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Improved efficacy behavioral 
modeling of microwave circuits 
through dimensionality reduction 
and fast global sensitivity analysis
Slawomir Koziel 1,2*, Anna Pietrenko‑Dabrowska 2 & Leifur Leifsson 3

Behavioral models have garnered significant interest in the realm of high‑frequency electronics. 
Their primary function is to substitute costly computational tools, notably electromagnetic (EM) 
analysis, for repetitive evaluations of the structure under consideration. These evaluations are often 
necessary for tasks like parameter tuning, statistical analysis, or multi‑criterial design. However, 
constructing reliable surrogate models faces several challenges, including the nonlinearity of circuit 
characteristics and the vast size of the parameter space, encompassing both dimensionality and 
design variable ranges. Additionally, ensuring the validity of the model across broad geometry/
material parameter and frequency ranges is crucial for its utility in design. The purpose of this paper 
is to introduce an innovative approach to cost‑effective and dependable behavioral modeling of 
microwave passives. Central to our method is a fast global sensitivity analysis (FGSA) procedure, 
which is devised to identify correlations between design parameters and quantify their impacts on 
circuit characteristics. The most significant directions identified through FGSA are utilized to establish 
a reduced‑dimensionality domain. Within this domain, the model may be constructed using a limited 
amount of data samples while capturing a significant portion of the circuit response variability, 
rendering it suitable for design purposes. The outstanding predictive capability of the proposed model, 
its superiority over traditional techniques, and its readiness for design applications are demonstrated 
through the analysis of three microstrip circuits of diverse characteristics.

Keywords Microwave engineering, Passive circuits, Global sensitivity analysis, Behavioral modeling, 
Simulation-driven design, Dimensionality reduction

Computational tools have become indispensable in high-frequency electronics, among others, microwave design. 
These include both equivalent network  simulators1,2, and full-wave electromagnetic (EM)  analysis3,4. Versatility 
and reliability of the latter has been unquestionable, especially when it comes to quantifying phenomena difficult 
to be accounted for otherwise (EM cross-coupling, substrate anisotropy, the effects of surrounding components 
such as connectors, feed radiation, etc.). In particular, EM simulation is imperative for accurate evaluation of 
numerous modern circuits, e.g., compact structures obtained using line  meandering5, the employment of slow-
wave  phenomenon6,7, multi-layer  implementations8, or defected ground  structures9.

The downside of EM analysis is it high computational cost, which is usually acceptable for one-time design 
verification or limited-scope parametric studies, but becomes a bottleneck for procedures requiring massive 
analyses (parameter  tuning10,11, uncertainty  quantification12–14, global  optimization15,16, multi-criterial  design17,18). 
Globalized search is the most troublesome as it is often performed using nature-inspired  algorithms19–24, oper-
ating at the budgets corresponding to many thousands of system evaluations. Not surprisingly, considerable 
research has been focused on development of accelerated algorithms. Some of available techniques include the 
employment of adjoint  sensitivities25, sparse Jacobian updating  schemes26–28,  parallelization29, mesh deforma-
tion  methods30 (all of the above used to lower the expenses pertinent to sensitivity estimation in gradient-
based algorithms), feature-based  technology31, cognition-driven  design32, multi-resolution techniques (e.g., 
space  mapping33, response  correction34–36), dimensionality reduction  approaches37, including model-order 
 reduction38,39. A growing number of approaches incorporates surrogate modelling  methods33,40,41, often in the 
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form of iterative design  procedures42,43 (also referred to as machine  learning44–46). Some of popular modelling 
methods include polynomial  regression47, radial basis  functions48,  kriging49, support vector  machines50, Gauss-
ian process regression (GPR)51, neural  networks52–54, ensemble  learning55, or polynomial chaos  expansion56.

As mentioned earlier, surrogate modelling (especially behavioral, or data-driven) is a potentially attractive 
way to mitigate the challenges associated with high cost of multiple EM analyses. Replacing expensive simulations 
with a low-cost metamodel altogether would be a desirable solution to expedite procedures such as design opti-
mization. Nevertheless, constructing models of microwave components is a challenging task for several reasons: 
nonlinearity of circuit outputs, curse of  dimensionality57, and utility requirements (which entails coverage of wide 
geometry and material parameter ranges but also frequencies). Addressing these issues is a daunting task. Some 
of the methods attempt to make a better use of available data (e.g., adjust the very structure of the model to the 
distribution and nature of the input information, e.g., ensemble  learning58,59), efficiently handle large datasets 
(e.g., deep neural  networks60,61), or target a specific structure of the modeled responses (e.g., high-dimensional 
model representation (HDMR)62, orthogonal matching  pursuit63). On the other hand, the improvement of 
computational efficiency can be achieved using multi-resolution methods, for example, co-kriging64, Bayesian 
model  fusion65, or two-stage  GPR66. Yet another option is performance-driven  modelling67–70. The techniques 
of this class capitalize on defining the surrogate’s domain so that it covers the region encapsulating high-quality 
 designs67, and can be generalized to multi-resolution  regime71, and employ deep learning  methods72. The limita-
tion is that the model setup is specific to a given set of performance  specifications68, and domain definition itself 
requires reference designs that need to be acquired  beforehand69. The latter increases the cost of the process. 
Recently, reference-design-free variations have been  suggested73 to mitigate this particular issue.

