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Assessing vaccine efficacy 
for infectious diseases with variable 
immunity using a mathematical 
model
Mo’tassem Al‑arydah 

This study introduces an SIRS compartmental mathematical model encompassing vaccination and 
variable immunity periods for infectious diseases. I derive a basic reproduction number formula and 
assess the local and global stability of disease-free and the local stability of the endemic equilibria. I 
demonstrate that the basic reproduction number in the presence of a vaccine is highly sensitive to the 
rate of immunity loss, and even a slight reduction in this rate can significantly contribute to disease 
control. Additionally, I have derived a formula to calculate the critical efficacy period required for a 
vaccine to effectively manage and control the disease.The analysis conducted for the model suggests 
that increasing the vaccine’s immunity duration (efficacy) decelerates disease dynamics, leading to 
reduced rates of reinfection and less severe disease outcomes. Furthermore, this delay contributes to 
a decrease in the basic reproduction number ( R

0
 ), thus facilitating more rapid disease control efforts.

Keywords  Mathematical model, Variable immunity period, Infectious diseases, Vaccine efficacy, Disease 
control

Infectious diseases have long been a major public health concern, causing millions of deaths every year. Vac-
cine development has been a significant step toward preventing the spread of infectious diseases, but vaccine 
effectiveness can vary depending on factors such as the duration of immunity provided by the vaccine. Math-
ematical models are effective tools for studying the spread of infectious diseases and assessing the effectiveness 
of interventions like vaccination.

Several studies have explored SIRS (Susceptible-Infectious-Recovered-Susceptible) disease models with vari-
ous transmission rates, Several studies have explored SIRS (Susceptible-Infectious-Recovered-Susceptible) disease 
models with various transmission rates, providing insights into the complex dynamics of infectious diseases 
within diverse populations. For instance1, analyzed epidemic spreading in complex networks, while2 investigated 
global stability in multi-group SIRS models with varying population sizes. In3, the global stability of SIRS models 
with saturation incidence were studied, while4 examined the global stability of SIS, SIR, and SIRS models with 
density-dependent bilinear incidence. Other works that analysis SIS models are in5 and6.  In7, global stability was 
investigated in an SIRS deterministic model with vaccine and generalized nonlinear incidence, while8 analyzed a 
stochastic SIVS epidemic model with nonlinear saturated incidence. Additionally, studies by9 and10 investigated 
the stability of SIRS models with nonlinear incidence, time delay, and temporary immunity. Moreover11, and12 
employed Lyapunov functional techniques to analyze the global stability of delayed SIRS epidemic models. These 
diverse investigations highlight the importance of considering various transmission rates in SIRS disease models 
to better understand disease dynamics and inform effective control strategies.

Modeling the impact of waning immunity on the transmission of infectious diseases have been considered 
in literature. In13 the author considered variable latent periods for Tuberculosis, and proved that the qualitative 
behaviors for the model predicted are similar to those given by the model with an exponentially distributed 
period of latency. An epidemic model with distributed time delay is derived in14 to describe the dynamics of infec-
tious diseases with varying immunity. According to15, waning immunity shortens inter-epidemic periods and 
makes disease eradication difficult.  In16, a general model is developed to study both immunity loss and immunity 
boosting, specifically in the context of subclinical infections. Also considers the impact of various assumptions 
about the nature of immunity. The authors show in17 that moderate waning times (40–80 years) and high levels 
of vaccination (greater than 70% ) can cause large-scale oscillations with a large number of symptomatic cases at 
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the peak. In18 the authors show that variable infectivity and recovery rate lead to backward bifurcations under 
certain conditions for SIRS and SIS models. This makes controlling the disease is more complicated as making 
the basic reproduction number less than one is not enough to control the disease.

I am motivated by the work19 in which the author considered temporary immunity within a SIRS model 
when the rate of loss of immunity depend on the time since recovery from disease. The authors conducted the 
qualitative analysis for this model without considering any form of disease-control intervention. Furthermore, 
the demographic influence was not taken into account in this study. In this work, I will generalize this model to 
include, birth, death and vaccination, and examine the impact of demographic characteristics and vaccinations on 
the qualitative analysis undertaken in that work. In fact, this work can be considered an improving of my research 
on COVID-1922, where I will explore answers to the following questions: (1) How the waning of immunity affects 
the epidemic period? (2) How the waning of immunity affects the vaccine effectiveness in controlling the disease? 
what will be the disease eradication period? (3) How the waning of immunity will affect the vaccine efficacy? 
(4) Does extending the duration of immunity confer by a vaccine significantly reduce the spread of disease?

The rest of the paper is organized as follows. In section “Formulation of the model” I introduce the mathemati-
cal model. In sections “Disease free equilibrium (DFE)” and “Endemic euilibrium (EE)” I discuss the existence 
and the stability of the DFE for the full model and the existence of the EE for a simplified model using calcu-
lated formula for the basic reproduction number. In section “Example of variable immunity losing rate ρ(⊤)” 
I introduce two simple functions for variable rate of losing immunity and reformulate the basic reproduction 
number and the mean value for losing immunity. Finally, I conclude with a summary in section “Discussion”.

Formulation of the model
I use a compartmental modeling approach to develop a mathematical model of an infectious disease with a vac-
cine and a variable immunity period. Specifically, I divide the population into three compartments: susceptible 
individuals, infected individuals, and recovered individuals.

