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The land use change is the primary factor in influencing the regional carbon emissions. Studying the 
effects of land use change on carbon emissions can provide supports for the development policies of 
carbon emission. Using land use and energy consumption data, this study measures carbon emissions 
from land use dynamics in the Beijing‑Tianjin‑Hebei region from 2000 to 2020. The standard deviation 
ellipse model is employed to investigate the distribution characteristics of the spatial patterns of 
carbon emissions, while the Geographically and Temporally Weighted Regression (GTWR) model 
is used to examine the contributing factors of carbon emissions and their spatial and temporal 
heterogeneity. Results indicate a consistently increasing trend in carbon emissions from land use 
in the Beijing‑Tianjin‑Hebei region from 2000 to 2020. Construction land is characterized with both 
the primary source and an increasing intensity of carbon emissions. Besides, the spatial distribution 
of carbon emissions from land use in the Beijing‑Tianjin‑Hebei region demonstrates an aggregation 
pattern from in the northeast‑southwest direction towards the center, with a greater aggregation 
trend in the east–west direction compared to that in the south‑north direction. During the study 
period, a positive correlation was documented between carbon emissions and factors including total 
population, economic development level, land use degree, and landscape patterns. This correlation 
showed a decreasing trend and reached a stable level at the end of the study period. Moreover, the 
analysis showed a negative correlation between industrial structure and carbon emissions, which 
showed an increasing trend and reached a relatively high level at the end of the study period.
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Carbon emissions are a significant contributor to global warming, and excessive emissions can seriously affect 
global environmental construction and sustainable human development. China is among the top rank of carbon 
emissions and it is estimated that the amount in China will peak by 2030. To take on the responsibility of energy 
conservation and emission reduction, the Chinese government has aimed to achieve carbon neutrality by  20601. 
Currently, China’s economic development is heavily reliant on fossil fuels, making it difficult to transition to 
more sustainable energy sources in the short  term2. Additionally, China’s carbon emissions are significant, with 
one-third of these emissions coming from land use, making it a major contributor to carbon emissions in the 
 region3,4. Terrestrial ecosystems are the largest carbon sinks. Improving their carbon sink capacity is widely 
recognized by the international community as one of the most economical ways to reduce greenhouse  gases5. 
Therefore, it is significant to explore the spatial and temporal evolution of regional land-use carbon emissions 
and their influencing factors from a land-use perspective. This will promote the region’s low-carbon transition 
and assist in achieving the goals of carbon peak attainment and carbon neutrality.
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In recent years, scholars have conducted numerous studies on carbon emissions resulting from land use. These 
studies include accounting for land-use carbon  emissions6,7, analyzing spatial and temporal variations in land-use 
carbon  emissions8,9, and identifying the driving and influencing factors of land-use carbon  emissions10. These 
studies cover various spatial scales, ranging from national to regional and even county  levels11–13. For instance, 
LUO Xiang et al. analyzed the spatial and temporal changes in cropland use efficiency across 11 provinces and 
cities in the Yangtze River Economic Belt in China from 2007 to 2016. They used cropland carbon emissions as 
a constraint for carbon  emissions14. Yang and Liu analyzed the effect of land type transfer on carbon transfer in 
the Chang Zhu Tan urban agglomeration. The results indicate significant differences in the spatial distribution 
and direction of change of the regional carbon transfer effect within the urban agglomeration due to the influence 
of population growth, level of urbanization, and unbalanced economic  development15. Duan et al. categorized 
the drivers of  CO2 emissions into six categories: population, fuel mix, energy intensity, production structure, 
consumption patterns, and consumption. They quantified the impact of these drivers on a global  scale16. Various 
models were used to identify the factors that influenced carbon emissions, including the LMDI decomposition 
 method17, the input–output  model18, the STIRPAT  model19, the Laspeyres index  method20 and heterogeneity 
analysis  models21,22. Among them, the heterogeneity analysis model describes the differences in the impact 
of drivers in different time and space through models such as GWR and GTWR in order to reflect the reality 
more  scientifically23,24. Houbo et al. investigated the impact of resident population, urban green space, industry, 
industrial agglomeration, and commercial and service housing area on carbon emissions in the metropolitan area 
and various districts and counties of Shanghai, using the GWR model. The results showed that industrial and 
industrial agglomeration, as well as urban green space area, are important factors influencing the total amount 
of carbon emissions, with significant spatial and temporal  heterogeneity25. The GWR model is only applicable to 
large sample cross-sectional data and cannot reflect temporal heterogeneity. For this reason, the GTWR model 
improves the GWR model by embedding a time factor, providing a more comprehensive analysis.