This research proposes a procedure for improved-efficiency generation of design-ready behavioral models of 
microwave passive circuits. An inherent part of our methodology is a procedure for fast global sensitivity analysis 
(FGSA), which has been developed to determine correlations between design parameters (both geometry and 
material), and establish their effects on the circuit responses. The results of FGSA allow for defining a reduced-
dimensionality model domain, which is constructed using a set of directions responsible for the largest variability 
of the circuit responses. A rendition of a reliable data-driven model in restricted regions necessitates a limited 
amount of training points compared to traditional approaches. Nonetheless, the model accounts for the majority 
of the circuit response changes, which makes it suitable for design purposes. Comprehensive numerical studies 
conducted using three microstrip circuits demonstrate excellent dependability and accuracy of the proposed 
surrogate, and its superiority over modeling in conventional domains. The model design utility is corroborated 
through application case studies, in particular, circuit optimization under different scenarios concerning a variety 
of performance specifications.

Behavioral modeling by fast global sensitivity evaluation and dimensionality 
reduction
In this part of the manuscript, we elaborate on the algorithmic components of the modeling approach introduced 
in the study. The surrogate modeling task is stated in Section "Modelling problem statement". Section "Low-cost 
global sensitivity analysis" discusses a fast global sensitivity analysis (FGSA) procedure introduced to determine 
the relationships between design variables and frequency characteristics of the system. The latter is expressed in 
terms of an orthonormal set of directions, which influences the circuit responses most significantly. In Section 
"Domain Definition", these directions are employed to define a reduced-dimensionality domain of the behavioral 
model. The operation of the entire modeling framework is elucidated in Section "Complete modelling procedure".

Modelling problem statement
In the following, we mark as Rf(x) a response of the high-fidelity circuit model, evaluated through EM analysis. 
Here, x stands for a vector of designable parameters (cf. Table 1 for modelling-related terminology). Typically, 
we are interested in scattering parameters Skj(x,f), where k and j stand for the respective circuit ports; frequency 
is marked as f. The goal of behavioral modeling is to render a fast replacement model (surrogate) Rs(x) of Rf(x), 
valid over the region of interest (parameter space) X. The latter is normally an interval determined by the 
lower and upper parameter bounds (cf. Table 1). The surrogate is supposed to represent the system responses 
as well as possible in a given sense. The performance metric utilized here is the relative RMS error, defined as 
||Rs(x)–Rf(x)||/||Rf(x)||. The model accuracy will be estimated using the average error Eaver, evaluated using an 
independent set of testing points {xt

(k)}k = 1, …, Nt, and defined as

Table 1.  Surrogate modeling of microwave components. Notation and terminology.

Symbol Description Comments

x = [x1 … Xn]T Vector of circuit parameters Independent circuit dimensions to be tuned in the design process

X = [lu] Conventional parameter space l = [l1 ln]T and u = [u1…, un]T are lower and upper bounds on parameters, i.e., we have lk ≤ xk ≤ uk for k = 1, …, n

Rf(x) High-fidelity model Responses of high-fidelity EM simulation model of the circuit at hand. The symbol Rf(x) stands for aggregated circuit characteris-
tics evaluated over the frequency range of interest F

Rs(x) Surrogate model Responses of the surrogate model of the circuit of interest
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The relative error is typically more intuitive than absolute metrics because it is independent of the actual 
value (and the unit) of the model output. In engineering applications, the error level of a few (e.g., five) percent, 
typically makes the model sufficient for design purposes. A discussion of alternative error measures can be 
found, e.g.,  in74,75.

Low‑cost global sensitivity analysis
In Section "Introduction", we discussed some fundamental challenges encountered in the behavioral modeling 
of microwave components. These challenges include the curse of dimensionality, the nonlinearity of frequency 
characteristics, and the necessity for the model to remain valid across wide ranges of geometry and material 
parameters. This latter requirement is particularly crucial for practical applications, such as design optimization. 
Among these challenges, those associated with the number of design variables are particularly critical, as they 
often underpin other difficulties. Consider a scenario where the parameter space X is assumed to be uniform, 
meaning that typical response nonlinearity remains consistent across all regions within X. Whatever technique 
is employed for constructing a surrogate model (radial basis  function48,  kriging49, neural  networks52, etc.), the 
modelling error is primarily a function of the mean distance between the data samples used for model training. 
More specifically, the smaller the distance, the better accuracy of the surrogate. The average distance, in turn, 
depends on the cardinality N of the dataset, and dimensionality of the space n: it is proportional to (1/N)1/n. Note 
that dimensionality n plays a major role here, e.g., to reduce the average distance by a factor of two for n = 3, the 
training dataset has to be enlarged by a factor of eight, whereas for n = 10, the corresponding factor exceeds 1,000.