Variables and parameters
The model divides the population into three groups based on immunity and disease status. The classes are 
susceptible S(t), infected I(t), and recovered with temporary immune class R(t, τ) , with τ representing the time 
since recovery or acquiring immunity from vaccination at the moment t.

When susceptibles come into contact with an infected individual, they become infected, and the rate of 
transmission is β . Vaccinated individuals leave the susceptible class to the recovered class at a rate of ν (vac-
cinating rate). Infected individuals recover at α rates and join the recovered class R(t, τ) . Recovered individuals 
may lose immunity at a rate of ρ(τ) and fall into the susceptible category. The disease has a γ death rate. The net 
recruitment rate of individuals to susceptibles is � and that determines the population growth. Furthermore, 
natural death costs µ.

The model
The ODEs that represent the dynamics in this model are

with the initial conditions S(0) = S0 > 0 , I(0) = I0 > 0 , R(0, τ) = 0 and the boundary condition

this equation indicates that individuals who recently recovered from infection or were just vaccinated enter the 
recovery class with zero time since recovery.

The total population is

Introducing

to be the probability that an immune individual remains immune at time τ after recovery. Note that P(0) = 1 
and will assume that limτ→∞ P(τ ) = 0 . Note that the average time to lose immunity is P =

∫∞

0
P(τ )dτ . Note 

that in the case ρ(τ) = ρ1 constant, I have P = 1
ρ1

.

(1)
dS

dt
= �− βS(t)I(t)− (v + µ)S(t)+

∫ ∞

0

ρ(τ)R(t, τ)dτ

(2)
dI

dt
= βS(t)I(t)− (α + γ + µ)I(t)

(3)
∂R

∂t
+

∂R

∂τ
= −(ρ(τ)+ µ)R(t, τ)

(4)R(t, 0) = αI(t)+ vS(t),

(5)N(t) = S(t)+ I(t)+

∫ ∞

0

R(t, τ)dτ

(6)P(τ ) = e−
∫ τ
0
ρ(s)ds
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Well posedness

Theorem 1  Any solution (S(t), I(t),R(t, τ)) of the system (1)–(3) with the non-negative initial conditions and the 
boundary condition (4) is nonnegative and bounded for t ≥ 0.

Proof  Solution is nonnegative: For the nonnegativity of I, note that when solving (2), I have For the nonnegativ-
ity of R(t, τ) , I use the characteristic method to find an explicit formula for R(t, τ) . I have

which is nonnegative for t ≥ 0.

which is nonnegative if both S and I are nonnegative. For the nonnegativity of S, I have

which is positive as

This implies that S can’t go below S = 0 as it is increasing at this value. Solution is bounded From (8), I have 
limτ→∞ R(t, τ) = 0 . Also, when differentiating (5), I have

As a result,

Therefore, if N(0) ≤ �
µ

 , then N(t) ≤ �
µ

 too. 	�  �

Corollary 1  The set � =

{

(S, I ,R) ∈ R
3
+ :, 0 ≤ S, I ,R ≤ �

µ

}

 is invariant for the dynamic system (1–3).

Disease free equilibrium (DFE)
To find the DFE, I set I = 0 , the right hand side of (1) to zero and ∂R

∂t = 0 in (3), then I solve for S and R. Then 
the DFE is (S0, 0,R0(τ )) with

and

with

(7)I(t) = I0e
∫ t
0
(βS(s)−µ−α−γ )ds

(8)
R(t, τ) =

{

R(τ − t, 0)e
∫ τ
0
(−µ−ρ(s))ds, if t ≤ τ

R(0, t − τ)e
∫ τ
0
(−µ−ρ(s))ds, if τ ≤ t

=

{

(αI(τ − t)+ vS(τ − t))e
∫ τ
0
(−µ−ρ(s))ds , if t ≤ τ

0, if τ ≤ t

(9)
dS

dt
|S=0 = �+

∫ ∞

0

ρ(τ)R(t, τ)dt

(10)R(t, τ)|S=0 =

{

αI(τ − t)e
∫ a
0
(−µ−ρ(s))ds, if t ≤ τ

0, if τ ≤ t

dN

dt
=

dS

dt
+

dI

dt
+

∫ ∞

0

∂R

∂t
dτ

=
dS

dt
+

dI

dt
+

∫ ∞

0

(−
∂R

∂τ
− (ρ(τ)+ µ)R(t, τ))dτ

=
dS

dt
+

dI

dt
− R(t, τ)|τ→∞ + R(t, 0)−

∫ ∞

0

(ρ(τ)+ µ)R(t, τ))dτ

= �− µN − γ I

≤ �− µN

N(t) ≤
�

µ
+

(

N(0)−
�

µ

)

e−µt

(11)R0(τ ) = vS0e−µτP(τ )

(12)S0 =
�

µ(1+ vQ)

(13)Q =

∫ ∞

0

e−µτP(τ )dτ .
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Here e−µτ is the probability of staying alive when no disease till time τ . e−µτP(τ ) is the likelihood of staying 
alive and immune till time τ . The entire likelihood of natural death for individuals who entered the immune 
class R(t, τ) is represented by Q.

Note that from (5), the total population in this is

It’s important to note that in the absence of a vaccine, the DFE level of susceptible individuals is independent of 
immunity loss. At the DFE, both the level of infected individuals and recovered individuals are zero. However, 
if a vaccine is introduced, the levels of both susceptible and recovered individuals will depend on the rate of 
immunity loss.

