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Bayesian spatio‑temporal 
modeling of the Brazilian fire spots 
between 2011 and 2022
Jonatha Sousa Pimentel 1,5, Rodrigo S Bulhões 2,3,5 & Paulo Canas Rodrigues 3,4,5*

Wildfires are among the most common natural disasters in many world regions and actively impact life 
quality. These events have become frequent due to climate change, other local policies, and human 
behavior. Fire spots are areas where the temperature is significantly higher than in the surrounding 
areas and are often used to identify wildfires. This study considers the historical data with the 
geographical locations of all the “fire spots” detected by the reference satellites covering the Brazilian 
territory between January 2011 and December 2022, comprising more than 2.2 million fire spots. This 
data was modeled with a spatio‑temporal generalized linear mixed model for areal unit data, whose 
inferences about its parameters are made in a Bayesian framework and use meteorological variables 
(precipitation, air temperature, humidity, and wind speed) and a human variable (land‑use transition 
and occupation) as covariates. The meteorological variables humidity and air temperature showed the 
most significant impact on the number of fire spots for each of the six Brazilian biomes.
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Brazil, the fifth country in the world in territorial extension, has a vast wealth in several categories, its biodiver-
sity being one of them. Considered by many experts as the “country of megadiversity”, given that 15–20% of the 
known species in the world are found in its  territory1, its fauna and flora are officially separated into six biomes: 
Amazônia, Caatinga, Cerrado, Mata Atlântica, Pampas, and Pantanal (see Fig. S1 of the supplementary material 
for more details on the location of each biome).

The Amazônia biome includes about 60% of the largest rainforest in the world, with extensive mineral reserves 
and 20% of the world’s water  availability2. The Caatinga is in a semi-arid climate, with great biological richness 
and unique  species3. The Cerrado is recognized as the richest savanna in the world in terms of biodiversity, hav-
ing remained unchanged until the 1950s when the federal capital was transferred to Brasília4. The Mata Atlântica 
is located on the Brazilian coast, thus being the most threatened biome in the country, where only 27% of the 
original forest cover is still  preserved5. The Pampas is characterized by a rainy climate without a dry period and 
negative temperatures during the  winter6. Finally, the Pantanal is recognized as the planet’s most extensive con-
tinuous  floodplain7. Further official details can be found on the website of the Brazilian Institute of Geography 
and Statistics (IBGE; Instituto Brasileiro de Geografia e Estatística; https:// www. ibge. gov. br)8.

Despite all the wealth and beauty, a somewhat chronic problem has become increasingly worse in Brazil 
during the last few years:  wildfires9–12. Wildfires, fires that occur in natural areas such as forests and woods, 
which can be caused by various factors such as human activities, uncontrolled fires, and natural causes, are one 
of the most common forms of natural disasters in many world regions and actively affect the quality of  life13–15. 
These events have become more frequent with the increasing effect of climate change, other local policies, and 
human  behavior16–18.

In particular, the Amazon rainforest has been deforested over the years, increasingly reducing its  area19–22, 
either from the overthrow of trees or wildfires. The PRODES - Amazônia project has been monitoring this 
deforestation since 1988, having reached a deforestation “peak” of 13 thousand  km2 in the last ten years in 2021. 
However, something different has been happening in recent years: wildfires that were more commonly seen 
primarily in the Amazon rainforest have spread to other Brazilian biomes, causing natural disasters such as the 
devastation of approximately one-third of the Pantanal in the 2020  wildfires23 and the arrival of smoke caused 
by fires in the Pantanal in 2020 to the cities of São Paulo, Rio de Janeiro, and  Curitiba24.
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Given the importance and consequences of Brazilian wildfires, locally and globally, and their increase in recent 
years, much research has been done on the topic. For  example10, used data from satellite images and discussed 
the characteristics of wildfires from a broader perspective, including the whole Brazilian territory, some regions 
of the USA, and  Australia25 gave an overview of the fires in  Pantanal26, discussed the economic footprint of the 
2018 wildfires of California,  and27 provided an extensive analysis of forest fires in the Pantanal biome during 
 202028 analyzed forest fires caused by lightning in central Brazil, a region comprising parts of the biomes Mata 
Atlântica, Cerrado, and Pantanal. The impacts of the mega-fire campaign in the Cerrado biome in 2017 from a 
biophysical point of view, energy balance, and evapotranspiration were presented  by29,30 analyzed the effective-
ness of using prescribed fires in fire-prone areas to prevent large fires, using the Brazilian Cerrado as a research 
site. More recently, a study  by31 used hierarchical time series forecasting to compare models and reconciliation 
techniques in forecasting the number of fire spots at municipality, biome, and country levels.

From a space-time point of  view32, provided an analysis of the processes that drove deforestation in the 
Amazon forest with an analysis of the impacts of agriculture in the state of Mato Grosso between 2006 and 2017, 
using a spatial panel model that makes it possible to identify the factors that affect  deforestation33 carried out a 
spatial analysis that allowed the quantification of forest degradation in the Brazilian Amazon rainforest between 
1992 and 2014,  and34 used a coupled ecosystem-fire model to quantify the effects of climatic events and land 
use in forest fires in the Amazônia9 presented a general analysis of forest fires’ temporal and spatial aspects in 
the Mata Atlântica biome in the south of Bahia state and the north part of Espírito  Santo35 used a sample-based 
approach to consistently quantify tree cover loss from 2000 to 2013 in the Brazilian legal Amazon, comprising 
land area from nine Brazilian states, across all forest types in the region, primary forest and non-primary forest.

Unlike previous studies focusing mainly on localized wildfire analyses within specific regions or biomes, 
this research provides a comprehensive understanding of fire spot dynamics across Brazil. Considering the 
entire Brazilian territory spanning twelve years, our study aims to fill a notable gap in the literature by offering 
a national-scale analysis of fire spot patterns. Moreover, our approach integrates meteorological variables and 
human-induced land-use transitions as covariates, allowing for a holistic examination of the complex inter-
actions driving fire spot occurrences. By applying sophisticated statistical modeling techniques, including a 
Bayesian framework for parameter inference, we seek not only to describe but also to elucidate the underlying 
mechanisms shaping fire spot dynamics at a national level. By addressing this broader scope, our research aims 
to contribute novel insights to the field of wildfire research and inform proactive strategies for wildfire manage-
ment and mitigation.