Thus, dimensionality reduction is critical to facilitate a reliable behavioural modelling of microwave compo-
nents. One of possible approaches is variable screening, where the system variables having the least significance 
are identified and eliminated from the problem. Some of available techniques include the Morris  method76, 
Pearson correlation  coefficients77, partial or correlation  coefficients78. Another approach is global sensitivity 
analysis (GSA) (Sobol  indices79, Jansen  method80, regression-based  methods81), the goal of which is similar, 
i.e., to determine the relative importance of the system parameters, and to potentially exclude those that are of 
minor importance. Notwithstanding, the mentioned techniques are computationally expensive: estimation of 
the sensitivity indicators is based on large numbers of data samples. Another issue is that for most microwave 
components, dropping out individual variables is not possible without impairing the system capability to reach 
any particular set of target operating conditions. Most parameters (including the material ones, e.g., substrate 
permittivity) act in synergy and affect the system characteristics through their interactions.

In this research, an alternative technique for global sensitivity analysis is developed, which is to satisfy the 
following requirements:

• It is cheap to execute, i.e., involves less than a hundred EM analyses of the system being modelled;
• It allows for identifying important parameter space directions rather than to determine important variables; 

the ‘importance’ is understood in terms of the effects on the circuit response variability.

The operating flow of the proposed fast GSA technique (further referred to as FGSA) has been shown in Fig. 1. 
The eigenvectors ej of the relocation matrix S form represent the parameter space directions that have a decreas-
ing impact on the response variability. The latter is quantified by the corresponding eigenvalues λj. By definition, 
the eigenvectors form an orthonormal basis in X. It should be mentioned that FGSA has a certain resemblance 
to the active subspace (AS) approaches (cf.82,83). Therein, the objective is also to identify a lower-dimensionality 
parameter subspace corresponding to the largest response variations. However, the spectral analysis is carried 
out on the matrix composed of gradient vectors of the (scalar) function of interest obtained for a set of random 
observables. This makes AS computationally more expensive than FGSA, especially for higher-dimensional prob-
lems. On the other hand, similarly to GSA methods mentioned earlier, AS is likely to provide higher accuracy.

FGSA is employed as a tool for defining a reduced-dimensionality region for surrogate model establishment. 
For that purpose, we use a few most important eigenvectors, the number of which is determined as the smallest 
integer Nd ∈ {1, 2, …, n} that satisfies

In other words, Nd is the smallest number of vectors for which the corresponding (joint) relative least-square 
variability exceeds the user-defined threshold Cmin. In Section "Verification results", we use Cmin = 0.9; accord-
ingly, the selected directions should account for at least ninety percent of the overall circuit response variability.

The operation of FGSA is illustrated using several examples. The first instance is a linear function f(x) = f([x1 
x2]T) = 3x1 – 2x2, shown in Fig. 2. This function has been chosen because due to linearity, the direction of the 
maximum function variability can be readily identified as the gradient vector g = [3–2]T. This has been confirmed 
by FGSA, here based on twenty random points, cf. Figure 2b. Figure 3 shows two more examples involving 
nonlinear functions defined so that the directions of maximum function variability can be easily assessed visu-
ally (specifically, as the vectors perpendicular to the directions of the f(x) ‘ripples’). Also in these cases, FGSA 
involving twenty random points correctly identified the relevant directions.
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Our final example is a miniaturized microstrip coupling structure shown in Fig. 4a. The circuit features six 
design variables, x = [l1 l2 l3 d w w1]T. Here, FGSA is carried out based on fifty random points uniformly allocated 
in the design space X. The latter is determined by the lower and upper bounds l = [2.0 7.0 12.5 0.2 0.7 0.2]T, and 
u = [4.5 12.5 22.0 0.65 1.5 0.9]T. Figure 4b illustrates the EM-evaluated scattering parameters at a random param-
eter vector x and designs perturbed along the eigenvectors identified by FGSA, x + hek, k = 1, …, n. As it can be 
observed, the response variability is the largest for k = 1, and gradually diminishes for increasing k.