Stability of the DFE
I consider small perturbations around the DFE of the form

which, when plugged in (3) and solve for z0 , I have

and when plugged in (1), I have

By inserting (16) into (17), I get

and from (2), I have

The two equations (18) and (19) can be written in matrix form as J[x0 y0]
T = [0 0]T with

This linear system has none trivial solution if and only if det(J) = 0.
Then first real � value that makes det(J) = 0 is �1 = βS0 − (α + γ + µ) , which is negative if and only if

with R0 is the basic reproduction number. Other solutions for det(J) = 0 are the zeros for the following function

First, I will prove that the roots of F(�) are negative for the following special case for ρ(τ).

Special case for ρ(τ)
Here I discuss a scenario where individuals gain 100% immunity for a period T and then lose it at a constant 
rate ρ2.

with ρ2 constant. Note that in this case

Also, for �  = −(µ+ ρ2) , the function F can be simplified to

(14)N0 = S0 +

∫ ∞

0

R0(τ )dτ =
�

µ
.

(15)

S(t) = S0 + x0e
�t

I(t) = y0e
�t

R(t, τ) = R0(τ )+ z0(τ )e
�t

(16)z0(τ ) = (αy0 + vx0)e
−(�+µ)τP(τ )

(17)(�+ µ+ v)x0 + βS0y0 −

∫ ∞

0

ρ(τ)z0(τ )dτ = 0.

(18)
(

�+ µ+ v − v

∫ ∞

0

e−(�+µ)τ ρ(τ )P(τ )dτ

)

x0 +

(

βS0 − α

∫ ∞

0

e−(�+µ)τ ρ(τ )P(τ )dτ

)

y0 = 0

(19)(�− βS0 + α + γ + µ)y0 = 0

J =

[

�+ µ+ v − v
∫∞

0
e−(�+µ)τ ρ(τ )P(τ )dτ βS0 − α

∫∞

0
e−(�+µ)τ ρ(τ )P(τ )dτ

0 �− βS0 + α + γ + µ

]

(20)R0 :=
β�

µ(α + γ + µ)(1+ vQ)
< 1

(21)F(�) := �+ µ+ v − v

∫ ∞

0

e−(�+µ)τ ρ(τ )P(τ )dτ

ρ(τ) =

{

0 0 ≤ τ ≤ T
ρ2 τ > T

(22)Q =
1

µ

(

1− e−µT
)

+
1

µ+ ρ2
e−µT
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and F(�,T) = 0 is equivalent to

or

Note that in case T = 0 , this polynomial has positive coefficients, therefore two negative roots. As a result for 
T = 0 , the DFE is locally asymptotically stable when R0 < 1 and unstable for R0 > 1.

For T > 0

I define

with P2(�) := �
2 + (2µ+ v + ρ2)�+ (µ+ v)(µ+ ρ2) and Q0(T) = −vρ2e

−µT

Considering � = ωi with ω > 0 as the purely imaginary roots of the equation G(ωi,T) = 0 , upon substitution 
of � = ωi into the equation G(�,T) = 0 and subsequent separation of the real and imaginary parts, I obtain:

which after solving implies

with the substitution θ = ω2 , then solving the quadratic equation for θ , I have

since the −(2µ+ v + ρ2)
2 + v2ρ2

2e
−2µT < 0 for T > 0 . Therefore, θ is complex number and no ω > 0 real 

number exists. From the continuity of G(�,T) in T, I conclude that all roots for it stay in the left half plane for 
all T. Therefore, the DFE is locally asymptotically stable for R0 < 1 and T ≥ 0.

General case for ρ(τ)
I need to study the following two cases for �:

Case 1: � is real number. In this case F satisfies the following

and

Therefore, F can’t have nonnegative � roots. As a result, the DFE is locally asymptotically stable when R0 < 1 
and unstable when R0 > 1.

Case 2: � = u+ wi complex number. The real component of F(�) in this case is

As f(u) has no nonnegative roots, Re(F(�)) = 0 has no nonnegative roots too. Therefore, if � = u+ wi is a root 
for F, then u < 0.

Moreover,

(23)F(�,T) = �+ µ+ v −
vρ2e

−(�+µ)T

�+ µ+ ρ2

(�+ µ+ v)(�+ µ+ ρ2)− vρ2e
−(�+µ)T = 0

(24)�
2 + (2µ+ v + ρ2)�+ (µ+ v)(µ+ ρ2)− vρ2e

−(�+µ)T = 0

(25)G(�,T) := P2(�)+ Q0(T)e
−�T

(26)− ω2 + (µ+ v)(µ+ ρ2)− vρ2e
−µT cos(ωT) = 0

(27)(2µ+ v + ρ2)ω ++vρ2e
−µT sin(ωT) = 0

(28)ω4 − 2(µ+ v)(µ+ ρ2)ω
2 + (2µ+ v + ρ2)

2 + (µ+ v)2(µ+ ρ2)
2 − v2ρ2

2e
−2µT = 0

(29)θ = (µ+ v)(µ+ ρ2)±

√

−(2µ+ v + ρ2)2 + v2ρ2
2e

−2µT

(30)