In this paper, after a temporal and spatial analysis of the number of fire spots that were detected in the entire 
Brazilian territory between January 1, 2011, and December 31, 2022, we used a spatio-temporal approach to 
model the number of fire spots per Brazilian municipality and biome, using meteorological and human-based 
explanatory variables considering the data between the years 2012 and 2021. We used a spatio-temporal gen-
eralized linear mixed model for areal unit data, whose inferences about its parameters are made in a Bayesian 
framework with covariates.

The remainder of this paper is organized as follows. First, we describe data collection, data organization, 
and data imputation, which come from three sources: (i) satellite images that resulted in a dataset with all fire 
spots between January 1, 2011, and December 31, 2022, throughout the Brazilian territory, and its geographic 
location; (ii) weather data from all weather stations available in Brazil between January 1, 2012, and December 
31, 2021; and (iii) land use and occupation year by year between January 1, 2012, and December 31, 2021. In 
addition, we present the full details of a Bayesian spatio-temporal generalized linear mixed model for areal unit 
data. Section 3 presents the results from a vast descriptive and exploratory data analysis (fire spots, climatic 
data, and land use), followed by the results obtained by the Bayesian spatio-temporal generalized linear mixed 
model for areal unit data and their discussion. The paper ends in Section 4 with some concluding remarks and 
possible future research directions.

Materials and methods
The detailed flowchart of the methodology proposed and used in this paper is presented in Fig. 1, which sets 
the structure of this section: data collection, data treatment, and data organization being the subsections with 
three paragraphs each, one for each data set. This section ends with detailed information about a Bayesian 
spatio-temporal generalized linear mixed model for areal unit data. The complete data collection, treatment, 
and organization details are listed below to allow for reproducible science.

Data collection
This study used complex data from three different sources, considering a time interval of twelve years between 
January 1, 2011, and December 31, 2022. The data sources used were: (i) satellite images that resulted in a data set 
containing all fire spots in the whole Brazilian territory during the twelve years; (ii) hourly climatic data from all 
available meteorological stations in Brazil during the ten years used for modeling, i.e., between January 1, 2012, 
and December 31, 2021; and (iii) data related to land use and land-use transition during the ten years used for 
modeling, i.e. between January 1, 2012, and December 31, 2021. The difference in data collection periods was 
due to data availability. Land use and land-use transition are made available with a large delay. Thus, we decided 
to present a temporal and spatial descriptive and exploratory analysis of the number of fire spots considering 12 
years (2011-2022) and model building considering 10 years (2012–2021).

Fire spots - Time and geographical locations The response variable was obtained from the Brazilian National 
Institute for Space Research (INPE; Instituto Nacional de Pesquisas Espaciais; http:// queim adas. dgi. inpe. br). The 
original raw data included 12 files, one per year, with all fire spots detected on Brazilian territory by the INPE ref-
erence satellite AQUA M-T. These raw files have the date, hour, satellite (several satellites are available), Brazilian 
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state, Brazilian municipality, biome, number of days without rain, precipitation, fire risk, latitude, longitude, and 
relative firepower. For the 12 years considered in this study, the AQUA M-T satellite detected approximately 2.2 
million fire spots, having the associated database the same number of rows.

According to  INPE36, fire spots detected by polar-orbiting satellites like AQUA are identified by field valida-
tion to measure around 30 meters long by 1 meter wide or larger. However, the pixel size of MODIS sensors, like 
those on AQUA and TERRA satellites, is typically 1 km × 1 km or larger. Therefore, even small burns of a few 
tens of square meters are detected as covering at least one  km2. This means that a burning pixel could represent 
various fire sizes within its detection area, from small to large fires.

Meteorological data - Variables from all available meteorological stations in Brazil This data set was obtained 
from the Brazilian National Institute of Meteorology (INMET; Instituto Nacional de Meteorologia; http:// portal. 
inmet. gov. br). The original raw data includes one file for each of the meteorological stations, whose number 
increases with time, starting with 468 in 2012 and reaching 588 in 2021 (468, 473, 475, 484, 529, 563, 596, 589, 
and 588 for the years between 2012 and 2021, respectively). These raw files include the date, time, total precipi-
tation, atmospheric pressure (hourly, maximum, and minimum), global radiation, air temperature, dew point 
temperature (hourly, maximum, and minimum), hourly temperature (minimum and maximum), humidity 
(hourly, minimum and maximum), wind (direction, maximum gust, and hourly speed). From these meteoro-
logical variables, a total of four variables were considered in this study: precipitation, air temperature, humidity, 
and wind speed, measured in millimeters (mm), degrees Celsius (°C), percentage (%), and meters per second 
(m/s) respectively. Each file contained 8760 rows for “typical” years and 8784 for leap years.

Land use This data set was obtained from the Brazilian Annual Land Use and Land Cover Mapping Project 
in Brazil (MapBiomas; Projeto de Mapeamento Anual do Uso e Cobertura da Terra no Brasil; http:// mapbi 
omas. org)37. Unlike the fire spots and climate data, land use data directly results from human activity. This data 
includes variables that measure land use and occupation and transition values between how the land was used 
from one year to the next, between 2011 and 2021. In this case, land use refers to the type of use at that given 
moment of the soil representing hectares of area, while land use transition will be exactly the number of hectares 
of area that changed between one year and the following year, with the possibility of loss or area gain. This data 
is organized into six main categories, which are defined and presented in Table 1 and consists of the total land 
use (in thousands of hectares) in each category (and several sub-categories) per municipality and year.

Data treatment
Many problems might arise when dealing with observational data that require intensive data cleaning and data 
treatment. In this study, we have to deal with missing value imputation, data aggregation, data extrapolation, 
data interpolation, and data transformation. In what follows, we explain in detail the treatment that each data 
set needed before the analysis could be performed.

Fire spots In this data set, the main challenge for data treatment was related to data aggregation per day. Based 
on the geographic locations of each fire spot, it was associated with the municipality, state, and biome where 
it occurred. After establishing this association, the data were aggregated per day for each municipality, state, 

Figure 1.  Detailed flowchart of the methodology used in this paper, including the data collection, data 
treatment, data organization, data visualization, and spatial-temporal modeling. Blue arrows are related to the 
steps and operations from data collection to data treatment, organization, and visualization. Red arrows are 
associated with the spatio-temporal modeling.

http://portal.inmet.gov.br
http://portal.inmet.gov.br
http://mapbiomas.org
http://mapbiomas.org
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and biome. This resulted in a database with as many rows as the number of days between January 1, 2011, and 
December 31, 2022. The days without observations for a given municipality, state, or biome were assigned the 
value zero, as no fire spot was observed on that day/location.