As an essential growth area of China’s economy, the influence of land use change on carbon emissions in 
the Beijing-Tianjin-Hebei region has become increasingly  prominent26. Amidst rapid urbanization, the growth 
trend of carbon emissions is becoming more pronounced. Known studies have disclosed several key factors, 
encompassing GDP, land use structure, and population size, and pointed out the spatio-temporal heterogeneity 
of these influencing  factors27–32. Nevertheless, the in-depth exploration of geotemporal heterogeneity in the 
Beijing-Tianjin-Hebei region remains insufficient. In light of the potential role of landscape pattern change 
in reducing carbon  emissions33, this study not only focuses on traditional factors such as carbon emission, 
population, economic development level, and industrial structure but also incorporates the landscape pattern 
index “Interspersion and juxtaposition index (IJI)” as an analysis factor. This index can effectively quantify the 
spatial distribution and juxtaposition of patches in the landscape, thereby revealing more comprehensively the 
impact of spatial land use change on the spatio-temporal heterogeneity of carbon emissions.

Taking the Beijing-Tianjin-Hebei region as an example, based on land use and energy consumption data, this 
study detailed estimated the carbon emissions from land use in the region. By utilizing the Standard Deviation 
Ellipse (SDE) analysis method, we deeply explored the temporal and spatial distribution pattern and dynamic 
changes of carbon emissions. Further, through the application of the Geographically and Temporally Weighted 
Regression (GTWR) model, we reveal the spatial differences of the driving factors of carbon emissions in different 
regions of the Beijing-Tianjin-Hebei region, aiming to provide a solid scientific basis for achieving low-carbon 
land use, developing a low-carbon economy and formulating differentiated carbon neutrality strategies in the 
Beijing-Tianjin-Hebei region.

Methodology and data sources
Study area
The Beijing-Tianjin-Hebei region located in the northern part of the North China Plain, including Beijing 
Municipality, Tianjin Municipality, and Hebei Province, with a length of 735 km from north to south and a width 
of 576 km from east to west, and a variety of landforms, including plains, mountains, and plateaus. The terrain of 
Beijing-Tianjin-Hebei is tilted in a step-like manner from northwest to southeast, showing a high distribution in 
the northwest and a low distribution in the southeast (Fig. 1 Schematic of the study area). According to statistics, 
the gross regional product in 2020 was 86,393.20 billion yuan, the resident population was 110,369,000 people, 
and the urbanization level was 68.60%. However, the current Beijing-Tianjin-Hebei region still has problems 
such as irrational land use and high pressure on carbon emissions, which limit the high-quality development 
of the region.

Estimation of carbon emissions
Direct carbon accounting
Cropland and construction land were taken as carbon sources, and forest land, grassland, watersheds and unused 
land were taken as carbon sinks. The carbon emissions from cropland, forest land, grassland, watersheds and 
unused land were measured using the direct carbon emission factor method, with the formula:

where c denotes the amount of carbon emission (absorption) of cropland, forest land, grassland, watershed and 
unused land; Si denotes the area of land type i, δi denotes the carbon emission coefficient of land type i, where a 
positive value indicates carbon emission and a negative value indicates carbon sequestration. In this study, the 
carbon emission coefficients of different land use types were determined with reference to the results of existing 
 research34,35 (Table 1.).

