operator known as the Hamiltonian. Since the Hamiltonian is a Hermi-
tian operator, it possesses a spectral decomposition with eigenvalues �n and corresponding normalised eigenstates 
ψn . The lowest energy is known as the ground state of the system. Expanding the quantum state ψ(�x, t) at the 
initial value t = 0 in terms of its energy eigenstates, we have it that ψ(�x, 0) = ∑

n cnψn(�x) , where cn denotes the 
overlap of ψ(�x, 0) and ψn(�x) . The quantum state at a later time t is given by ψ(�x, t) = ∑

n cne
−�nitψn(�x) . Applying 

the variable change β = it to Eq. (1) yields the imaginary time Schrödinger equation

Since the Hamiltonian Ĥ remains the same, its solution takes the form ψ(�x,β = it) = ∑

n cne
−�ntψn(�x) . The 

state ψ(�x,β) represents an exponentially decaying superposition of eigenstates, which, in the limit of β large, 
yields ψ(�x,β) = c0e

−�0βψ0(�x) . This demonstrates that ψ(�x,β) evolves parallel to the ground state of the system 
in the limit that imaginary time goes to infinity.

The QITE algorithm simulates the imaginary time evolution of quantum states via the Trotter product 
approximation. If we express the Hamiltonian as a linear combination of smaller, non-commuting operators 
Ĥ = ∑M

I=1 ĥI , we can approximate the imaginary time evolution operator for a small time step of �t as

Since each Trotter step, e−ĥI�t , in the product is non-unitary, the QITE algorithm approximates the nor-
malised action of these operators on a unit quantum state |ψ̄(t)� through a unitary operator e−iÂ�t such that

The Hermitian operator Â is expressed as a linear combination of smaller Hermitians, Â = ∑N
J=1 aJ σ̂J , to 

ensure that the update can also be expressed as a first-order Trotter product e−iÂ�t ≈ ∏N
J=1 e

−iaJ σ̂J�t . Note the 
choice of σ̂J is such that each term in this product can be efficiently implemented with a parameterised quan-
tum circuit. The coefficients aJ are calculated by solving a system of N linear equations constructed using the 
expectation values �ĥI � , �σ̂ †

J σ̂J ′ � and �σ̂ †
J ĥI � . Each Trotter step requires taking O(N2) measurements to construct 

an (N × N) matrix equation that generates a circuit of depth O(N). Overall, simulating NT time steps with QITE 
involves taking O(NTMN2) measurements.

The support of Â contains D = O(C) adjacent qubits surrounding the support of ĥI , where C denotes the 
correlation length of the state |ψ̄� . For a multi-qubit state, the correlation length C is defined to bound the cor-
relations between observables on all pairs of qubits separated by a distance of L by exp(−L/C)18. Insight into 
how C evolves under the imaginary time evolution allows us to optimise the support of Â for each Trotter step. 
However, since C is a difficult quantity to compute, we instead use inexact QITE to perform the simulation, 

(1)i
∂ψ(�x, t)

∂t
= Ĥψ(�x, t),

(2)�
∂ψ(�x,β)

∂β
= −Ĥψ(�x,β).

(3)e−Ĥ�t = e−
∑M

I=1 ĥI�t =
M
∏

I=1

e−ĥI�t + O(�t2).

(4)e−iÂ�t |ψ̄(t)� ≈ e−ĥI�t |ψ̄(t)�
√

�ψ̄(t)|e−2ĥI�t |ψ̄(t)�
.
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assuming a constant domain size D which is chosen according to the computational resources available. Increas-
ing values of D yield better approximations with the best approximation achieved when D equals the total number 
of interacting qubits. Our numerical implementations are based on inexact QITE for D = 2, 4, 6 qubits as the 
Hamiltonians considered only involve a maximum of six adjacent interacting qubits.

Simulating PDEs with QITE
QITE was introduced to replicate the imaginary time evolution of an initial state at every time step with the 
aim of producing the ground state solution. We propose to extend the scope of QITE by reimagining the role 
of the system’s Hamiltonian Ĥ beyond its immediate physical interpretation to a differential operator defining 
a family of linear PDEs spanned by different choices of Ĥ . For instance, by considering the Hamiltonian Ĥ to 
be proportional to the Laplace operator ∇2 , the imaginary time Schrödinger equation can be interpreted as the 
heat equation given by

The heat equation is the quintessential parabolic partial differential equation that has played a fundamental 
role in developing broader understandings of PDEs. The equation ranks amongst the most widely investigated 
topics in the physical sciences. The heat equation bridges to probability theory through its connection with the 
study of random walks and Brownian motion via the Fokker–Planck  equation30. The Black–Scholes  equation31 
of financial mathematics can be seen as a variant of the heat equation, and the Schrödinger equation reduces 
to a heat equation in imaginary time. From this position, QITE, offers an appealing route for simulating the 
normalised dynamics of this family of PDEs.