Climate data In this data, two main problems had to be dealt with: (i) not all Brazilian municipalities have 
a meteorological station, and (ii) for some meteorological stations, especially at the beginning of the ten-year 
historical period, a high number of observations were missing. We considered daily observations of four mete-
orological variables: precipitation, air temperature, humidity, and wind speed. As the data was collected hourly, 
the monthly averages were taken for each meteorological station, then used for data extrapolation for every 
Brazilian municipality, and considered in the Bayesian spatio-temporal modeling. This data treatment for the 
meteorological variables was organized into three steps: 

1. Data aggregation per month: For each of the four meteorological variables, precipitation, air temperature, 
humidity, and wind speed, the monthly average was obtained for each meteorological station;

2. Data extrapolation from meteorological station to municipality: To estimate the meteorological variables, and 
also to impute missing values, in a given municipality and in a given month, a weighted average between the 
values of the three closest stations to that municipality geographic center were considered. After identifying 
and selecting the three closest stations, Si , i ∈ {1, 2, 3} , the values of the environmental/meteorological vari-
able for each of the stations are extracted and denoted by EVSi , i ∈ {1, 2, 3} , respectively. Then, the Euclidean 
distances between the geographic center of the municipality with the missing observation and the three 
closest stations, Si , i ∈ {1, 2, 3} , is obtained and represented by Di , i ∈ {1, 2, 3} . In this way, when we identify 
a missing value for that meteorological variable in a given municipality, it is estimated as 

 In this approach, we give higher weights to stations closer to the meteorological station with the missing 
observation. The closer a station is to the geographic center of a municipality with the missing observation, 
the more weight it has to estimate the missing value. In the case of missing observations in the meteoro-
logical variable for any of the closest stations, those will not be used for the estimation. The value of the 
meteorological variable in the time t and municipality k will remain missing if not observed in any of the 
three closest stations.

3. Missing value imputation: After data extrapolation, there were still several missing values because, in some 
cases, the three meteorological stations closest to the municipality without a station had missing values for a 
given meteorological variable in one or more months. To deal with these missing values, we use the package 
imputeTS38 of the R  software39 to impute them. Due to spatial heterogeneity, we impute the values of the 
time series of each municipality individually. The imputation was based on the exponential weighted mov-
ing average method, considering k = 4 as the integer width of the moving average window, i.e., it expands 
to both sides of the center element, being k on the left and k on the right.

Land use In this data set, the main challenge was that the land-use transition variables are available for each 
municipality per year, while the modeling phase needs monthly observations. Data interpolation from year 
to month was considered using imputation techniques to solve that problem, i.e., for variables related to land 
use, we assume that the monthly values of these variables between January and December of the same year are 
equal to the corresponding average annual value. The measurement level of these variables was transformed to 
thousands of hectares.

Data organization
Fire spots - Total numbers per day, month, biome, and municipality After the treatment of the raw data, six data 
sets were created to be used in the descriptive analysis, data visualization, and spatio-temporal modeling: (i) the 
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Table 1.  Land use and occupation and transition categories.

Main classes Secondary classes

Forest Forest Formation, Savanna Formation, 
Mangrove and Wooded Restinga

Non Forest Natural Formation Wetland, Grassland, Salt Flat, Rocky Out-
crop and Other non-Forest Formation

Farming Pasture, Agriculture, Forest Plantation and 
Mosaic of Agriculture and Pasture

Non Vegetated Area Beach, Dune, Sand Spot, Urban Area, Min-
ing and Other non Vegetated Areas

Water River, Lake, Ocean and Aquaculture

Non Observed –
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number of fire spots per day per Brazilian municipality; (ii) the number of fire spots per day per Brazilian state; 
(iii) the number of fire spots per day per Brazilian biome; (iv) the number of fire spots per month per Brazilian 
municipality; (v) the number of fire spots per month per Brazilian state; (vi) the number of fire spots per month 
per Brazilian biome. All the 5570 Brazilian municipalities, the 27 states (including the federal district), and the 
six biomes were considered. These data files are available as supplementary material for this paper. The R code 
to obtain the data files is available upon request from the corresponding author of this paper.

Climate data - Precipitation, air temperature, humidity, and wind speed per month and municipality After the 
treatment of the raw data, eight data sets were created to be used in the descriptive analysis, data visualization, 
and spatio-temporal modeling: (i) monthly averages of precipitation per municipality; (ii) monthly averages of air 
temperature per municipality; (iii) monthly averages of humidity per municipality; (iv) monthly averages of wind 
speed per municipality. The data sets are available upon request from the corresponding author of this paper.

Land use - Gain and loss of green area and farming area, and land-use transition After the treatment of the 
raw data, five data sets were created, four to be used in the descriptive analysis and data visualization: (i) yearly 
gain and loss of green area per municipality, in thousands of hectares; (ii) yearly gain and loss of green area per 
municipality, in thousands of hectares, weighted by the area of the municipality; (iii) yearly gain and loss of farm-
ing area per municipality, in thousands of hectares; and (iv) yearly gain and loss of farming area per municipality, 
in thousands of hectares, weighted by the area of the municipality; and one to be used for the spatio-temporal 
modeling: (v) monthly “land-use transition” from a green area (forest and non-forest natural formation) to a 
farming area (in thousands of hectares), for each of the 5570 municipalities. The first four variables can help 
measure the deforestation between the year t and the year t + 1.

Model description
Some strategies to model aggregated data in time-varying areas include the space-time auto-regressive moving 
average (or STARMA, in short) models within the most widely  used40. However, this class of models does not 
allow for the incorporation of explanatory variables into the model.

Our objective with this analysis is to model the total number of fire spots, aggregated by municipality and 
month, by including explanatory variables such as precipitation, temperature, humidity, radiation, and land-use 
transition. Since the standard linear regression model assumes that observations are independent, it does not 
address our need to accommodate dependencies in time and space. As we deal with panel data (counts) that 
vary in time and space, we decided to work with a spatio-temporal generalized linear mixed model for areal 
unit data developed  by41. Models of this class help to fit areal unit data given in discrete periods while allowing 
the inclusion of explanatory variables, which have already been used in works  by42–45. In the next paragraphs, 
we will briefly review this model.