(1)C =
∑

ei =
∑

Siδi ,
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Indirect carbon emissions
Carbon emissions from construction land are generally measured indirectly through the carbon emission 
coefficients of various energy consumptions during their utilization, and their standard coal conversion factors 
and carbon emission coefficients are shown in Table 2 with the following formulae:

where, eci denotes all types of carbon emissions from energy consumption, unit million tons; mi denotes the 
consumption of energy i, θi denotes the standard coal conversion parameter of energy i, µi denotes the carbon 
emission factor of energy i.

(2)
∑

eci =

9∑

i=1

miθiµi ,

Figure 1.  Schematic of the study area. Maps created in ArcMap 10.7 software.

Table 1.  Carbon emission coefficient for land use (kg.m−2.a−l, positive values are carbon sources, while 
negative values are carbon sinks.).

Land type Carbon emission coefficient

Cropland 0.0422

Forestland  − 0.0578

Grassland  − 0.0021

Water body  − 0.0252

Unused land  − 0.0005

Table 2.  Energy carbon emission factor values.

Type Standard coal conversion factor Carbon emission coefficient

Coal 0.7143 0.7559

Coke 0.9714 0.8550

Crude oil 1.4286 0.5857

Gasoline 1.4714 0.5538

Kerosene 1.4714 0.5714

Diesel 1.4571 0.5921

Fuel oil 1.4286 0.6185

Natural gas 13.301 0.4483

Electricity 1.229 0.7476
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GTWR regression model
The GTWR considers the non-stationarity of space-time and introduces the time dimension into the 
geographically weighted regression model. This effectively overcomes the limitation of the traditional 
geographically weighted regression model (GWR), which only considers spatial influence. The GTWR fully 
reflects the temporal change of variable data and reveals heterogeneity of the variables in both time and space. 
This better explains the spatio-temporal relationship between the variables and the dependent variable. This 
paper employs the GTWR model to investigate the spatial and temporal factors that affect carbon emissions in 
Beijing-Tianjin-Hebei, using the following  formula36:

where,yi represents the dependent variable; β0 represents the intercept; µi、vi and ti represent the latitude, 
longitude and time of the i  th point; βk represents the fit coefficient of the kth variable at the i  th point; Xik 
represents the value of the kth independent variable at the i th point; εi represents the random error.

Indicator system
Based on the existing research literature and  statistical37,38, the indicator system comprises of five aspects: total 
population, economic development, industrial structure, land use degree, and landscape patterns, the following 
five indicators have been selected to construct the system:

(1) Total Population (TP), expressed as the resident population at the end of the year, in tens of thousands.
(2) Economic Level (EL), represented by total GDP, representing the economic development of the region, 

measured in ten thousand yuan.
(3) Industrial Structure (IS), the proportion of added value of the tertiary industry in GDP, indicating the 

structure of the economy, measured in percentage.
(4) Degree of Land Use (DT), land area of built-up areas, reflecting the extent of land utilization, measured in 

square kilometers.
(5) Landscape Patterns (LP), represented by Interspersion and juxtaposition index (IJI), a measure of the spatial 

arrangement of land covers, measured in percentage.

These five indicators have been used to construct the indicator system for the influencing factors of carbon 
emissions (refer to Table 3.).

where TP, EL, IS and DT are obtained directly from the Statistical Yearbook, LP are indicators extracted from 
our secondary processing of land use data using FRAGSTATS 4.2.IJI, Landscape fragmentation index, Index 
range is (0, 100). Smaller values indicate that patches are less adjacent to patches of the same type and less adjacent 
to patches of a different type, the specific formula for its calculation is as follows.

where: eik denotes the neighbouring edge length of each patch type adjacent to a patch type i ; E denotes the total 
edge length of patch i ; m denotes the total number of patch types in the landscape.