QITE seeks to determine the ground state of the system, where information relevant to the solution state is 
extracted from the state by taking measurement on the final quantum state. In practice, it should be expected 
that the number of distinct measurements required to extract this relevant information will scale polynomi-
ally with the number of qubits. For instance, in the case of the natural sciences, we typically observe associated 
Hamiltonians having a polynomial number of non-zero terms in the Pauli basis. Determining the exact quan-
tum state requires quantum state tomography and exponentially many measurements. However, if we restrict 
ourselves to simulating non-negative functions, we can reconstruct the quantum state using only the probability 
distribution of the Pauli Z, computational basis, measurements, since the amplitudes of the quantum state are 
the square roots of the measurement probabilities of each computational basis state. For this reason, we will 
simulate the heat equation in one and two dimensions for non-negative solutions. To achieve this, and establish 
QITE as a methodology for simulating PDEs, we require, firstly, to discretise the system and, secondly, to encode 
the Hamiltonian in the Pauli basis.

Discretising space
Propagation of a quantum state as determined by the Schrödinger equation, Eq. (1), is defined on a domain 
of continuous space. To simulate these dynamics with a discrete set of qubits, we are required to discretise the 
continuous wavefunction ψ(�x, t) to a discrete qubit state vector |ψ̄(t)� , and calculate the corresponding qubit 
Hamiltonian. We encode the continuous linear differential operator to a finite difference matrix. We will first 
consider the one dimensional case before generalising to higher dimensions.

One dimensional space
Let us consider a function defined on a one dimensional space domain f : [a, b) → C . This function can be 
encoded into the state vector of n-qubits by storing N = 2n uniformly spaced samples of the function in an 
unnormalised state vector

with the spacing h = b−a
N  and |k� denoting elements of standard basis. Next, let us consider approximating a 

linear partial differential operator on the discretised space using the method of finite difference approximation 
of derivatives. A first order finite difference takes the form f (x + b)− f (x + a) and is classified as the central 
difference when we have δ1h[f ](x) = f (x + h/2)− f (x − h/2) , for spacing h. Higher order partial differential 
operators are approximated by the central finite differences given by

Of particular interest is the second order partial differential operator that appears in the heat equation, which 
can be approximated by the difference operator

(5)
∂f (�x, t)

∂t
= α∇2f (�x, t).

(6)|f � =
N−1
∑

k=0

f (a+ kh)|k� =
N−1
∑

k=0

fk|k�,

(7)
∂mf (x)

∂xm
≈ δmh [f ](x)

hm
where δmh [f ](x) =

m
∑

i=0

(−1)i
(

m
i

)

f
(

x +
(m

2
− i

)

h
)

.

(8)δ̂2h|f � =
1

h2

N−1
∑

k=0

(fk+1 − 2fk + fk−1)|k�.
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The boundary conditions determine the values of f−1 = f (a− h) and fN = f (b) . The difference operator 
under the zero boundary conditions, f−1 = fN = 0 , is represented by the following matrix written in the standard 
basis

The difference operator under periodic boundary conditions, f−1 = fN−1 and fN = f0 , is represented by the 
following matrix written in the standard basis

Let D̂(n)
0  denote the n-qubit second-order finite difference Hamiltonian under zero boundary conditions such 

that D̂(n)
0 = h2δ̂2h . It then follows that, in the Pauli operator basis,

To determine the Pauli basis representation of n-qubit second-order finite difference Hamiltonian under zero 
boundary conditions, we define

and

The two-qubit Hamiltonian is given as

Using Eqs. (11)–(13), we have

From Eq. (9), we can show that the n-qubit Hamiltonian D̂(n)
0  has the form

Similarly, we define D̂(n)
p  to be the n-qubit second-order finite difference Hamiltonian under periodic 

boundary conditions. It can be shown from Eq. (10) that D̂(n)
p  takes the form

We note that the number of Pauli strings in this decomposition scales exponentially with the number of qubits, 
M = O(2n) . On the other hand, the number of terms involving tensor product strings of Âւ and Âր grows 
linearly, M = O(n) . Interestingly, we have become aware of a protocol to measure the expectation values, �ĥI � , 
expressed in terms of these tensor products with a single ancilla  qubit32, allowing an exponential reduction in 
the time complexity of this method.