Consider N non-overlapping areal units. Data is recorded for each unit in T consecutive time periods. For 
modeling purposes, in our case, time is given in months and Brazilian municipalities are the areal units. Let 
Yi,t be the number of fire spots observed in municipality i ∈ {1, . . . ,N} and at time t ∈ {1, . . . ,T} . Suppose that 
Yi,t | µi,t ∼ Poisson(µi,t) to model count data, where E[Yi,t | µi,t ] = µi,t = oi,t�i,t , �i,t is the risk of fire spot in 
municipality i during month t relative to an offset oi,t , and E[· | ·] denotes the conditional expectation operator. 
Working with the default log link function, we have:

where:

• xi,t = (1, xi,t,1, . . . , xi,t,p−1) is a p-dimensional vector of known covariates for municipality i and time period 
t, whose entries form the [(t − 1) · N + i]-th row of the NT × p design matrix X;

• β = (β0,β1, . . . ,βp−1) is a p-dimensional vector of covariate regression parameters and its prior distribution, 
specified as β ∼ Normalp(µβ ,�β)  by41, has mean vector µβ and diagonal covariance matrix �β;

• ψi,t is a latent component for municipality i and time period t encompassing one or more sets of spatio-
temporally autocorrelated random effects.

Note that we have a traditional Poisson log-linear model if ψi,t = 0 for all i ∈ {1, . . . ,N} and t ∈ {1, . . . ,T} . 
Since there is often interest in checking whether there is any simple linear trend in the random effects ψi,t for 
each region i41 proposed the use of the following specification to estimate autocorrelated linear time trends for 
each areal unit:

where:

• β0 comes from the covariate component x⊺i,tβ in (2) and represents the overall intercept parameter;
• φi is the incremental intercept parameter for the i-th municipality;
• α is the overall slope parameter, with prior distribution α ∼ Normal(µα , σ

2
α);

• δi is the incremental slope parameter for the i-th municipality; and
• t̄ = 1

T

∑T
t=1 t = (T + 1)/2 is the average time.

(2)ln �i,t = x
⊺

i,tβ + ψi,t ,

(3)ψi,t = β0 + φi + (α + δi) ·
t − t̄

T
,
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According  to41, the specification given in (3) is recommended if the aim of the analysis is to estimate which areas 
exhibit increasing or decreasing linear trends in the response over time. As a consequence of this formulation, 
each municipality i is allowed to have its own risk profile over time whose intercept is β0 + φi and whose trend 
is α + δi

46. In other words, the model gives the spatio-temporal pattern in the mean response with a spatially 
varying linear time trend.

Let W =
[

wi,i′
]

N×N
 be a symmetric non-negative neighborhood matrix, where wi,i′ represents the spatial 

closeness between municipalities. The diagonal elements of this matrix are equal to zero. The off-diagonal ele-
ments ( i  = i′ ) receive the following binary specification: wi,i′ = 1 , if municipalities i and i′ share a common 
border; and wi,i′ = 0 , otherwise. To ensure model identifiability, the elements of vectors φ = (φ1, . . . ,φN ) and 
δ = (δ1, . . . , δN ) satisfy 

∑N
i=1 φi =

∑N
i=1 δi = 0 . Write φ−i and δ−i to denote the vectors φ and δ without their 

corresponding i-th entries, respectively. To complete the  model41 specify the following prior distributions:

and

where:

• ρint and ρslo are spatial dependence (or auto-regression) parameters for the intercept ( φi ) and slope ( δi ) pro-
cesses, respectively, which are specified with independent prior distributions over the unit interval [0, 1] so 
that zero corresponds to independence and one corresponds to strong spatial smoothness;

• τ 2slo and τ 2int are random effects variance parameters for the intercept ( φi ) and slope ( δi ) processes, respectively, 
which are specified with independent Inverse-Gamma(a, b) conjugate prior distributions.

The vector of observations is y = (y1,1, . . . , y1,T , . . . , yN ,1, . . . , yN ,T ) . The collection of parameters is 
θ = {β ,φ, δ,α, {ρint, ρslo}, {τ

2
int, τ

2
slo}} , whose parameter space is � = R

p × R
N × R

N × R× [0, 1]2 × (0,∞)2 . 
Since the density of the posterior distribution f (θ | y) does not have a closed-form, one can use the Markov 
chain Monte Carlo (MCMC) algorithm to sample from this density. The correlated linear time trends model is 
officially implemented in the ST.CARlinear function of the R package CARBayesST41. Alternatively, one can 
fit this model using the Bcartime function of the R package bmstdr47. The hyperparameters µβ , �β , a, b, µα , 
and σ 2

α are chosen to have flat prior distributions for all model parameters, which were specified as: µβ = 0p , 
�β = 105 · Ip , a = 1 , b = 0.01 , µα = 0 , and σ 2

α = 1000.

Computational resources
All analyses were conducted using the R programming language (version 4.3.2)39, on a personal computer with 
the following configuration: (i) Processor: Intel Core i7-6500U CPU @ 2.50 GHz; (ii) Installed RAM: 16 GB; 
(iii) Operating system: Windows 10 64-bit.

Results and discussion
Spatial and temporal data visualization
In this section, we document temporal and spatial patterns in the number of fire spots in the whole Brazilian 
territory, per municipality (administrative region), and per biome (large region of vegetation and wildlife adapted 
to a specific climate). The temporal analysis was done by organizing the data in terms of daily observations, and 
the spatial analysis was done by considering all 5570 Brazilian municipalities. Table 2 shows the total number 
of fire spots in the Brazilian territory per year and its variation rate (i.e., the percentage change from one year to 
the next) compared with the previous year, and Fig. 2 depicts the total daily number of fire spots in the Brazilian 
territory between January 1, 2011, and December 31, 2022.

Figure 3 shows the total daily number of fire spots per biome between January 1, 2011, and December 31, 
2022. A seasonal effect and an increase in fire spots are visible in several biomes for 2019 and 2020 compared 
with the years before, especially for Pantanal. When we look at the Amazônia, it is possible to notice that after a 
drop in 2021, a new rise in the number of fire spots is visible in 2022.