Data
The current land use data from 2000 to 2020 in this paper come from the China Land Cover Dataset (CLCD) 
based on the Google Earth Engine (GEE) platform released by the team of professors Yang Jie and Huang Xin 
from Wuhan  University39. The spatial resolution of the data is 30 m. The land use types in the study area are 
classified as cropland, forest land, grassland, water, construction land, and unused land. This classification is 
based on relevant studies by  scholars40, as well as the natural environment, socio-economic characteristics, and 
actual land use changes in the area. The socio-economic data adopted in this paper is primarily sourced from 
the 2000–2020 China Urban Statistical Yearbook, Beijing Statistical Yearbook, Tianjin Statistical Yearbook, and 
Hebei Statistical Yearbook.

(3)yi = β0(µi , vi , ti)+
∑

k

βk(µi , vi , ti)Xik + εi ,

(4)IJI =
−
∑m

i=1

∑m
k=i+1[

eik
E
ln

eik
E
]

ln(m− 1)
× 100%,

Table 3.  Research indicators and interpretation.

Indicators Interpretation Unit

TP Total population (Year-end resident population) Ten thousand people

EL Economic level (Total GDP) Ten thousand yuan

IS Industrial structure (Value added of tertiary sector as a share of GDP) %

DT Degree of land use (Land area of built-up areas) km2

LP Landscape patterns (Interspersion and juxtaposition index, IJI) %
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Results
Analysis of the historical land use situation
Using the spatial analysis, reclassification, and statistical analysis tools in ArcGIS 10.7 software, we obtained 
five land-use spatial pattern maps for the Beijing-Tianjin-Hebei region in 2000, 2005, 2010, 2015, and 2020, 
respectively. Figure 2 reflects that the land use types in the study area are mainly dominated by farmland, 
forests, and grasslands. Among them, farmland is mainly distributed in the central and southeastern regions of 
Beijing-Tianjin-Hebei, with large areas of forests and grasslands concentrated in the mountainous and hilly areas 
of the west and northeast, particularly prominent in Zhangjiakou and Chengde cities. The spatial distribution 
of construction land is highly consistent with farmland, presenting a scattered distribution in the central and 
southeastern regions. Water areas are mainly distributed in Baoding City in the central region and coastal cities 
such as Tianjin, Tangshan, Qinhuangdao, and Cangzhou in the east. Unused land, due to its low proportion, is 
not prominent in spatial distribution and is scattered in Zhangjiakou and Chengde cities.

Changes in spatial and temporal patterns of land use
As shown in Fig. 3, the land use pattern in the Beijing-Tianjin-Hebei region changed significantly from 2000 to 
2020. Cropland decreases, construction land increases, forest and grassland areas are expanded, and watersheds 
and unused land change to a lesser extent. A total of 29,100.3138km2 of land is converted, of which cropland has 
the greatest change, mainly to construction land, grassland and forest land. Grassland was mostly converted to 
cropland and forest land, and a small amount was converted to construction land. The change in water area is 
small, and the increase in construction land is significant, mainly from the transfer of cropland.

Characteristics of spatial and temporal evolution of carbon emissions from land use
Analyses of carbon emissions from different land‑use types
As shown in Table 4 and Fig. 4 from 2000 to 2020, the total carbon emissions from land use in Beijing-Tianjin-
Hebei continued to grow from 140.1143 to 347.3489 million tons, with a net increase of 207.2347 million tons. 
The construction land is the main source of carbon, with a net increase of 208.0583 million tons; and carbon 
emissions from cropland decreased slightly. Forest land is the main carbon sink, with a small increase in carbon 
sink; the carbon absorption capacity of watershed decreased slightly and was stable overall. The carbon absorption 
capacity of grassland and unused land remained basically unchanged, contributing less to the carbon sink.

Evolution of spatial patterns of carbon emissions from land use
This paper classifies the land use carbon emissions of prefecture-level cities into different levels. The zones are 
categorized based on carbon emissions: micro-emission zone (less than 5 million tons), light emission zone 
(5 million tons–10 million tons), general emission zone (10 million tons–15 million tons), medium emission zone 
(15 million tons–20 million tons), heavy carbon emission zone (20 million tons–25 million tons), and extremely 
heavy carbon emission zone (25 million tons or more).