(9)
1

h2

















−2 1
1 −2 1

1
. . .
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. . . 1
1 −2

















.

(10)
1

h2

















−2 1 1
1 −2 1

1
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(11)D̂
(1)
0 =

(

−2 1
1 −2

)

= −2Î + X̂.

(12)Â
(n)
ւ := Â

(1)
ւ ⊗ Â

(n−1)
ւ where Â

(1)
ւ := X̂ − iŶ

2
=

(

0 0

1 0

)

,

(13)Â
(n)
ր := Â

(1)
ր ⊗ Â

(n−1)
ր where Â

(1)
ր := X̂ + iŶ

2
=

(

0 1

0 0

)

.

(14)D̂
(2)
0 =







−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2






.

(15)D̂
(2)
0 =

(

D̂
(1)
0 Â

(1)
ւ

Â
(1)
ր D̂

(1)
0

)

= Î ⊗ D̂
(1)
0 + Â

(1)
ւ ⊗ Â

(1)
ր + Â

(1)
ր ⊗ Â

(1)
ւ .

(16)D̂
(n)
0 =

(

D̂
(n−1)
0 Â

(n−1)
ւ

Â
(n−1)
ր D̂

(n−1)
0

)

= Î ⊗ D̂
(n−1)
0 + Â

(1)
ւ ⊗ Â

(n−1)
ր + Â

(1)
ր ⊗ Â

(n−1)
ւ .

(17)D̂
(n)
p = D̂

(n)
0 + Â

(n)
ւ + Â

(n)
ր .
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Higher dimensional space
Generalising the state encoding for the one dimensional case to higher space dimensions is achieved by taking 
the tensor product of the qubit registers of the associated dimensions. For example, a function defined on a two-
dimensional space domain f : [a1, b1)× [a2, b2) → C can be encoded with 2n qubits by storing N2 samples in 
the unnormalised state vector

with spacings hi = bi−ai
N  for i = 1, 2 . Similarly, we can construct the associated finite difference operator by taking 

the tensor products of the underlying one dimensional operators. For instance, the two dimensional Laplace 
operator, ∇2 = ∂2x + ∂2y  , is represented by the following 2n-qubit finite difference operator

The Laplace operator, acting as the Hamiltonian to the Heat equation, contains interactions of successive 
samples in each spatial dimension. Under the discretisation scheme defined in Eq. (8), these interactions imply 
that the correlation length is bounded linearly with the number of qubits per dimension.

Obtaining solutions from the state vector
Although QITE simulates the trajectory of the PDE solution, it does not account for how the length of the state 
vector changes over time. To achieve our intended application, we must also approximate the norm at each time 
step and rescale the state vectors obtained from QITE to match the complete dynamics of the PDE solution.

Measuring the state vector
If we know that the original function only takes on non-negative values in the region we are solving for, the state 
vector |f � will only have non-negative amplitudes in the computational basis. We will, therefore, restrict ourselves 
to PDEs involving only even-ordered differential operators as they are Hermitian and represented by real matrices 
in the computational basis. This ensures that the quantum state |f � will not contain any phase information and 
can be reconstructed by taking the square root of its computational basis measurement probability distribution.

Reconstructing the norm
In  the  reconstruct ion of  the  norm,  we seek  to  approximate  the  squared norm, 
c(k�t) = �ψ̄((k − 1)�t)|e−2Ĥ�t |ψ̄((k − 1)�t)� , of the non-unitary evolution operator e−Ĥ�t at each simulated 
time step of size �t . To account for how QITE simulates each time step with M Trotter steps, we define the 
normalised state produced by QITE after κ Trotter steps as |ψ̄( κ

M�t)�. QITE approximates c(t) by taking the 
product of the linear order approximations of the squared norm obtained in each Trotter step,

Assuming that a QITE implementation of NT time steps has perfect fidelity, we can express the vector con-
taining samples of the PDE solution, f (x, t = NT�t) , as