Figure 4 shows the heat map with the total number of fire spots for each of the 5570 Brazilian municipalities 
per year, where we can see the temporal trend for each municipality. It is visible that Amazônia has been fusti-
gated by forest fires year after year, and the Pantanal had an increase in the number of fire spots in 2019-2021.

Figure 5 shows the heat map with the monthly average number of fire spots for each of the 5570 municipalities 
between 2011 and 2022, i.e., the number of fire spots in a given municipality in a given month is the average of 
all fire spots in that municipality for that month using the 12 years available. The highest number of fire spots are 
observed in August, September, and October, with a significant incidence in the biomes of Amazônia, Pantanal, 
and parts of Cerrado.

(4)φi | φ−i ,W ∼ Normal
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N
�

i′=1

wi,i′φi′
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The temporal and spatial plots related to the meteorological variables and variables associated with the land-
use transitions are available in the supplementary material. Figures S2–S5 show the monthly average for the 
meteorological variables precipitation, air temperature, humidity, and wind speed, respectively, between January 
1, 2012, and December 31, 2021, for each Brazilian biome. The geographic locations of all Brazilian meteorologi-
cal stations are depicted in Fig. S1 of the supplementary material.

Table 2.  Total number of fire spots in the Brazilian territory per year, between January 1, 2011, and December 
31, 2022, and its variation rate compared with the previous year.

Year Fire Spots Variation Rate (%)

2011 158,099 –

2012 217,238 37

2013 128,149 − 41

2014 175,900 37

2015 216,782 23

2016 184,218 − 15

2017 207,511 13

2018 132,872 − 36

2019 197,632 49

2020 222,798 13

2021 184,081 − 17

2022 200,763 9

Figure 2.  Daily number of fire spots in the Brazilian territory between January 1, 2011, and December 31, 2022.

Figure 3.  Daily number of fire spots between January 1, 2011, and December 31, 2022, for each of the six 
biomes: Amazônia, Cerrado, Atlantic forest (Mata Atlântica), Caatinga, Pampa, and Pantanal, respectively.
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Figure S6 of the supplementary material shows the evolution of land use and occupation by green areas 
(forests or non-forest natural formations) between January 1, 2011, and December 31, 2021, for each Brazil-
ian municipality. The maps show the difference in the green area occupation between the years t and t + 1 , for 
t = 2011, . . . , 2020 , in thousands of hectares (overall numbers per municipality). Figure S7 is similar to Figure S6, 
where the total number of hectares is weighted by the municipality’s area. In both plots, there is a predominance 
of red over green, representing a loss in the land occupation of green areas from one year to the next, being more 
extreme between 2019 and 2020, reaching the worst situation in 2021. Figures S8 and S9 are similar to Figures S6 
and S7, respectively, being the heat maps obtained by considering the year 2011 as the reference. This allows a 
cumulative comparison with 2011 regarding land use and occupation by green areas.

Figure S10 shows the evolution of land use and occupation by farming between January 1, 2011, and Decem-
ber 31, 2021, for each Brazilian municipality. The maps show the difference in the green area occupation between 
the years t and t + 1 , for t = 2011, . . . , 2020 , in thousands of hectares (overall numbers per municipality). Fig-
ure S11 is similar to Figure S10, where the total number of hectares is weighted by the municipality’s area. In 
both plots, there is a predominance of red color over green, representing a gain in the land occupation with 
farming from one year to the next, being more extreme between 2019 and 2020, reaching the worst situation 
in 2021. Figures S12 and S13 are similar to Figures S10 and S11, respectively, being the heat maps obtained by 
considering the year 2011 as the reference. This allows a cumulative comparison with the year 2011 regarding 
land use and occupation by farming.

Spatio‑temporal modeling
Based on the data visualization results, and as expected, we noticed that the number of fire spots depends on 
time and space. In addition, we noted that the number of fire spots varies greatly per biome. Due to the hetero-
geneity among biomes, instead of simultaneously proposing a model for all Brazilian municipalities, we adjusted 
a statistical model per biome to model each municipality’s monthly totals of fire spots. Here, we work with a 
Bayesian spatio-temporal generalized linear mixed model proposed  by41 and called correlated linear time trends 
model, which was reviewed in Subsection 2.4, as it is more suitable for count data and allows the inclusion of 
explanatory variables.

We worked with N = 5568 of the 5570 Brazilian municipalities in the spatio-temporal modeling, excluding 
two islands due to a limitation of the neighborhood matrix. This matrix requires non-zero rows, implying that 
each municipality needs at least one neighbor. Moreover, we considered T = 120 months equally spaced in time 
(ten years, from 2012 to 2021).

Figure 4.  Heat map with the total number of fire spots per year for each of the 5570 Brazilian municipalities. 
The lines represent the borders of the Brazilian states. The plots were generated with the R  software39.
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Initially, the six models, one per biome, included all available explanatory variables: land-use transition (LUT), 
precipitation (PREC), temperature (TEMP), humidity (HUMID), and wind speed (WSPD). Due to the strong 
correlation among some atmospheric explanatory variables and the risk of having multicollinearity, we performed 
a selection of variables where only atmospheric explanatory variables most correlated with the response variable 
and least correlated with each other were considered in each model, one per biome. We consider the municipal 
area, expressed in hectares, as an offset ( oi,t = Areai ), which is sent to the six models on the log-scale. Writing 
in terms of (2), the six models, one for each biome, have the following structure:

We have data for T = 120 months, corresponding to V = 10 years. Let v ∈ {1, . . . ,V} be the year. As the LUTi,t 
values are the same for the twelve months of each year of the study, we have:

We ran the MCMC algorithm 30,000 times to estimate the parameters of the models fitted for each biome, 
excluding the first 15,000 iterations (burn-in period) and taking samples from the posterior distribution every 
15th iteration to reduce autocorrelation in the chains, which formed a sample of size 1,000 from the posterior 
distribution. Table 3 shows some statistics of model parameters for each biome. Firstly, note that the spatial 
dependence parameters ( ρint and ρslo ) are significant for all models and present greater intensity in the models 
for the Pampas and Pantanal biomes. To assess the convergence of the chains, one can study the behavior of the 
trace plots and compute Geweke’s statistics. According  to48, values for Geweke’s statistic must be between −1.96 
and 1.96 to indicate convergence. The results obtained for this statistic indicate convergence for all parameters 
of the six models. The acceptance rates for parameters τ 2int and τ 2slo are equal to 100%, since their full conditional 
distributions are known due to the use of conjugate prior distributions. Table 4 shows the acceptance rates for 
the other parameters sampled by the Metropolis-Hastings algorithm for each model. Table 5 shows some fit 
criteria for each model.