F(0) = µ+ v − v

∫ ∞

0

e−µτ ρ(τ)P(τ )dτ

= µ+ v − v
(

− P(∞)e−∞ + P(0)e0 − µ

∫ ∞

0

e−µτP(τ )dτ
)

= µ(1+ v

∫ ∞

0

e−µτP(τ )dτ)

> 0

(31)
F ′(�) = 1+ v

∫ ∞

0

τe−(�+µ)τ ρ(τ )P(τ )dτ

> 0

(32)

Re(F(�)) = u+ µ+ v − v

∫ ∞

0

e−(u+µ)τ cos(wτ)ρ(τ)P(τ )dτ

> u+ µ+ v − v

∫ ∞

0

e−(u+µ)τ ρ(τ )P(τ )dτ

: = f (u)
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Therefore � = wi is not an eigenvalue and Hopf bifurcation near the DFE is impossible too. To summarize, 
det(J) = 0 roots include � = �1 and all other possible eigenvalue satisfies Re(�) < 0 . In fact, I established the 
following result:

Theorem 2  The DFE is locally asymptotically stable when R0 < 1 and unstable when R0 > 1.

R0 is the disease threshold amount, which estimates the average number of secondary infections caused by a 
single infected individual in in a population of susceptibles at a demographic steady state when some susceptible 
individuals have been vaccinated.

Theorem 3  For the no vaccine case ( v = 0 ) and ρ(τ) is bounded for large τ , the DFE is globally asymptotically 
stable when R0 < 1 and unstable for R0 > 1.

Proof  From (12) I have

Now define the following Lyapunov function

with m(τ ) =
∫∞

τ
ρ(s)e−

∫ s
τ (µ+ρ(ξ))dξds.

It is clear that V |DFE = S0 − S0 − S0 ln(1)+ I0 +
∫∞

0
m(τ ) ∗ 0dτ = 0 also

Substitute from (34), I have

To have V ′(t) < 0 , I need R0 < 1 when m(τ ) is chosen such that m(0) << 1 . 	�  �

Endemic equilibrium (EE)
The EE (Se , Ie ,Re(τ )) is found by setting the right hand sides of (1, 2) and ∂R

∂t = 0 in (3), then solve for S, I and 
R. From (2), I have

and from (3)

(33)

Re(F(�))|u=0 = µ+ v − v

∫ ∞

0

e−µτ cos(wτ)ρ(τ)P(τ )dτ

> µ+ v − v

∫ ∞

0

ρ(τ)P(τ )dτ

: = µ

(34)� = µS0

(35)V(t) = S(t)− S0 − S0 ln

(

S

S0

)

+ I(t)+

∫ ∞

0

m(τ )R(t, τ)dτ

(36)

V ′(t) =

(

S(t)− S0
)

S(t)
S′(t)+ I ′(t)+

∫ ∞

0

m(τ )
∂R(t, τ)

∂t
dτ

=

(

S(t)− S0
)

S(t)

(

�− βS(t)I(t)− µS(t)+

∫ ∞

0

ρ(τ)R(t, τ)dτ
)

+ βS(t)I(t)− (α + γ + µ)I(t)

+

∫ ∞

0

m(τ )(−
∂R(t, τ)

∂τ
− (µ+ ρ(τ))R(t, τ))dτ

(37)

V ′(t) =
(S(t)− S0)

S(t)

(

µ(S0 − S)− βS(t)I(t)+

∫ ∞

0

ρ(τ)R(t, τ)dτ
)

+ βS(t)I(t)− (α + γ + µ)I(t)

+

∫ ∞

0

m(τ )(−
∂R(t, τ)

∂τ
− (µ+ ρ(τ))R(t, τ))dτ

=
1

S(t)

(

− µ(S0 − S)2 − S0
∫ ∞

0

ρ(τ)R(t, τ)dτ
)

+
(

βS0 − (α + γ + µ)+m(0)α
)

I(t)

−

∫ ∞

0

m(τ )(µ+ ρ(τ))R(t, τ)dτ

Se =
α + γ + µ

β
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which when plugged in (1) and solved for Ie , I have

which is positive only for R0 > 1.
Note that in this case

It is important to emphasize that the equilibrium level of susceptible individuals ( Se ) is independent of the vaccine 
and immunity loss, while the equilibrium levels of infected ( Ie ) and recovered ( Re ) individuals are dependent on 
these factors. This EE state indicates that the input and output rates of the susceptible population are balanced, 
and the effect of the vaccine is not apparent in this case.

Stability of the EE
Considering the following small perturbations around the EE

which when I plug in (3) and solve for z0 , I have

and from (1), I have

with

Now, plug in (38) in (39), I have

Also, from (2), I have

with

as −βSe + µ+ α + γ = 0 . Therefore, (41) is reduced to

Therefore, the system (40) and (42) can be written on the matrix for M[x0 y0]
T = [0 0]T , with

This system has nontrivial solution [x0 y0]
T �= [0 0]T , if and only if F(�) := det(M) = 0 with

in which

Re(τ ) = (vSe + αIe)e−µτP(τ )

Ie =
�− µSe(1+ vQ)

γ + µ+ µαQ

=
µSe(1+ vQ)(R0 − 1)