To estimate the actual response variability, Nr = 20 random designs have been allocated in the parameter 
space, xr

(k), k = 1, …., Nr, along with the perturbations xr
(k.j) = xr

(k) + hej, j = 1, …, n. Having acquired the EM 
simulation data Rf(xr

(k)), k = 1, …, Nr, and Rf(xr
(k.j)), k ∈ {1, …, Nr}, j ∈ {1, …, n}, the variability indicators have 

been computed as

(6)dRj =
1
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1. Input parameters:
- Parameter space X;
- Computational model Rf(x);
- Number of samples Ns;

2. Generate Ns random vectors xs
(k) ∈ X, k = 1, …, Ns, preferably in a uniform manner. 

Here, we use modified Latin Hypercube Sampling (LHS) [83];
3. Acquire EM simulation data Rf(xs

(k)), k = 1, …, Ns;
4. For each k = 1, …, Ns, find xc
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for k = 1, …, Ns;
6. Define a Ns × n relocation matrix S as
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The rows of S represent relocation vectors normalized with respect to their importance 
in terms of how they affect the circuit response in the norm sense;

7. Perform spectral analysis of S [84] in order to find its eigenvectors ej (principal 
components) and the corresponding eigenvalues λj, j = 1, …, n. The eigenvalues are 

ordered, so that λ1 ≥ λ2 ≥ … λn.

Figure 1.  Pseudocode of the proposed fast global sensitivity analysis (FGSA). The eigenvectors ej represent the 
parameter space directions having major effects on the circuit characteristics; the importance is quantified using 
the eigenvalues λj.
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for j = 1, …, n. In (6), the norm 
∥

∥Rf (x)− Rf (y)
∥

∥ is computed for all circuit responses, here, the scattering param-
eters Sj1(x,f), j = 1, 2, 3, 4, and takes the form

where F is the simulation frequency range. The number dRj represents an average response variability in the 
direction ej. Upon normalization, dRj agree well with the normalized eigenvalues λj, as shown in Fig. 4(c), which 
demonstrates relevance of the presented sensitivity analysis approach.

Note that FGSA is computationally efficient. Many of the global sensitivity analysis techniques mentioned 
earlier (e.g., Sobol  indices79, regression-based  methods81) require from a few hundred to a few thousands of data 
samples to yield accurate sensitivity assessment, depending on the problem size. FGSA is carried out based on 
a few dozen points. More specifically, in Section "Verification results", only fifty samples are utilized. The sensi-
tivity estimation accuracy is somehow compromised as compared to the expensive methods, but it is sufficient 
of our needs. It should also be reiterated that FGSA generates a set of principal directions that generally do not 
coincide with the coordinate system axes. Thus, instead of eliminating individual parameters, our method enables 
exploration of variable interactions and their joint effects on the circuit responses.

Domain Definition
The eigenvectors ej generated by FGSA are employed to establish the model domain Xd, which is determined 
by Nd most significant vectors ej, j = 1, …, Nd. Recall that Nd has been determined using (5). This arrangement 
allows for the domain to account for the majority of the circuit response variability within X (more specifically, 
the fraction equal or higher than Cmin, cf. Section "Low-cost global sensitivity analysis"). The formal definition 
of the domain is

i.e., the set encapsulating parameter vectors xc + a1e1 + … + aNdeNd, where xc = [l + u]/2 is the centre of the origi-
nal domain X (cf. Table 1), and aj, j = 1, …, Nd, are real numbers. Figure 5 provides a graphical illustration of 
generating Xd.

Again, while dim(Xd) < n, the domain accounts for the parameter space directions that are significant for the 
circuit response variability. This is necessary to secure design utility of the behavioural model to be established in 
Xd. In this work, the underlying modelling technique is  kriging84. However, a particular choice of the modelling 
method unimportant: our main goal is to investigate the benefits of dimensionality reduction by means of FGSA.

Complete modelling procedure
Figure 6 showcases the modelling process pseudocode. Meanwhile, Fig. 7 illustrates the flow diagram. The proce-
dures consists of the three major stages: (i) fast global sensitivity analysis, FGSA (Stage I), (ii) domain definition 
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Figure 2.  FGSA illustration using a linear function f(x) = f([x1 x2]T) = 3x1–2x2: (a) surface plot of the function 
(gray), twenty random observables xs

(k) (circles), and relocation vectors xc
(k)–xs

(k) (line segments); (b) relocation 
matrix vectors rs

(k)vs
(k) (thin lines), the largest principal component e1 (thick solid line), and the normalized 

gradient g = [3–2]T/131/2 (thick dotted line). In this example, all function variability occurs along the gradient 
g (the function is constant in the direction orthogonal to g), which is well aligned with the vector e1, obtained 
using the proposed FGSA.
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(Stage II), and acquisition of the training data as well as surrogate model identification (Stage III). It should be 
emphasized that there is only one control parameter, which is the variability threshold Cmin. It is set to 0.9 in the 
verification studies considered in Section "Verification results".

Verification results
The modeling methodology outlined in Section "Behavioral modeling by fast global sensitivity evaluation and 
dimensionality reduction" is validated in this section through three examples of microwave components. The 
modeling captures the scattering parameters of these structures across broad ranges of geometry dimensions 
and frequencies. Reduced-dimensionality surrogates are compared to traditional metamodels concerning both 
accuracy and computational cost during model setup. Additionally, we explore how the predictive power of the 
model scales with the size of the training dataset. The practical applicability of the proposed approach will be 
further discussed in Section "Application case studies".