Let Xj = (x1,1,j , . . . , x1,T ,j , . . . , xi,t,j , . . . , xN ,1,j , . . . , xN ,T ,j) be the (j + 1)-th column of the NT × p design matrix 
X , j ∈ {1, . . . , p− 1} . The effect of variable xi,t,j on the number of fire spots is quantified as relative risk, for a 
fixed increase ξ in the value of this  variable49 recommends using ξ = sXj to represent a realistic increase in the 
current value xi,t,j , where sXj is the sample standard deviation of covariate Xj . According  to41 and exponentiating 
(2), the relative risk for an increase ξ in variable xi,t,j is calculated by

(6)�i,t = β0 + βLUTLUTi,t + βHUMIDHUMIDi,t + βTEMPTEMPi,t + ψi,t .

(7)LUTi,12(v−1)+1 = LUTi,12(v−1)+2 = · · · = LUTi,12(v−1)+12.

Figure 5.  Heat map with the monthly average number of fire spots for each of the 5570 municipalities between 
2011 and 2022. The lines represent the borders of the Brazilian states. The plots were generated with the R 
 software39.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:21616  | https://doi.org/10.1038/s41598-024-70082-6

www.nature.com/scientificreports/

Parameters Post. mean 95% CI ESS GS

Amazônia

β0 − 7.6545 (− 7.7199, − 7.5852) 123.0 − 0.5

βLUT − 0.0047 (− 0.0050, − 0.0044) 129.6 0.1

βHUMID − 0.0622 (− 0.0625, − 0.0619) 112.9 0.5

βTEMP 0.2169 (0.2148, 0.2189) 154.6 0.3

α − 0.4174 (− 0.4365, − 0.3982) 635.1 0.1

τ 2
int

1.1985 (1.0284, 1.4093) 1000.0 0.5

τ 2
slo

1.0287 (0.8510, 1.2649) 891.7 − 0.2

ρint 0.0211 (0.0008, 0.0589) 918.2 1.0

ρslo 0.0304 (0.0018, 0.0847) 696.3 − 0.1

Caatinga

β0 − 6.4695 (− 6.6459, − 6.3186) 65.9 − 0.6

βLUT 0.0913 (0.0844, 0.0982) 98.2 1.1

βHUMID − 0.0895 (− 0.0903, − 0.0886) 82.3 − 0.7

βTEMP 0.1623 (0.1574, 0.1676) 67.2 0.9

α 0.1723 (0.1233, 0.2182) 725.3 − 0.7

τ 2
int

2.7714 (2.4229, 3.2521) 707.7 − 1.2

τ 2
slo

2.1794 (1.8987, 2.5082) 764.3 1.8

ρint 0.0274 (0.0021, 0.0674) 615.4 − 0.9

ρslo 0.0125 (0.0004, 0.0407) 878.6 − 0.2

Cerrado

β0 − 2.7890 (− 2.8374, − 2.7322) 42.1 1.3

βLUT − 0.0153 (− 0.0162, − 0.0142) 102.2 − 1.1

βHUMID − 0.0794 (− 0.0797, − 0.0792) 101.8 − 1.3

βTEMP 0.0453 (0.0432, 0.0470) 43.5 − 1.2

α − 0.0768 (− 0.0973, − 0.0566) 825.3 − 0.8

τ 2
int

0.9776 (0.8884, 1.0986) 1000.0 1.1

τ 2
slo

1.1143 (0.9938, 1.2770) 654.2 0.2

ρint 0.0103 (0.0003, 0.0318) 1000.0 − 0.1

ρslo 0.0150 (0.0008, 0.0444) 621.5 0.4

Mata Atlântica

β0 2.8770 (2.8061, 2.9537) 241.2 − 0.6

βLUT − 0.0300 (− 0.0397, − 0.0199) 147.3 − 1.8

βHUMID − 0.1093 (− 0.1101, − 0.1085) 166.4 0.2

βTEMP − 0.1217 (− 0.1236, − 0.1198) 276.7 0.8

α 0.0766 (0.0465, 0.1073) 813.4 1.4

τ 2
int

1.3385 (1.2488, 1.4441) 1000.0 − 0.3

τ 2
slo

1.8315 (1.6782, 2.0320) 659.1 − 0.2

ρint 0.0068 (0.0002, 0.0190) 883.1 − 0.5

ρslo 0.0088 (0.0003, 0.0284) 628.4 1.0

Pampas

β0 0.8876 (0.5054, 1.2512) 231.0 − 0.9

βLUT − 0.0368 (− 0.0669, − 0.0028) 56.7 0.9

βHUMID − 0.0781 (− 0.0822, − 0.0742) 260.0 0.8

βTEMP − 0.1848 (− 0.1916, − 0.1782) 309.3 0.5

α 0.3151 (0.1900, 0.4365) 742.5 0.6

τ 2
int

3.1092 (2.4505, 3.9517) 1000.0 0.2

τ 2
slo

2.0882 (1.3573, 3.1047) 536.2 − 0.8

ρint 0.7711 (0.5771, 0.9351) 1000.0 − 0.2

ρslo 0.4752 (0.1784, 0.7932) 446.5 0.0

Pantanal

β0 − 0.7567 (− 0.9013, − 0.6131) 321.0 − 0.3

βLUT − 0.0225 (− 0.0239, − 0.0213) 202.2 − 0.4

βHUMID − 0.1028 (− 0.1039, − 0.1018) 174.6 1.6

βTEMP 0.0292 (0.0246, 0.0334) 355.0 − 0.6

Continued
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We compute exp{β̃jsXj } to estimate the relative risk given in Equation (8), where β̃j is the posterior median of 
βj . Table 6 shows the relative risks for each model by variable. An increase of one standard deviation unit in the 
current value of HUMID decreases the risk of fire spots by 45.1% in the Amazônia, 68.0% in the Caatinga, 62.0% 
in the Cerrado, 61.4% in the Mata Atlântica, 39.9% in the Pampas, and 67.4% in the Pantanal. On the other hand, 
an increase of one standard deviation unit in the current value of TEMP increases the risk of fire spots by 34.9% 
in the Amazônia, 47.4% in the Caatinga, 14.4% in the Cerrado, and 6.7% in the Pantanal. An increase of one 
standard deviation unit in TEMP reduced the risk of fire outbreaks by 35.7% in the Mata Atlântica, and 51.1% 
in the Pampas, which may be related to the increase in the number of fire outbreaks due to the fall in relative air 
humidity during  winter50. Although the value one is outside the 95% CI of the relative risk of LUT , the effect of 
adding one standard deviation unit on this variable is low in all models.