Figure 2.  Spatial pattern of land use in the Beijing-Tianjin-Hebei region. Maps created in ArcMap 10.7 
software.
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Figure 3.  Beijing-Tianjin-Hebei land use area change transfer Sankey diagram.

Table 4.  Carbon Emission from Land Use in Beijing-Tianjin-Hebei.

Year Carbon source unit  104t Carbon absorption unit  104t

Construction land Cropland Forestland Grassland Water body Unused land

2000 13856.5241 447.9469  − 277.3022  − 7.6781  − 8.0547  − 0.0094

2005 23296.2217 431.9752  − 286.8326  − 7.6750  − 8.3339  − 0.0079

2010 32163.3514 415.3625  − 295.6805  − 7.6194  − 7.3490  − 0.0074

2015 33784.8728 400.0328  − 305.2072  − 7.3040  − 7.5378  − 0.0055

2020 34662.3585 398.5071  − 311.9901  − 6.7254  − 7.2579  − 0.0027
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Figure 4.  Trend of annual carbon emissions in Beijing-Tianjin-Hebei.
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Spatial differences in carbon emissions from land use at the municipal scale of Beijing-Tianjin-Hebei are 
evident. Between 2000 and 2020, the spatial pattern of carbon emissions changed significantly, with an increase 
in the number of general and above carbon emission zones. The main changes occurred in the western and 
southwestern parts of the country. In 2020, there was a significant reduction in carbon emissions compared to 
2010, with a decrease in the number of areas with very high carbon emissions. The differences in carbon emissions 
are closely linked to the type of industry, level of industrialization, and economic development, with traditional 
industrial cities having high carbon emissions, for example, Beijing, Tianjin, and Tangshan. Some cities with a 
high GDP per capita have high carbon emissions. However, Qinhuangdao has relatively low carbon emissions 
due to its well-developed tourism industry. Additionally, the expansion of urban land use also contributes to the 
growth of carbon emissions (Fig. 5).

The center of gravity of carbon emissions in Beijing-Tianjin-Hebei is located in Langfang (see to Fig. 6). The 
trend indicates that carbon emissions in Tianjin and Tangshan initially decrease before increasing again. Changes 
in the ellipse area demonstrate a gradual aggregation of carbon emissions towards the northeast-southwest 
direction, with a slightly stronger aggregation trend in the east–west direction than in the north–south direction. 
The spatial agglomeration of carbon emissions in Beijing-Tianjin-Hebei has shown a decreasing trend, despite 
fluctuations. (see to Table 5.).

Contributing factors
GTWR estimation results
The prerequisite for estimation using the GTWR model is to ensure that there is no multicollinearity between the 
explanatory variables. In this paper, the model was analyzed for multicollinearity using Spss25, and the results 
showed that the variance inflation factor (VIF) of all the explanatory variables was less than 10, indicating that 
there was no multicollinearity among the explanatory variables as shown in Table 6.

The correlation analysis of each driver with carbon emissions is shown in Table 6., TP, EL, IS, UE and LP are 
positively correlated with carbon emissions, and correlation coefficients all reached the 0.01 significant level, 
among which the correlation coefficients of TP and DT are the highest, 0.71 and 0.72 respectively, which indicates 
that the larger the total population and the larger the built-up area of the city, the larger the carbon emissions 
will be. The correlation between IS and LP is relatively low, at approximately 0.39 and 0.37, respectively. In terms 
of the landscape patterns agglomeration index, IJI is significantly positively correlated with carbon emissions, 
indicating that the lower the degree of neighbourhood or fragmentation of patches and the lower the degree of 
patch agglomeration, the lower the carbon emissions.