Test cases
Validation of the modeling framework introduced in Section "Behavioral modeling by fast global sensitivity 
evaluation and dimensionality reduction" is realized with the help of three microwave circuits. These are:

• A miniaturized rat-race coupler (Circuit I)85;
• A branch-line coupler using compact microstrip resonant cells (CMRCs) (Circuit II)86;
• A dual-band equal-split power divider (Circuit  III87.

Figure 3.  FGSA illustration using nonlinear functions of two variables: (a) surface plot of the first function 
f1(x) = f1([x1 x2]T) = 2sin(2.5x1)–1.5x2–2exp(x2/5) + x1x2 (gray), twenty random observables xs

(k) (circles), and 
relocation vectors xc

(k)–xs
(k) (line segments), as well as the principal component e1 (thick arrow); (b) relocation 

matrix vectors rs
(k)vs

(k) (thin lines), and the largest principal component e1 (thick solid line); (c) and (d) surface 
plot and relocation matrix vectors for the second function f2(x) = f2([x1 x2]T) = 1.5sin(3x1 + 2x2)–1.1x1

2–0.3x2
2. It 

can be noticed that the vector e1 obtained using FGSA visually corresponds to the direction associated with the 
highest variability of f(x).
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The architectures of the circuits have been shown in Figs. 8a, 9a, and 10a, respectively. Information about 
material parameters (substrate permittivity and height), design variables, parameter spaces, as well as mod-
eled characteristics have been included in Figs. 8b, 9b, and 10b for Circuit I, II, and III. One can note that the 
considered modeling problems are intricate. The parameter spaces are of relatively high dimensionality (when 
juxtaposing them with what is typically available in the literature), whereas the parameter ranges are wide. In 
particular, the mean values of the ratio between upper and lower bounds is close to three for Circuit I and II, 
and about nine for Circuit II. Furthermore, the modeling is conducted over broad ranges of frequency (0.5 GHz 
to 2.5 GHz for Circuit I, 0.1 GHz to 2.5 GHz for Circuit II, and 0.5 GHz to 7.0 GHz for Circuit III). Finally, the 
surrogates are to represent several complex responses of each structure.

Experimental setup
The validation studies have been carried out to verify the two hypotheses concerning the properties of our 
modelling methodology:

• Dimensionality reduction by means of the fast GSA of Section "Low-cost global sensitivity analysis" enables 
a considerable enhancement of the model accuracy and scalability, i.e., more favourable relation between the 
training set size and the model’s predictive power;

• Dimensionality reduction and the computational benefits associated with it are not detrimental to design 
suitability of the surrogate.

(a)
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Figure 4.  FGSA applied to a miniaturized rat-race coupler: (a) circuit topology, (b) scattering characteristics at 
a random vector x and designs perturbed along the principal components, x + hek (here, h = 0.1) for the first four 
vectors (from top left to bottom right) obtained using FGSA, solid lines denote S-parameters at design x (|S11| 
through |S41|), whereas dashed lines denote corresponding S-parameters at the perturbed design; (c) normalized 
eigenvalues of the relocation matrix S obtained using FSGA based on twenty random samples, as well as average 
EM-simulated variability indicators dRj computed as in (6). It can be observed that response variability is 
gradually reduced for increasing k, which demonstrates that subsequent eigenvectors correspond to directions 
having less and less effect on circuit characteristics.

x1

x3

x2
xc

Original parameter

space X

Affine subspace

xc + jajej

Surrogate model domain

Xd = X {xc + jajej}

e1 e2

Figure 5.  Constructing reduced-dimensionality domain Xd. In the example shown, the original parameter 
space is three dimensional, whereas Xd is determined by two principal vectors e1 and e2. Note that Xd is a set 
theory intersection of X and the affine subspace xc + Σj=1,2 ajej.
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The second hypothesis will be discussed in Section "Application case studies". Its meaning is whether operat-
ing in a reduced space leaves sufficient flexibility for surrogate to be used for design purposes. The first hypothesis 
will be addressed in the remaining part of this section. To investigate the features of the presented modelling 
approach, we compare surrogate models rendered in the full-dimensional space X with those obtained within 
the reduced set. The FGSA procedure is conducted based on fifty random samples allocated in X by means of 
modified Latin Hypercube Sampling 88. The dimensionality Nd of the model domain is computed for the thresh-
old Cmin = 0.9 in (5), cf. Section "Low-cost global sensitivity analysis", i.e., the domain is to account for ninety 
percent of the system response variability or more. Furthermore, the surrogate models are established using 
sample sets of several sizes NB = 50, 100, 200, 400, and 800. This will allow us to determine the scalability of the 
model predictive power as a function of NB.