Let {θ (k) : k = 1, . . . ,K} be a collection of K MCMC samples of the posterior distribution. Since 
lnµi,t = ln oi,t + ln �i,t , the (i, t)-th predicted value based on the k-th MCMC sample is calculated as:

Using (9), some summary statistics can be calculated. For instance, the posterior mean of the (i, t)-th predicted 
value is µi,t = (1/K)

∑K
k=1 µ

(k)
i,t  . In addition, one can consider the temporally varying values, aggregated over 

all municipalities, to quantify changes in temporal trends. Based  on47, in Fig. 6 we evaluate the average observed 
values y.,t = (1/N)

∑N
i=1 yi,t and the average fitted values ŷ.,t = (1/N)

∑N
i=1 µi,t over time for each model. Based 

on the “peaks” of each of the subfigures, it is noted that most biomes show an increase in the number of fire spots 
in 2020–2021 compared to 2018–2019. Attention is focused on the totals observed in the Amazônia biome and, 
mainly, in the Pantanal biome.

The incremental slope parameter δi is also called the “differential trend of the i-th areal unit”, i ∈ {1, . . . ,N} , 
which is the interaction between the time effect and the municipality effect. According to the interpretation given 
 by46, it is known that δi is negative (positive, respectively) when the temporal trend of the municipality i is less 
steep (steeper, respectively) than the mean trend α . In this work, we say that δi is null if zero is contained within 
its 95% credible interval. Figure 7 shows the municipalities where δi is positive, null or negative by biome, which 
can be useful especially in Amazônia, Cerrado, and Pantanal biomes, since they are related to high total fire spots.

To assess whether the model adequately captures the structure and variability of the observed data, a residual 
analysis of the model and the Posterior Predictive Checks (PPC) can be performed.

The (i, t)-th “raw” residual is defined as ri,t = yi,t − µi,t . Specifically for Poisson models, the (i, t)-th Pearson 
residual is r∗i,t = ri,t/

√

µi,t  . To obtain the spatial Pearson residual for each municipality i, aggregated across all 
time  periods47, suggests to compute r∗i,. = (1/T)

∑T
t=1 r

∗
i,t . The spatial residuals shown in Fig. 8 indicate good 

fit for the six models.
Define ysim = (ysim1,1 , . . . , y

sim
1,T , . . . , y

sim
N ,1, . . . , y

sim
N ,T ) . PPC involves simulating data from the posterior predictive 

distribution f (ysim | y) and comparing the simulated data to the observed data. If the resulting distributions are 
similar, it indicates that the model in use is capturing the underlying distribution of the data and is therefore 
considered valid. Under the conditional independence assumption, f (ysim | y) is given by:

(8)

RR(xi,t,j; ξ) =
Risk of fire spot if xi,t,j increased by ξ

Risk of fire spot given the current value of xi,t,j

=
eβ0+β1xi,t,1+···+βj(xi,t,j+ξ)+···+βp−1xi,t,p−1+φi+(α+δi)·

t−t̄
T

eβ0+β1xi,t,1+···+βjxi,t,j+···+βp−1xi,t,p−1+φi+(α+δi)·
t−t̄
T

=eβjξ .

(9)µ
(k)
i,t = exp







ln oi,t + β
(k)
0 +

p−1
�

j=1

β
(k)
j xi,t,j + φ

(k)
i + [α(k) + δ

(k)
i ] ·

t − t̄

T







.

(10)f (ysim | y) =

∫

�

[

N
∏

i=1

T
∏

t=1

f (ysimi,t | µi,t)]f (θ | y)∂θ .

Table 3.  Statistics of model parameters for each biome: posterior mean and its 95% credibility interval (CI), 
effective sample size (ESS), and Geweke’s statistic (GS).

Parameters Post. mean 95% CI ESS GS

α 0.6831 (0.6004, 0.7604) 637.1 − 1.2

τ 2
int

0.8953 (0.4185, 1.8148) 861.1 − 0.1

τ 2
slo

1.0254 (0.4856, 2.1762) 1000.0 − 0.7

ρint 0.1935 (0.0052, 0.6162) 1000.0 − 0.6

ρslo 0.0846 (0.0014, 0.3809) 802.6 − 1.8
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Since the integral that appears in (10) is not analytically tractable, one may use Monte Carlo methods to approxi-
mate it in two steps. For each municipality i ∈ {1, . . . ,N} , time t ∈ {1, . . . ,T} and MCMC sample k ∈ {1, . . . ,K} , 
firstly compute µ(k)

i,t  using (9) and then generate ysim(k)
i,t  from the Poisson(µ(k)

i,t ) distribution. Working with counts, 
PPC consists of comparing the relative frequencies of y (observed data) with those of {ysim(k) : k = 1, . . . ,K} 
(simulated data). Figure 9 shows that the differences between the relative frequencies of observed data and 
simulated data in all models are small, indicating that the adjustments are adequate.

Concluding remarks
This paper explores and models the behavior of the number of fire spots in the whole Brazilian territory between 
January 1, 2011, and December 31, 2022, considering meteorological variables (precipitation, air temperature, 
humidity, and wind speed) and a human variable (land-use transition) as covariates.

In the descriptive analysis, we found out that the number of fire spots has a seasonal pattern and has been 
increasing in the last years of our study, particularly in 2019 and 2020 (Figs. 2, 3 and 4), with the Pantanal biome 
showing the most important increase in the number of fire spots in the years 2020–2021 (Fig. 3). The most 
affected biomes are Amazônia, Cerrado, and Pantanal (Figs. 3 and 4), having the state of Pará the highest con-
centration in the number of fire spots (Figs. 4 and 5). The highest incidence of fire spots is in August, September, 
and October (Fig. 5).