Figure 5.  Spatial and temporal distribution of carbon emissions from land use in Beijing-Tianjin-Hebei. Maps 
created in ArcMap 10.7 software.
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Analysis of the temporal heterogeneity of regression coefficients for factors 
influencing carbon emissions
The carbon emission driver model of Beijing-Tianjin-Hebei prefecture-level cities was established and tested 
using ArcGIS software. The results indicate that the GTWR model has an AICc value of − 404.289 and an adjusted 
coefficient of determination  R2 of 0.95, demonstrating a well-fitted regression equation. The spatial distribution 
maps of the regression coefficients for the factors influencing carbon emissions in the prefecture-level cities of 
Beijing-Tianjin-Hebei were generated separately for each year to investigate their temporal heterogeneity.

(1) Analysis of the impact of total population on carbon emissions over time.
Figure 7 shows the spatial distribution of the regression coefficients of the total population of Beijing-Tianjin-

Hebei land-use carbon emissions from 2000 to 2020. The data indicates a decreasing trend in the influence of 
total population on land-use carbon emissions. During the period of 2000–2020, areas with high coefficients 
were mainly located in Chengde, Qinhuangdao, Handan, and Xingtai. These areas are characterized by a large 

Figure 6.  The distribution of standard deviational ellipse and gravity center shift trajectory. Maps created in 
ArcMap 10.7 software.

Table 5.  The parameters of carbon emission standard deviational ellipse and gravity center in the study area.

Year Center X/° Center Y/° Long half-axis/km Short half-axis/km Flattening rate Displacement/km

2000 116.33 39.09 299.47 146.04 0.51

2005 116.42 39.06 308.17 145.27 0.53 10.32

2010 116.50 39.11 304.49 147.21 0.52 11.94

2015 116.51 39.12 286.49 140.54 0.51 1.36

2020 116.58 39.14 284.40 141.08 0.50 7.86

Table 6.  Multicollinearity and significance diagnosis results. (*p ≤ 0.01).

Indicators Correlation coefficient VIF Tolerance

Total population(TP) 0.71* 4.08 0.26

Economic level(EL) 0.68* 5.29 0.19

Industrial structure(IS) 0.39* 2.30 0.44

Degree of land use(DT) 0.72* 7.30 0.14

Landscape patterns(LP) 0.37* 1.17 0.85
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population base, fast growth rate, high urbanization level, and rapid economic development. Conversely, 
low-value areas are concentrated in Baoding, Cangzhou, and Hengshui, showing a negative correlation. The 
data indicate that there is a positive correlation between the total population and carbon emissions in the 
Beijing-Tianjin-Hebei region. The increase in total population no longer has a singular positive effect on carbon 
emissions, as it has been observed in previous  studies33. This is due to the transformation and upgrading of 
industries in the Beijing-Tianjin-Hebei region, technological advances, a greater agglomeration of population 
and economic activities, and a greater focus on low-carbon living. However, the growth of total population still 
leads to more energy consumption to meet the demands of rising living standards.

(2) Temporal heterogeneity analysis of the impact of economic development on carbon emissions.
During the study period, it was observed that the relationship between GDP and carbon emissions from 

land use in the Beijing-Tianjin-Hebei region followed an increasing and then decreasing trend. Specifically, 
the economic development of Beijing facilitated the optimization of both the economic and energy structures, 
resulting in a negative correlation with carbon emissions. Scholars have demonstrated an inverted U-shaped 
relationship between economic growth and carbon emissions. This means that as the economy develops, the 
impact of economic growth on carbon emissions initially increases and then decreases. At the start of the 
study, the economy of Beijing-Tianjin-Hebei was relatively underdeveloped and had a minor impact on carbon 
emissions. However, over the past two decades, the economy of the region has developed rapidly and has become 
a significant contributor to carbon emissions. The impact coefficients in 2015 and 2020 are slightly lower than 
those in 2010, suggesting that the impact of economic development in Beijing-Tianjin-Hebei on carbon emissions 
in 2020 is on the downward slope of the inverted ‘U’ curve. It is expected that the degree of influence will 
gradually decrease with continued economic development (Fig. 8).