In this study, the modelling routine of choice is kriging (setup: 2nd-order polynomial as a regression func-
tion, Gaussian correlation function). However, this is of secondary importance as our goal is mainly to deter-
mine potential benefits of using FGSA and dimensionality-reduced domains. As mentioned earlier, the model 
accuracy is estimated using the relative root-mean square (RMS) error, ||Rs(x)–Rf(x)||/||Rf(x)||, where Rs and Rf 
stand for the model-predicted and EM-evaluated circuit responses. To compute the error we utilize one hundred 
independent test samples randomly distributed within the model domain.

Results
The first point for discussion is the sensitivity analysis of Section "Behavioral modeling by fast global sensitivity 
evaluation and dimensionality reduction". Table 2 includes the data on the eigenvalues λk generated by FGSA, 
and the dimensionality Nd of the model domain determined according to (5) with Cmin = 0.9. Note that in prac-
tice, Nd corresponding to variability factor slightly lower than Cmin was approved in order to keep the domain 
dimensionality as small as possible. One can observe that Nd is considerably smaller than the number n of the 

Figure 6.  Surrogate modelling of microwave circuits using FGSA and reduced-dimensionality surrogates.
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circuit design variables. The (multiplicative) dimensionality reduction factor is 2.0 (Circuit I), 2.8 (Circuit II), 
and 1.8 (Circuit III). It is the smallest for Circuit III, which is the most difficult case for two reasons: (i) the 
modelled characteristics are defined over broad range of frequencies, and (ii) the circuit responses are highly 
nonlinear over the entire frequency spectrum. Furthermore, it should be emphasized that for this structure, the 
eigenvalues are much less reduced between λ1 and λn (here, from 1.00 to 0.45), which indicates low parameter 
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space X EM model

Generate observables xs(k), acquire Rf(xs(k)), k = 1,...,Ns

Variability
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For each k = 1, …, Ns, find xc(k) = xs(jmin),
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Figure 7.  Flow diagram of the behavioral modeling procedure using FGSA and reduced-dimensionality 
domain.

Figure 8.  Test Circuit I: (a) parameterized geometry, (b) important data.
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Figure 9.  Test Circuit II: (a) parameterized geometry, (b) important data.

Figure 10.  Test Circuit III: (a) parameterized geometry, (b) important data.

Table 2.  Fast global sensitivity analysis: eigenvalues λk and domain dimensionality for Cmin = 0.9 # Nd 
corresponding to the variability factor slightly lower than Cmin are accepted to maintain domain dimensionality 
as low as possible.

Domain data

Circuit

I II III

Dimensionality n of the original parameter space X 6 11 7

(Normalized) eigenvalues of the relocation matrix S

λ1 = 1.00 λ1 = 1.00 λ1 = 1.00

λ2 = 0.65 λ2 = 0.66 λ2 = 0.77

λ3 = 0.51 λ3 = 0.54 λ3 = 0.66

λ4 = 0.46 λ4 = 0.48 λ4 = 0.64

λ5 = 0.37 λ5 = 0.41 λ5 = 0.50

λ6 = 0.28 λ6 = 0.39 λ6 = 0.48

λ7 = 0.30 λ7 = 0.45

λ8 = 0.25

λ9 = 0.22

λ10 = 0.16

λ11 = 0.13

Nd 3 4 4

Reduced-dimensionality  domain#

√

∑Nd
j=1

�
2
j

√

∑n
j=1

�
2
j

0.89 0.88 0.88
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redundancy. This is in contrast to Circuits I and especially Circuit II, where the eigenvalues drop down much 
faster. This behaviour is typical for miniaturized components, both CMRC-based and those employing line 
meandering, and enables a more efficient dimensionality reduction.

The reliability of the conventional and the proposed surrogates constructed using training datasets of sizes 
50 through 800 samples have been shown in Table 3. Only for Circuit III, the models were also constructed 
using 1,600 samples, which is because it is the most challenging case, for which it was not possible to reduce the 
modelling error below ten percent with the 800-sample training set. The plots of the metamodel-predicted and 
EM-evaluated scattering parameters of Circuit I through III for chosen test points can be found in Figs. 11, 12, 
and 13, respectively.

The data encapsulated in Table 3 corroborates that dimensionality reduction greatly affects the surrogate 
model accuracy. Circuit I is the only case where modeling in the original parameter space is capable of rendering 
surrogates that feature relative error below ten percent. For this structure, modeling in a reduced-dimensionality 
domain allows for keeping the error below five percent already for training sample sets as small as 100 samples. 
Circuit II is considerably more challenging. Here, the conventional model is clearly unusable (RMS error over 
twenty percent) even for the largest dataset. At the same time, dimensionality reduction using fast GSA enables 
a dramatic accuracy improvement to about six percent. Finally, for Circuit III, the most difficult case, conven-
tional modeling is exceptionally poor, also when the training dataset cardinality is enlarged to 1,600 samples. 
Dimensionality reduction enables error level reduction to only eight percent, which allows us to expect that the 
surrogate might be usable as a design aid.