The theoretical squared norm at the k-th time step is given as the product of the k individual squared norms

An approach to approximate Cf (t) would be to consider the product of the linear approximants

The issue with this approach is that the relative errors associated to c′(j�t) , for j = 1, . . . , k , compound in 
the product, which leads to a significant deviation from the theoretical norm with each additional time step. To 
mitigate the accumulation of errors in the running product, C′(k�t) , we undertake a strategy to rescale the norm 
after every K time steps. To implement this strategy, we require the normalised ground state of the Hamiltonian, 

(18)|f � =
N−1
∑

k1,k2=0

f (a1 + k1h1, a2 + k2h2)|k1�|k2� =
N−1
∑

k1,k2=0

fk1, k2 |k1�|k2�,

(19)

L̂
(n)
h1,h2

|f � =
[

D̂(n)

h21
⊗ Î⊗n + Î⊗n ⊗ D̂(n)

h22

]

|f �

=
N−1
∑

k1,k2=0

(

fk1+1, k2 − 2fk1, k2 + fk1−1, k2

h21
+ fk1, k2+1 − 2fk1, k2 + fk1, k2−1

h22

)

|k1�|k2�.

(20)c′((k + 1)�t) =
M
∏

I=1

[

1− 2�t

〈

ψ̄

(

k�t + I − 1

M
�t

)∣

∣

∣

∣

ĥI

∣

∣

∣

∣

ψ̄

(

k�t + I − 1

M
�t

)〉]

.

(21)|f (NT�t)� = �|f (0)��
(

NT−1
∏

k=1

√

c(k�t)

)

|ψ̄(NT�t)�.

(22)Cf ((k + 1)�t) =
k
∏

j=1

c(j�t).

(23)C′((k + 1)�t) =
k
∏

j=1

c′(j�t).
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|ψ̄0� , and its associated eigenvalue, �0 . Let C∗(t) denote a good approximation for the squared norm. Under the 
assumption that our QITE simulation has high fidelity, that is, |f (t)� ≈ �|f (0)��√C∗(t)|ψ̄(t)� , we then have it that

Using |f (t)� = ∑N−1
l=0 e−�l t |ψ̄l��ψ̄l||f (0)� , it follows that

and, consequently, Eq. (24) may be rewritten as

from which we deduce an approximation for C∗(t) as

Note that calculating C∗ requires a measuring the state vector |ψ̄(t)� . After every K time steps, we measure 
the state vector and rescale our norm approximation to C∗ , giving us an improved approximation of the squared 
norm;

Comparing QITE with analytical evolution
Our methodology performs a unitary approximation of a linear PDE and provides an estimate on how the norm 
evolves. This information allows us to obtain approximate solutions to the PDE. Let |f̄ (t)� = |f (t)�/√Cf (t) 
denote the normalised state vector containing scaled samples of the analytical solution f(x, t) of the PDE, and 
|ψ(t)� =

√

Cψ(t)|ψ̄(t)� denote the rescaled state vector containing samples of the solution ψ(x, t) approximated 
by our QITE methodology. When restricted to functions that only take on non-negative values, the fidelity of 
our QITE implementation, given by

measures the accuracy of our normalised evolution. The ratio between the approximated and analytical norms is

which measures the accuracy of our reconstruction. For N samples, we can write the mean squared error, MSE, as

Equation (31) demonstrates the mean squared error to be a useful metric because it correlates to both the 
fidelity and norm ratio of our approximation.

(24)
�ψ̄0|f (t)�
�|f (0)�� ≈

√

C∗(t)�ψ̄0|ψ̄(t)�.

(25)

�ψ̄0|f (t)�
�|f (0)�� =

�ψ̄0|
(

∑N−1
l=0 e−�l t |ψ̄l��ψ̄l |

)

|f (0)�
�|f (0)��

=
N−1
∑

l=0

e−�l t�ψ̄0|ψ̄l��ψ̄l|
|f (0)�
�|f (0)��

=
N−1
∑

l=0

e−�l tδl,0�ψ̄l|
|f (0)�
�|f (0)��

= e−�0t�ψ̄0|f̄ (0)�,

(26)e−�0t�ψ̄0|f̄ (0)� ≈
√

C∗(t)�ψ̄0|ψ̄(t)�,

(27)C∗(t) ≈ e−2�0t
�ψ̄0|f̄ (0)�2
�ψ̄0|ψ̄(t)�2 .