(3) Temporal heterogeneity analysis of the impact of industrial structure on carbon emissions.
Industrial structure is characterized by the proportion of the added value of the tertiary industry to the 

regional GDP. During the study period, the impact of the proportion of the tertiary industry in Beijing-Tianjin-
Hebei on carbon emissions is negative, and only Beijing has a positive correlation with carbon emissions in 
most years, with a stable degree of influence, which implies that the increase in the proportion of the tertiary 
industry in high-emission industries in Beijing has led to an increase in the level of carbon emissions. In other 
cities, the relationship between industrial structure and carbon emissions is mainly negative, with Chengde, 
Qinhuangdao and Tangshan having the greatest influence, probably due to the low-carbon characteristics of 
the tertiary industry itself, government policy support, as well as the optimization of the energy structure and 
the improvement of energy use efficiency. These factors work together to make the increase in the proportion of 
tertiary industry particularly effective in reducing carbon emissions (Fig. 9).

(4) Temporal heterogeneity analysis of the impact of land use degree on carbon emissions.
As the land area of built-up areas increases, so does the carbon source, while the expansion of urban 

construction land leads to a decrease in carbon sink. The land area of built-up areas shows an obvious positive 

Figure 7.  Spatial distribution of regression coefficients of total population in prefecture-level cities. Maps 
created in ArcMap 10.7 software.
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Figure 8.  Spatial distribution of regression coefficients of economic development of prefecture-level cities. 
Maps created in ArcMap 10.7 software.

Figure 9.  Spatial distribution of regression coefficients of industrial structure in Beijing-Tianjin-Hebei 
prefecture-level cities. Maps created in ArcMap 10.7 software.
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correlation with carbon emissions in Beijing-Tianjin-Hebei, and the degree of influence is geographically 
heterogeneous. Overall (Fig. 10), the degree of influence of built-up land area on carbon emissions in Beijing-
Tianjin-Hebei can be divided into 2 types. The land area of built-up area has a negative correlation with Chengde’s 
carbon emissions, and the other areas have a positive correlation on the whole. Chengde City has rich natural 
resources and ecological advantages, so it is more inclined to protect the ecological environment in urban 
planning and land use, and limit the land use methods with high carbon emissions, such as industrial land and 
large-scale commercial development, and it will pay more attention to increasing the proportion of green land 
rate and ecological land use, and promote low-carbon, environmentally friendly land use patterns.

(5) Analysis of the impact of landscape patterns on carbon emissions.
The relationship between landscape patterns and carbon emissions varies across different cities. The study 

found that Landscape patterns aspects are generally positively correlated with carbon emissions. Specifically, low 
levels of patch proximity and agglomeration are associated with low carbon emissions. In Qinhuangdao, Tianjin, 
Chengde, and Zhangjiakou, landscape patterns is positively associated with carbon emissions, while in Handan, 
Xingtai, and Shijiazhuang, it is negatively associated. Handan and other cities are focusing on land intensification 
and ecology to reduce carbon emissions. Qinhuangdao and Tianjin, being coastal cities, have experienced faster 
economic development, but this has also led to higher carbon emissions. These cities have prioritised economic 
development and industrial expansion during the urbanization process. As a result, the land use types are 
dominated by industrial and transport land, which typically produce higher carbon emissions. Despite Chengde 
and Zhangjiakou serving as ecological barriers, they are still under pressure to emit carbon (Fig. 11).