Application case studies
The numerical results presented in Section "Results" unanimously demonstrate the benefits of reducing domain 
dimensionality through the proposed fast global sensitivity analysis. In particular, it makes it possible to ren-
der accurate surrogate models using reasonably small numbers of training points, as shown in Figs. 11, 12, 13. 
Nevertheless, a more important question is whether domain restriction is not detrimental for design utility of 
the model. Although a dimensionality-reduced domain is smaller than the original one, recall that it is spanned 
along the directions that correspond to the maximum response variability (i.e., those associated with the largest 

Table 3.  Modeling results for Circuit I through III.

Number of training points

Model error

Circuit I Circuit II Circuit III

Original space X
Reduced domain Xd [this 
work] Original space X

Reduced domain Xd [this 
work] Original space X

Reduced domain Xd [this 
work]

50 25.7% 5.9% 52.3% 21.5% 63.6% 38.9%

100 17.9% 3.8% 38.3% 15.8% 53.8% 28.7%

200 13.5% 2.7% 31.0% 11.1% 45.2% 23.5%

400 9.9% 2.4% 27.3% 8.5% 40.0% 16.6%

800 8.0% 1.8% 23.3% 6.4% 35.1% 12.5%

1600 – – – – 32.3% 8.4%
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Figure 11.  Circuit I: scattering parameters at the chosen testing points: EM analysis (—), and the introduced 
FGSA-based model (o). The training set size NB = 400.
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eigenvalues of the variability matrix S of (4)). Consequently, limiting the number of dimensions should not 
affect the ability of the surrogate to accommodate the optimum designs to a large extent. In order to verify this 
property, the GSA-based models are employed in this section to optimize Circuits I through III under different 
design scenarios. As the modeling process has been carried out over broad frequency spectra, the surrogate are 
utilized to optimize the respective circuit for a variety of operating frequencies, but—in the case of Circuit II—
also different substrate materials (note that substrate permittivity εr is one of the design parameters for Circuit 
II, with the range from 2.0 to 5.0).

Table 4 delineates performance requirements for the considered devices. It should be noted that for Circuit 
III, equal power division is ensured by the structure’s symmetry. The parameters of each circuit were tuned for 
four distinct target values of the operating parameters, which are f0 and KP for Circuit I, f0 and εr for Circuit 
II, as well as f1 and f2 for Circuit III. The findings have been compiled in Tables 5, 6, and 7, while Figs. 14, 15, 
and 16 illustrate the optimized circuit responses for Circuit I, II, and III. Notably, optimization of the proposed 
surrogate model produces satisfactory designs across all cases. Moreover, there is excellent alignment between 
the model-predicted characteristics and those simulated through electromagnetic (EM) methods. These results 
collectively support the practical applicability of the modeling methodology discussed in this study, especially 
its effectiveness in designing circuits across wide ranges of operating conditions, such as center frequencies and 
power split ratios.

1 1.5 2

Frequency [GHz]

-20

-10

0

|S
1
1
|[
d
B
]

1 1.5 2

Frequency [GHz]

-10

-5

0

|S
2
1
|[
d
B
]

1 1.5 2

Frequency [GHz]

-10

-5

0

|S
3
1
|[
d
B
]

1 1.5 2

Frequency [GHz]

-20

-10

0

|S
4
1
|[
d
B
]

Figure 12.  Circuit II: scattering parameters at the chosen testing points: EM analysis (—), and the introduced 
FGSA-based model (o). The training set size NB = 800.
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Figure 13.  Circuit III: scattering parameters at the chosen testing points: EM analysis (—), and the introduced 
FGSA-based model (o). The training set size NB = 1,600.
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Conclusion
This study presents a method for enhancing the accuracy of surrogate modeling for passive microwave compo-
nents. The approach introduced is grounded in fast global sensitivity analysis (FGSA), which has been developed 
to identify, at a low cost, the parameter space directions that exert the most significant influence on circuit 
responses. By employing a small subset of these critical directions, determined through eigenvalue analysis, the 
surrogate model domain is effectively spanned. This setup facilitates the creation of reliable metamodels across 
wide frequency ranges, as well as varying geometry and material parameters, using relatively modest training 

Table 4.  Design optimization scenarios for Circuits I, II, and III. $ Relative permittivity is one of the design 
variables of the modelling proeess.

Circuit Design objectives Other conditions

I
1. Minimize matching |S11| and isolation |S41| responses at the target operating frequency f0; –
2. Maintain target power split ratio |S31|–|S21|= Kp at f0

II
1. Minimize matching |S11| and isolation |S41| responses at the target operating frequency f0; Circuit implemented on substrate of relative permittivity εr

$

2. Maintain equal power split ratio |S31|–|S21|= 0 at f0;

III

1. Minimize input matching |S11| and output matching |S22| =|S33| simultaneously at the target operating 
frequencies f1 and f2;

–2. Minimize port isolation|S32| at both f1 and f2;

3. Maintain equal power division ratio, i.e., |S21| =|S31| at f1 and f2

Table 5.  Circuit I: optimization results.