γ + µ+ µαQ

Ne = Se + Ie + (αIe + vSe)Q =
�− γ Ie

µ

S(t) = Se + x0e
�t

I(t) = Ie + y0e
�t

R(t, τ) = Re(τ )+ z0(τ )e
�t

(38)z0(τ ) = (αy0 + vx0)e
−(�+µ)τP(τ )

(39)(�+ βIe + µ+ v)x0e
�t + βSey0e

�t −

∫ ∞

0

ρ(τ)z0(τ )dτe
�t − w1(τ ) = 0

w1(τ ) = �− βSe(t)Ie(t)− (v + µ)Se(t)+

∫ ∞

0

ρ(τ)Re(τ )dτ

= 0

(40)(�+ βIe + µ+ v − v

∫ ∞

0

e−(�+µ)τ ρ(τ )P(τ )dτ)x0 + (βSe − α

∫ ∞

0

e−(�+µ)τ ρ(τ )P(τ )dτ)y0 = 0

(41)−βIex0 + (�− βSe + µ+ α + γ )y0 − w2 = 0

w2 = βSeIe − (α + γ + µ)Ie = 0

(42)−βIex0 + �y0 = 0

M =

[

�+ βIe + µ+ v − v
∫∞

0
e−(�+µ)τ ρ(τ )P(τ )dτ βSe − α

∫∞

0
e−(�+µ)τ ρ(τ )P(τ )dτ

−βIe �

]

(43)F(�) = (1+ vQ∗(�))(�2 + µ�)+ βIe
(

(1+ αQ∗(�))�+ µ+ γ + αµQ∗(�)

)
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with Q∗(0) = Q . Note that integration by parts was done here.
I need to study the following two cases:
Case 1: � is real number.
Note that for � ≥ 0 and R0 > 1

therefore F(�) has no nonnegative roots.
Case 2: � = u+ wi is complex number.
The matrix M = A+ Bi with

Again to have nontrivial solution I need both det(A) = det(B) = 0. Introducing the function Qc(u,w) and 
Qs(u,w) , with

If R0 > 1 , det(A) = 0 only for u ≤ 0.

since w  = 0 , I must have

which leads to w = −e−(u+µ)τ sin(wτ) . In sum, regardless of w value I must have the real part of the eigenvalue 
u negative.

In the following theorem I use R0 to describe the stability of the DFE

Theorem 4  The EE exists and is locally asymptotically stable if and only if R0 > 1.

In sum, I noted that without a vaccine, R0 is independent of immunity loss. Moreover, if R0 < 1 , then all 
solutions will converge to the same DFE point, but possibly with increasing oscillations as the delay increases. 
If R0 > 1 regardless of the presence of a vaccine, then all solutions will converge to the same level of susceptible 
individuals, but different levels of infected and recovered individuals that depend on the rate of immunity loss.

Example of variable immunity losing rate ρ(τ)
Step function
Here, I discuss a scenario where individuals gain partial immunity after recovering from an infection or receiv-
ing a vaccination. This immunity lasts for some time T before gradually decreasing. To represent this, we utilize 
a step function, chosen for its approximation purposes despite lacking a direct biological interpretation. This 
simplifies the calculations and provides necessary approximations.

Note that in case of considering

(44)Q∗(�) =

∫ ∞

0

e−(�+µ)τP(τ )dτ

F(�) > (1+ vQ∗(�))(�2 + µ�)

≥0

A =

[

u+ βIe + µ+ v − v
∫∞

0
e−(u+µ)τ ρ(τ ) cos(wτ)P(τ )dτ βSe − α

∫∞

0
e−(u+µ)τ cos(wτ)ρ(τ)P(τ )dτ

−βIe u

]

B =

[

w − v
∫∞

0
e−(u+µ)τ ρ(τ ) sin(wτ)P(τ )dτ − α

∫∞

0
e−(u+µ)τ sin(wτ)ρ(τ)P(τ )dτ

0 w

]

Qc(u,w) =

∫ ∞

0

e−(u+µ)τ cos(wτ)ρ(τ)P(τ )dτ

≤

∫ ∞

0

e−(u+µ)τ ρ(τ )P(τ )dτ

= 1− (u+ µ)Q(u)

Qs(u,w) =

∫ ∞

0

e−(u+µ)τ sin(wτ)ρ(τ)P(τ )dτ

≤

∫ ∞

0

e−(u+µ)τ ρ(τ )P(τ )dτ

= 1− (u+ µ)Q(u)

det(A) = u(u+ βIe + µ+ v(1− Qc(u,w)))+ βIe(γ + µ+ α(1− Qc(u,w)))

≥ u(u+ βIe + µ+ v(u+ µ)Q(u))+ βIe(γ + µ+ α(u+ µ)Q(u))

(45)Also, 0 = det(B) = w(w − vQs(u,w))

∫ ∞

0

(w − e−(u+µ)τ sin(wτ))ρ(τ)P(τ )dτ = 0

ρ(τ) =

{

ρ1 0 ≤ τ ≤ T
ρ2 τ > T
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In this case, from (6), I have

and the mean value for losing immunity is

Moreover, from (13) I have

When T → ∞ , then I have P → 1
ρ1

 , and Q → 1
µ+ρ1

 . Also, from (20) I have

Note that for the special case ρ1 = 0 , P = T + 1
ρ2

 and Q = 1
µ

(

1− e−µT
)

+ 1
µ+ρ2

e−µT.