(28)Cψ(k�t) =
{

C∗(k�t) for k ≡ 0 mod K
Cψ((k − 1)�t) · c′(k�t) for k �≡ 0 mod K

.

(29)F(t) = �f̄ (t)|ψ̄(t)�,

(30)r(t) =
√

Cψ(t)

Cf (t)
,

(31)

MSE(t) = �|f (t)� − |ψ(t)��2
N

= Cf (t)+ Cψ(t)− 2
√

Cf (t)Cψ(t)�f̄ (t)|ψ̄(t)�
N

= Cf (t)+ r2(t)Cf (t)− 2r(t)Cf (t)F(t)

N

= 2Cf (t)

N

[

1+ r2(t)

2
− r(t)F(t)

]

.
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Results
To demonstrate how our QITE methodology can be used to solve PDEs, we target a simulation of the heat equa-
tion, Eq. (5). When expressed in terms of the imaginary time Schrödinger equation, the Hamiltonian operator 
corresponding to the heat equation is Ĥ = −α∇2 . We performed numerical simulations of our QITE method-
ology for domain sizes D = 2, 4 and 6, from which we obtained approximate solutions to the heat equation for 
various initial states and boundary conditions. Across our experiments, we set α = 0.8 , simulated the dynamics 
from t = 0 to t = 1 , and used a grid spacing of h = 0.1 , and a time step �t = 0.001 . We chose these values for 
�t and h to satisfy the von Neumann stability criteria for the forward time central space methods for solving the 
heat  equation33,34. The results reported in Fig. 1 allowed us to decide on a norm correction frequency of K = 10 , 
as the log norm ratio oscillated around zero for this choice of constants.

Our implementation of the QITE methodology as a PDE solver supports two families of boundary conditions, 
namely, the zero boundary conditions, f (0) = f (L) = 0 , and periodic boundary conditions, f (x) = f (x + L) . 
Figure 2 demonstrates the results of our simulations for the one dimensional heat equation for the zero and 
periodic boundary conditions. We stored the solutions in the state vector of n = 6 qubits, giving us the boundary 
lengths L = 6.5 in the case of the zero boundary conditions, and L = 6.4 in the case of the periodic boundary 
conditions. Since the D = 6 approximation covers the entire set of interacting qubits, our QITE implementation 
demonstrated a perfect fidelity to the analytical solution and zero mean squared error. Figure 3 demonstrates 
our solutions for the two-dimensional heat equation, where we considered all combinations of zero and periodic 
boundary conditions in each spatial dimension. We used 10 qubits to store the function samples, distributing 
n = 5 sampling qubits for both x and y directions, which yielded boundary lengths L = 3.3 for the zero bound-
ary conditions, and L = 3.2 for periodic boundary conditions. Since the two-dimensional Laplace Hamiltonian, 
shown in Eq. (19), does not have interactions between the x and y axes’ sampling qubits, we chose unitary 
domains to cover the five x and y qubits individually. This allowed the D = 6 approximation to cover the entire 
set of interacting qubits, again yielding perfect fidelity to the analytical solutions and zero mean squared error.

Discussion
As regards to the norm correction frequency, we empirically determined that a norm correction frequency 
K = 10 was sufficient to approximate the dynamics of the heat equation for our choice of constants. Further 
investigation is needed to determine a logical correlation between the choice of constants and a suitable value 
for K. In the case of when norm correction is required but that the exact ground state is not known, we can 
estimate this state by running a QITE simulation over a long period of imaginary time to get approximations for 
the ground state, |�̄0� ≈ |ψ̄0� and its eigenvalue, �0 = ��̄0|Ĥ|�̄0� ≈ �0 . Adopting this state as a heuristic for 
the ground state, we can substitute �0 and |�̄0� in Eq. (27) to get an approximate norm correction factor. Note 
that this approximation does not affect the fidelity of the solutions. In relation to the function encoding schemes, 
the finite difference matrices approximating the second derivative operator have at most three non-zero entries 
in each row. These entries indicate the interaction of the basis states as they pertain to the determination of the 
basis state amplitudes in the final state vector. In particular, the output amplitude of basis state |k� depends on 
the basis states |k − 1�, |k�, and |k + 1� . Under our encoding scheme, each basis state |k� is mapped to elements 
of the computational basis state in lexicographical order. Consequently, under the direct encoding scheme, 