Concerning land-use and occupation behavior by green areas (forests or non-forest natural formations) 
between 2011 and 2021, a loss is observed from one year to the next, more extreme between 2020 and 2021 
(Figs. S6 and S7). An opposite trend was observed for land use and occupation by farming, with a gain in land 
occupation from one year to the next, being more extreme between 2020 and 2021 (Figs. S10 and S11).

The spatio-temporal modeling (Table 3) showed that the meteorological variables humidity and air tem-
perature significantly impacted the number of fire spots for each of the six Brazilian biomes. Although the value 
one is outside the 95% CI of the relative risk of land use transition (Table 6), the effect of adding one standard 
deviation unit on this variable is low in all models. A limitation of this class of models is that it cannot consider 
overdispersion and zero-inflated data.

Our research significantly advances wildfire analysis in Brazil by focusing on studying fire spot dynamics. 
Firstly, our national-scale analysis spanning twelve years goes beyond localized studies, providing a broader 
understanding of fire spot patterns. Secondly, by integrating meteorological variables and human-induced land-
use transitions, we reveal the complex drivers of fire spots. Thirdly, our methodological rigor, including Bayes-
ian inference, enhances the reliability of our findings. Lastly, our study offers practical implications for wildfire 
management, guiding proactive strategies. These contributions deepen our understanding of wildfire dynamics 
and provide valuable stakeholder insights.

The strategies and approach proposed in this paper are of great generality and can be applied to study and 
understand the behavior of similar data sets in other world regions and in different fields of application where 
the data has a similar structure.

Table 4.  Acceptance rate (%) of model parameters per biome sampled from the posterior distribution using 
the Metropolis-Hastings algorithm.

Biome β α φ δ ρint ρslo

Amazônia 42.3 34.8 41.9 41.3 40.2 43.8

Caatinga 41.6 39.4 48.8 49.5 43.1 46.7

Cerrado 40.2 36.1 41.4 48.0 48.3 39.0

Mata Atlântica 46.1 36.2 49.4 48.5 44.7 42.2

Pampas 43.2 36.1 48.1 47.9 41.4 46.0

Pantanal 44.5 33.6 43.0 44.4 49.3 56.3

Table 5.  Fit criteria for each model by biome. DIC abbreviates Deviance Information Criterion, pD is the 
estimated effective number of parameters, LMPL abbreviates Log Marginal Predictive Likelihood, WAIC 
abbreviates Watanabe-Akaike Information Criterion, pW is the estimated number of effective parameters, and 
ln L is the natural logarithm of the likelihood function.

Biome DIC pD WAIC pW LMPL ln L

Amazônia 1552262.9 1118.6 1592961.6 57088.9 − 774444.7 − 775012.9

Caatinga 438833.0 2095.7 457118.5 20618.2 − 223568.7 − 217320.8

Cerrado 1158941.8 2710.8 1201742.8 43203.9 − 591431.2 − 576760.1

Mata Atlântica 595699.2 4967.3 609729.8 17140.3 − 304474.6 − 292882.3

Pampas 36530.4 336.3 37068.5 822.1 − 18535.4 − 17928.9

Pantanal 87130.4 103.4 118373.9 22646.5 − 43433.6 − 43461.8
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Table 6.  Sample standard deviation (SD), posterior median of relative risk (RR) and 95% credible interval (CI) 
for RR, per variable of each model.

Biome Variable SD RR 95% CI

Amazônia

LUT 7.6397 0.965 (0.9623, 0.9673)

HUMID 9.6260 0.549 (0.5477, 0.5509)

TEMP 1.3804 1.349 (1.3452, 1.3527)

Caatinga

LUT 1.2516 1.121 (1.1114, 1.1307)

HUMID 12.7339 0.320 (0.3165, 0.3237)

TEMP 2.3890 1.474 (1.4564, 1.4923)

Cerrado

LUT 2.3065 0.965 (0.9633, 0.9678)

HUMID 12.1639 0.380 (0.3792, 0.3818)

TEMP 2.9749 1.144 (1.1372, 1.1500)

Mata Atlântica

LUT 0.8465 0.975 (0.9669, 0.9833)

HUMID 8.7139 0.386 (0.3832, 0.3884)

TEMP 3.6243 0.643 (0.6390, 0.6477)

Pampas

LUT 1.9251 0.930 (0.8791, 0.9946)

HUMID 6.5237 0.601 (0.5850, 0.6163)

TEMP 3.8678 0.489 (0.4767, 0.5019)

Pantanal

LUT 9.8376 0.801 (0.7906, 0.8111)

HUMID 10.9043 0.326 (0.3221, 0.3297)

TEMP 2.2285 1.067 (1.0563, 1.0773)

Pampas Pantanal

Cerrado Mata Atlântica

Amazônia Caatinga
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Figure 6.  Observed and fitted average number of fire spots, per model. Observed values are represented by 
black dots, fitted values are represented by the solid blue line, and 95% CI are represented by dashed red lines. 
The plots were generated with the R  software39.
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Besides a comparative analysis with other spatiotemporal models, future research should focus on forecasting 
wildfire fire spots to provide insights for proactive wildfire management and mitigation strategies. Examining 
the effects of different land management practices on fire frequency and intensity could offer practical recom-
mendations for reducing wildfire risks. These studies could explore how variations in agricultural practices, 
reforestation efforts, and urban development influence wildfire dynamics across diverse biomes. Moreover, it is 
essential to continue monitoring wildfire fire spots’ spatial and temporal dynamics, particularly in the context of 
climate change and evolving land-use patterns. Longitudinal studies are needed to assess the long-term impact 
of land management practices on fire frequency and intensity.

Figure 7.  Heat maps with the sign of the incremental slope parameter δi relative to the i-th Brazilian 
municipality by biome, being null if zero is contained within its 95% credible interval. The plots were generated 
with the R  software39. The limits of the municipalities belonging to the Mata Atlântica biome were removed to 
allow better visualization, given their small sizes.
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Figure 8.  Heat maps with the spatial Pearson residuals for Brazilian municipalities, per model. The plots were 
generated with the R  software39. The limits of the municipalities belonging to the Mata Atlântica biome were 
removed to allow better visualization, given their small sizes.
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Figure 9.  Relative frequencies of observed data and simulated data from the posterior predictive distribution, 
for all six models. The plots were generated with the R  software39.
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Data availability
All data generated and analyzed during this study are included in this published article and its supplementary 
information files and available at https:// github. com/ SaLLy- labor atory/ Brazi lian- wildfi res.
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