Critical efficacy period T∗
c

Note that R0 < 1 is equivalent to

To give the inequality (46) more meaning, I define T∗
c (ρ2) = limρ1→0 Tc(ρ1, ρ2) , that is the lowest efficacy period 

for vaccine needed to control the disease. Here

Linear function

with ρ0 constant. In this case P(τ ) = e−
ρ0τ

2

2  and the mean value for losing immunity is P =
√

π
2ρ0

.Moreover, 

Q =
√

π
2ρ0

e
µ2

2ρ0 . Note that dR0dQ < 0 and dQdρ0 < 0 , which implies dR0dρ0
= dR0

dQ × dQ
dρ0

> 0 . In sum, R0 is increasing 
function in ρ0 , the slope of ρ(τ) in this case.

Sensitivity of R
0
 to parameters changes

Given the uncertainty in parameter values, I conducted a comprehensive analysis of various parameter ranges 
to understand how changes in parameters affect the model’s R0 value. The parameter ranges are presented in 
Table 1, indicating the 95% confidence intervals for the estimated parameter values obtained from the two cited 
references. To do this, I used Latin Hypercube sampling and partial rank correlation coefficients (PRCCs) to 
identify which parameters have the greatest impact on R0 [?]. Latin Hypercube Sampling is a statistical method 
that helps us explore how an outcome variable reacts to changes in input variables. PRCCs allow us to measure 
the relative sensitivity of each parameter, regardless of whether it increases or decreases the outcome variable.

In Fig. 1, the graph illustrates the PRCCs for each input parameter. This visual representation clearly highlights 
that R0 is most influenced by variations in five key parameters: the transmission rate ( β ), the rate of losing immu-
nity ( ρ ), the recovery rate ( α ), the disease-induced death rate ( γ ), and the vaccinating rate ( ν ). This underscores 
that effective disease control hinges on maintaining a low transmission rate, a reduced rate of immunity loss, 
and elevated rates of disease-induced death, recovery, and vaccination. Intriguingly, even slight adjustments in 
the values of β , ρ , and ν can shift R0 from above one to below one, emphasizing their substantial impact on the 
dynamics of R0 , as demonstrated in Fig. 2.

Estimation of time series solution
Simulating disease dynamics in the absence of vaccination can serve as a baseline for comparing the impact of 
vaccination strategies. Also, simulating the effect of varying the duration of immunity provided by the vaccine 
can also assist in determining the minimum duration of immunity required to control the disease. The parameter 
values and the initial conditions will be taken from the Table 1 and the Table 2.

The discretization of the model (1)–(3) is conducted as follows: I employ a forward difference for the time 
derivatives in the equations, and a centered difference for the age derivative. Here, I set �t = 0.01 and �τ = 0.1 , 
with �t

�x < 1 in this case. ti = i ∗�t for i = 0, 1, . . . 1000 and τj = j�τ for j = 0, 1, . . . , 30, 000 . The time span 

P(τ ) =

{

e−ρ1τ 0 ≤ τ ≤ T

e(ρ2−ρ1)T−ρ2τ τ > T

P =
1

ρ1

(

1− e−ρ1T
)

+
1

ρ2
e−ρ1T

Q =
1

µ+ ρ1

(

1− e−(µ+ρ1)T
)

+
1

µ+ ρ2
e−(µ+ρ1)T

R0 →
β�(µ+ ρ1)

µ(α + γ + µ)(µ+ ρ1 + v)

(46)T >
−1

µ+ ρ1
ln

( 1

ρ1 − ρ2
(
(µ+ ρ1)(µ+ ρ2)

v
(
β�(µ+ ρ2)

µ(α + γ + µ)
− 1)− µ− ρ2)

)

=: Tc(ρ1, ρ2)

(47)T∗
c (ρ2) =

−1

µ
ln

(

−1

ρ2

(

µ(µ+ ρ2)

v

(

β�(µ+ ρ2)

µ(α + γ + µ)
− 1

)

− µ− ρ2

))

ρ(τ) = ρ0τ
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extends from 0 to 300, with the period since recovery spanning from 0 to 100. The code has been implemented 
in MATLAB and a samples codes are included in the supplementary information of this work.

I generate a time series solution for the model without vaccination, as shown in Fig. 3. The value of ρ(τ) 
was set to 0.03, and also to the function ρ(τ) = 0.03u(τ − 50) with u(τ ) the unit step function, which has the 
same constant value but with a 50-days delay. The resulting value of R0 was found to be 6.0157 in both cases. 
Our analysis indicates that delaying the loss of natural immunity by 50 days leads to a lower number of infected 
individuals and a higher number of individuals in the recovered class. Additionally, the phase portrait depict-
ing the relationship between S(t) and I(t) as shown in the Fig. 4 for various delays in the loss of immunity rate 
ρ(τ) = 0.03u(τ − T) for T = 0, 25, 50, 75 . In scenarios without vaccination, when there’s a delay in losing immu-
nity, the disease dynamics slow down in reaching the EE. This delay results in a higher number of recovered 
individuals at the EE level, potentially saving lives by reducing the likelihood of reinfection.