Figure 1.  Comparison of different norm reconstruction strategies. The graphs show the base-10 logarithms of 
the ratios of the reconstructed norms to the analytical norm for a 6-qubit square wave evolution against the heat 
equation with α = 0.8 over 1000 simulated time steps. (a) We see how the errors in c′ compound in the product 
C′ . (b) The fidelity of our QITE simulation increases with D, and we see how C∗ is a better approximation for the 
norm at higher fidelities. (c) Cψ combines information from c′ and C∗ , and is, on average, a better approximation 
of the norm for sufficiently small K. (d) At higher values of K, the errors in c′ are able to compound, making the 
approximation worse on average.
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approximations for D < n are unable to capture all the interactions in the finite difference matrix. This is most 
easily seen in the horizontal and vertical bands in the centre of the D = 4 approximations in Fig. 3. A different 
encoding scheme that that reduces the correlation length of the quantum states under the finite difference 
Hamiltonian may allow us to capture all possible qubit interactions for D < n and should permit perfect fidelity 
that benefits with improvements compared to the direct encoding above. Our intention is to consider this issue 
as a basis for future work. Finally, as regards to general boundary conditions, the QITE methodology examined 
here only allows us to capture the zero and periodic boundary conditions, since these conditions correspond to 
Hermitian finite difference matrices.

Conclusions
In this work, we demonstrated a new and practical application of QITE as a quantum numerical solver for 
linear PDEs. Our methodology adopts QITE’s ability to model the normalised trajectory of a quantum state. 
Additionally, our methodology also tracks the scale of the state vector over time. It is the interaction between 
these two features that has enabled us to broaden the scope of QITE to approximate solutions to linear PDEs 
discretised via finite differences. Using numerical simulations, we implemented our methodology to solve the heat 

Figure 2.  QITE simulations for the heat equation in one spatial dimension. The figure compares our QITE 
solutions for various domain sizes D, ψD(x, t) , to the analytical solutions, f(x, t), of the heat equation with 
α = 0.8 . The function samples were encoded in the state vector of 6 qubits. We show results of two simulations; 
(a–e) refer to a square wave with zero boundary conditions, while (f–j) refer to a triangle wave with periodic 
boundary conditions. The norm was corrected at every K = 10 simulated time steps. (a,f) Show the solutions 
obtained from QITE for a domain size of D = 6 at different times. (b,g) Show the analytical solutions f(x, t) at 
the same time steps, as indicated by the color of the curves. The dots indicate the function samples, connected 
by their Fourier interpolations. (c,h) Compare the states produced by the D = 2, 4, 6 QITE approximations 
at time t = 1 to the corresponding analytical solution. Using inexact QITE, the convergence of the algorithm 
improves with larger domain sizes D. (d,i) Show the fidelity of the QITE approximations over time. (e,j) Show 
the mean squared error of the QITE approximations to the analytical solutions over time.
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Figure 3.  QITE simulations for the heat equation in two spatial dimensions. The figure compares our QITE solutions 
with domain size D, ψD(x, y, t) , to the analytical solutions, f(x, y, t), of the two-dimensional heat equation with 
diffusion coefficient α = 0.8 . The function samples were encoded in the state vector of 10 qubits, with the x and y 
axes mapped to 5 qubits each. The norm was corrected at every K = 10 time steps. The plots on the left show the 
QITE solutions corresponding to D = 2, 4, 6 and the analytical solution (top to bottom) at different times (columns), 
with the colour of pixels corresponding to the value of the function according to the color bar. The fidelity and mean 
squared error of the approximations are also displayed on the right. The initial states and boundary conditions for the 
experiments are as follows: in (a), the initial state is a two-dimensional square wave with zero boundary conditions in 
both x and y directions; in (b), the initial state is a product of triangle waves in x and y with height 1, a total offset of 1, 
and periodic boundary conditions in both x and y directions; in (c), the initial state is a product of a triangle wave in 
y with height 1, and an inverted parabola in x with a maximum height of 1.5, and zero boundary conditions in the x 
direction and periodic boundary conditions in the y direction.
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equation in one and two dimensions, using six and ten qubits, respectively. In our experiments, we demonstrated 
perfect fidelity along with a mean squared error converging to zero.

Data availability
All data generated and analysed during this study are included in this published article and its Supplementary 
Information files.

Code availability
The code that supports the findings of this study is available from the corresponding authors upon reasonable 
request.
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