Target operating conditions Geometry parameter values [mm]

Case fo [GHz] Kp [dB] l1 l2 L3 d w w1

1 1.0  − 3 2.06 10.2 19.9 0.50 1.35 0.61

2 1.5 0 2.03 10.5 13.4 0.65 0.80 0.75

3 2.0 6 4.48 9.5 13.1 0.27 0.97 0.56

4 1.2  − 3 2.50 9.5 17.7 0.38 1.19 0.51

Table 6.  Circuit II: optimization results.

Target operating conditions Geometry parameter values

Case F0 [GHz] εr g l1r la lb w1 w2r w3r w4r wa wb

1 0.8 4.4 0.55 0.67 11.7 16.3 0.97 0.64 0.37 0.21 4.85 0.35

2 1.0 3.5 0.73 0.70 9.9 12.7 1.38 0.92 0.48 0.21 4.93 0.37

3 1.25 1.25 0.40 0.64 12.5 13.5 0.92 0.36 0.26 0.16 3.30 0.55

4 1.8 2.5 0.41 0.65 11.2 10.7 1.04 0.33 0.26 0.11 2.96 0.6

Table 7.  Circuit III: optimization results.

Target operating conditions Geometry parameter values [mm]

Case f1 [GHz] F2 [GHz] l1 l2 L3 L4 L5 s W2

1 1.3 2.2 30.2 14.2 34.4 11.1 2.51 1.32 3.85

2 1.5 2.45 31.3 9.81 31.2 8.85 4.59 0.70 4.32

3 2.0 4.0 26.2 6.95 27.3 4.71 4.76 0.21 5.13

4 3.3 5.0 17.2 4.66 15.4 4.78 2.53 1.13 5.73
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datasets. Importantly, this approach preserves the design versatility of the surrogates, as the directions defining 
the domain capture the majority of circuit response variability.

The proposed technique has undergone comprehensive validation using three microstrip components, includ-
ing two compact couplers and a dual-band power divider. The results demonstrate a significant improvement 
in predictive power compared to conventional methods, with relative RMS errors reaching only a few percent 
even with just a few hundred training samples. This improvement is notable despite considering wide frequency 
ranges (0.5 GHz to 2.5 GHz, 0.1 GHz to 2.5 GHz, and 0.5 GHz to 7.0 GHz for the first, second, and third circuits, 
respectively) and material parameter variations (substrate permittivity ranging from 2.0 to 5.0 for the second 
circuit). At the same time, modeling in the original domains results in remarkably poor performance and unus-
able models featuring relative errors of over twenty percent (except the simplest case of a rat-race coupler).

The aforementioned investigations have been supplemented by the application case studies. In these experi-
ments, the proposed surrogate models were employed to optimize the test circuits under a variety of scenarios 
(different center frequencies, power division ratios, substrate permittivity values). The obtained results allowed 
us to establish that dimensionality reduction as described in the paper is not detrimental to design utility of the 
models. The findings of this work suggest that the presented methodology may be viewed an attractive alternative 
to state-of-the-art modeling techniques. Although demonstrated using kriging interpolation, it can be coupled 
with any specific approximation method. Furthermore, it is generic as opposed to some of the recent methods, 
which are also domain-oriented (e.g., performance-driven techniques). Finally, it is easy to implement, which 
is of a practical value for researchers with less experience in the fields of numerical modeling and optimization.

It should also be emphasized that due to its data-driven nature, the proposed modelling methodology can 
be applied to a broader class of microwave structures. In particular, the constructed surrogate models and the 
dimensionality reduction process are entirely based on acquired EM simulation data. The microstrip circuits 
employed in Section "Application case studies" were merely illustration examples. Some of worth mentioning 
areas include components for 5G/6G applications (e.g., antennas operating within frequency bands beyond 
24 GHz), as well as broadband systems implemented on fiberglass substrates (challenging due to geometrical 
complexity, position-based permittivity variations, and multi-resonance outputs).
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Figure 14.  Optimization results for Circuit I: surrogate- (gray) and EM-simulation (black) at designs found by 
optimizing the proposed surrogate (NB = 400). Operating frequency marked using the vertical line: (a) Case 1, 
(b) Case 2, (c) Case 3, (d) Case 4.
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Figure 15.  Optimization results for Circuit II: surrogate- (gray) and EM-simulation (black) at designs found by 
optimizing the proposed surrogate (NB = 800). Operating frequency marked using the vertical line: (a) Case 1, 
(b) Case 2, (c) Case 3, (d) Case 4.
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