In Fig. 5, I conducted the simulation again with a vaccine rate v = 0.5 . Our results showed R0 = 0.1575 for 
the delayed loss of immunity ρ(τ) = 0.03u(τ − 50) with u(τ ) the unit step function. Additionally, I observed an 
R0 = 0.3410 for the constant loss of immunity rate ρ(τ) = 1

30
 . These findings support the idea that delayed loss 

of immunity leads to a significant decrease in the number of infected individuals and an increase in the number 
of recovered individuals. Also, when this supports the state forward idea that a longer duration of immunity 

-0.5 0 0.5

Transmission rate
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Natural death rate

Rate of losing immunity

Recovery rate

Disease induced death rate

Vaccine rate

Figure 1.   Sensitivity analysis of R0 with respect to each model parameter.
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Figure 2.   Monte Carlo simulations for 1000 runs drawn from parameter ranges using Latin Hypercube 
Sampling. β,α , γ , v and ρ are the parameters that should be used to control the disease.
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Figure 3.   Comparison of time series solutions for the no-vaccine case ( v = 0 ) with constant rate 
ρ(τ) = 0.03 and the step function rate ρ(τ) = 0.03u(τ − 50) for losing immunity, including: (a) 
proportions of susceptible individuals, (b) proportions of infected individuals, (c) proportions of 
recovered individuals R(t) and 

∫ 100

0
R(t, τ)dτ . Finally in (d) The proportions of recovered individuals 

R(τ , t) for the step function scenario. In both scenarios, we have R0 = 6.0157 , and the solutions converge 
to the equilibrium points: EE (Se , Ie ,Re) = (0.1662, 0.3961, 0.4377) for the constant rate and to the EE 
(SeIe ,

∫∞

0
R
e(τ )dτ) = (0.1662, 0.1456, 0.6882) for the step function.
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Figure 4.   S–I phase portrait for the step function ρ(τ) = 1
30
u(t − T) for T = 0, 25, 50, 75 for the no vaccine 

case ( v = 0 ). Here R0 = 6.0157 . The solutions converge to the EE (Se , Ie ,Re) = (0.1662, 0.3961, 0.4377),
(Se , Ie ,

∫∞

0
R
e(τ )dτ) = (0.1662, 0.2990, 0.5348), (0.1662, 0.1456, 0.6882), (0.1662, 0.0521, 0.6257) respectively.
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gained through vaccination makes the vaccine more effective in controlling the disease. Furthermore, the phase 
portrait illustrating the correlation between S(t) and I(t) can be seen in Fig. 6, with different delays in the loss 
of immunity rate ρ(τ) = 0.03u(τ − T) for T = 00, 25, 50, 75 . R0 = 0.3410, 0.2153, 0.1575, 0.1300 respectively. 
In scenarios with vaccination, when there’s a delay in losing immunity: the more the delay in losing immunity 
the smaller the R0 and the faster the disease is controlled. Also, the same implies higher number of recovered 
immune individuals at the DFE level and the lower the susceptibles, potentially saving more lives by reducing 
the likelihood of reinfection.

To demonstrate the rule of the vaccine in controlling the disease, we compare Figs. 3 (vaccine v = 0 ) and 5 
(vaccine v = 0.5 ). With the same rate of immunity loss, it is evident that the number of susceptible Figure (a) 
and infected Figure (b) individuals is higher in the long run for the no-vaccine case compared to the vaccine 
case (converges to I = 0 ). Also, the number of recovered individuals in the long run is significantly lower in 
Fig. 3d compared to Fig. 5d. This observation indicates that the vaccine not only reduces the number of suscep-
tible individuals and completely eradicates the infected individuals but also increases the number of recovered 
individuals, thereby saving many lives.

In order to confirm our results, I repeated the simulation using the linear function ρ(τ) = 0.0006τ with 
τ ∈ [0, 100] along with its average value of ρ(τ) = 0.03 over the same interval. The results are shown in Fig. 7. 
Significant differences exist between the two results, emphasizing the importance of using partial differential 
equations for the recovered population, as they account for the delay caused by the variable rate of immunity loss. 
It’s important to note that in cases of constant average rates of immunity loss, the disease tends to be more severe 
due to the higher R0 value. This likely results in more people getting reinfected, leading to increased fatalities.
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Figure 5.   Comparing the time series solutions for the constant rates ρ(τ) = 0.03 and for the step function 
ρ(τ) = 0.03u(τ − 50) of losing immunity in the vaccine case ( v = 0.5 ). I have (a) The proportions of 
susceptible individuals, (b) the proportions of infected individuals. (c) The proportions of recovered individuals 
R(τ , t) for the step function scenario. (d) The proportion of recovered R(t) and 

∫ 100

0
R(t, τ)dτ . Here, with 

R0 = 0.3410 and R0 = 0.1575 , for the log run, the solution converges to DFE (S0, I0,R0) = (0.0910, 0, 0.9090) 
and the DFE (S0, I0,

∫∞

0
R
0(τ )dτ) = (0.0429, 0.0000, 0.9571) respectively.
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For R
e
> 1 , Se is independent of the vaccine

In Fig. 8, we apply the model with β = 0.6 to ensure that R0 > 1 when v  = 0 , specially when v = 0.1 and v = 0.4 
. The model is applied with a constant rate of losing immunity, ρ = 0.03 . We found that the time series solution 
converges to the EE and Se in both cases equals the theoretical value Se = α+γ+µ

β
= 0.0554.

Discussion
I have developed an SIRS model for infectious diseases incorporating vaccination and variable immunity periods. 
This model combines two ordinary differential equations (ODEs) and one partial differential equation (PDE). I 
have derived formulas for the basic reproduction number, the disease-free equilibrium, and the endemic equi-
librium. Through small perturbation analysis, I have demonstrated that the disease-free equilibrium is globally 
asymptotically stable when R0 < 1 and unstable when R0 > 1 . Additionally, I have proven the existence and local 
asymptotic stability of the endemic equilibrium for R0 > 1.

Furthermore, I have explored two simple variable immunity loss rates: the step function and linear function. 
For the step function rate, I have obtained a formula for R0 and shown that its limit reduces to the conventional 
R0 for the classical SIRS ODEs model with a constant rate of immunity loss. Moreover, I have derived a formula 
to determine the critical efficacy period required for any a given vaccine to effectively control the disease.

I have utilized sensitivity analysis to demonstrate that R0 is highly sensitive to variations in several critical 
parameters, including transmission rate, immunity loss rate, recovery rate, disease-induced death rate, and 
vaccination rate. It has been revealed that maintaining low transmission rates, minimizing immunity loss, and 
increasing recovery and vaccination rates are crucial for effective disease control. Even minor adjustments in 
these parameters can significantly influence the value of R0 , underscoring their crucial role in mitigating disease 
spread.

The simulation conducted for the model indicates that delaying the loss of immunity slows down disease 
dynamics, whether or not a vaccine is present, resulting in lower reinfection rates and reduced disease severity. 
Moreover, this delay decreases the basic reproduction number ( R0 ), facilitating faster disease control. Further-
more, fixing the rate of immunity loss, we have demonstrated that the vaccine similarly affects the basic repro-
duction number ( R0 ), leading not only to a reduction in the number of susceptible and infected individuals but 
also to an increase in the number of recovered individuals, thereby saving many lives.

Conclusion
In summary, this study emphasizes the significance of accounting for delays in immunity loss when modeling 
infectious diseases. The delay in losing immunity slows down disease dynamics, regardless of vaccine involve-
ment, thereby decreasing the risk of reinfection. This delay also contributes to reducing R0 in the presence of 
vaccination, potentially leading to faster disease control. The vaccine similarly reduces R0 , the number of sus-
ceptible and infected individuals, and increases the number of recovered individuals. If the vaccine provides a 
long-lasting immunity period, it can further expedite disease control. These findings have significant implica-
tions for designing effective vaccination programs and public health policies, especially in light of the potential 
extension of immunity periods offered by future vaccines.
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Figure 6.   S–I phase portrait for the step function ρ(τ) = 1
30
u(t − T) for T = 0, 25, 50, 75 for the 

vaccine case ( v = 0.5 ). Here R0 = 0.3410, 0.2153, 0.1575, 0.1300 and the solutions converge to the DFE 
(S0, I0,R0) = (0.0910, 0, 0.9090) , and to the DFE (S0, I0,

∫∞

0
R
0(τ )dτ) = (0.0653, 0.0000, 0.9347),

(0.0429, 0.0000, 0.9571), (0.0216, 0.0000, 0.9784) respectively.
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This study has some limitations. Future research could enhance the model by integrating additional factors, 
such as the influence of asymptomatic individuals or the effects of vaccine efficacy on disease transmission 
dynamics. Moreover, it’s crucial to recognize that individuals of different ages may encounter diverse rates of 
vaccine immunity loss.
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Figure 7.   Comparing the model’s time series solutions for the linear rate of losing immunity ρ(τ) = 0.0006τ 
and its average value ρ(τ) = 0.03 over the time interval τ ∈ [0, 100] . Here, the vaccination rate is set to v = 0.5 . 
The graph illustrates: (a) The proportions of susceptible individuals, (b) the proportions of infected individuals, 
(c) the proportions of individuals who have recovered from the disease with the linear rate of immunity loss 
, and (d) the average of recovered R(t) =

∫ 100

0
R(t, τ)dτ in the linear rate case, and the recovered rate R(t) in 

the case of the average rate. Here, with R0 = 0.2330 and R0 = 0.3410 , for the log run, the solution converges to 
the DFE (S0, I0,

∫∞

0
R
0(τ )dτ) = (0.0387, 0.0000, 0.9433) and the DFE (S0, I0,R0) = (0.0567, 0.0000, 0.9613) 

respectively.
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Figure 8.   Comparing the time series solutions for vaccine rates v = 0.1 and v = 0.4 with a constant rate of 
losing immunity ( ρ = 0.03 ), I observed the following: (a) The proportions of susceptible individuals. (b) The 
proportions of infected individuals. (c) The proportions of recovered individuals. Here, with R0 = 18.0470 
and R0 = 1.2609 , the long-run solution converges to the EE (Se , Ie ,Re) = (0.0554, 0.4487, 0.4958) and 
(Se , Ie ,Re) = (0.0554, 0.0983, 0.8463) respectively.

Table 1.   Sample values for parameters.

Parameter Sample value used Range References

� 1/(59*365) days−1 – Assumed

β 0.20 days−1 0.1–1.6 21

ν 0.05 days−1 0–1 Assumed

µ 1/(59*365) days−1 – 20

ρ 1/90 days−1 0–0.2 20

α 0.0332 days−1 0–0.3 21

γ 0.0135 days−1 0–0.05 21

Table 2.   Initial conditions for the model.

S(0) 0.999

I(0) 0.001

R(0) 0
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Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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