Discussion
Dynamic relationship between land use and carbon emissions
From 2000 to 2020, the area of construction land in Beijing-Tianjin-Hebei increases significantly, with an increase 
of 11,044. 5777  km2. Construction land is a fundamental spatial carrier for human habitation, recreation, and 
industrial production. It is also a significant source of carbon emissions from energy, industrial processes, product 
use, and residential life. Its carbon emission intensity is much higher than that of other land-use  types41. The 
trend of carbon emissions from land use in the Beijing-Tianjin-Hebei region between 2000 and 2020 shows 
an initial increase followed by a period of stability. The period between 2000 and 2010 was characterized by 
accelerated regional land urbanization, which led to a rapid expansion of urban land use and population 
 growth42. This, in turn, exacerbated energy consumption and resulted in a significant rise in carbon emissions 
across the region. However, since 2010, with the implementation of the Main Functional Area Plan and the 
strictest farmland protection policy, the intensity of urban land expansion in the Beijing-Tianjin-Hebei region 
has significantly decreased, and urban land growth has gradually shifted to orderly expansion. In addition, the 

Figure 10.  Spatial distribution of regression coefficients of land use degree in prefecture-level cities in Beijing, 
Tianjin and Hebei. Maps created in ArcMap 10.7 software.
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Beijing-Tianjin-Hebei coordinated development strategy has promoted the relocation and upgrading of regional 
industries, resulting in lower energy consumption in economic development. As a result, the rapid growth of 
carbon emissions in the region has been effectively  curbed43.

Analysis of carbon emission attribution
Population growth drives energy consumption and carbon emissions. Although the economic level remains the 
primary cause of carbon emissions growth in Beijing-Tianjin-Hebei, its role is gradually diminishing due to 
economic restructuring and the implementation of the coordinated development strategy. In recent years, the 
Beijing-Tianjin-Hebei region has experienced rapid economic growth, which has been accompanied by a decline 
in energy consumption per unit of GDP. This has led to an increase in the decoupling of carbon emissions from 
economic  growth44. An increased share of the tertiary sector can help reduce carbon  intensity45. However, it is 
important to note that an increase in the proportion of high-emitting sectors could lead to an increase in total 
carbon  emissions46.

Chengde City exhibits a negative correlation between its built-up area and carbon emissions in the Beijing-
Tianjin-Hebei region. This is mainly due to the city’s emphasis on ecological protection and green development 
in land use. In comparison to other regions, Chengde City prioritises the sustainable use of land resources, which 
limits the growth of carbon emissions. Due to its small built-up area, Chengde should focus on intensive and 
efficient land use during the urbanization process to avoid increased carbon emissions from over-expansion47. 
In the Beijing-Tianjin-Hebei region, rapid economic development and urbanization are likely to increase 
the proportion of land use types that have high carbon emissions, such as industrial and commercial land. 
Urbanization in these areas often leads to significant energy consumption and carbon emissions, particularly 
during the construction of factories and commercial  facilities48. Furthermore, the land use type in various 
regions has a significant impact on carbon emissions. Agricultural and forest lands are crucial for carbon storage 
and sequestration, whereas industrial and transportation lands are the primary sources of carbon  emissions49. 
Therefore, variations in land use types are also a significant factor that leads to different carbon emissions. The 
correlation between the landscape pattern index and carbon emissions of various cities in the Beijing-Tianjin-
Hebei region is influenced by several factors, such as land use type, landscape pattern, economic development, 
urbanization process, and natural factors. In promoting the synergistic development of the Beijing-Tianjin-Hebei 
region, it is important to optimize the land use structure, improve the landscape pattern, reduce carbon emissions, 
and achieve sustainable  development50.

Through the previous analysis, we have identified the key role of land use change in carbon emissions in 
the Beijing-Tianjin-Hebei region, especially in urbanization and the transformation of agricultural activities. 

Figure 11.  Spatial distribution of regression coefficients of landscape patterns of prefecture-level cities in 
Beijing-Tianjin-Hebei. Maps created in ArcMap 10.7 software.
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However, this analysis only focuses on the direct effects of land use and ignores other potentially important 
influencing factors, and in order to more fully understand the drivers of carbon emissions, we need to expand 
the perspective to the socio-economic level. Two factors in particular, policy change and technological progress, 
whose impact on carbon emissions cannot be ignored.

The Beijing-Tianjin-Hebei region has significantly reduced carbon emissions in recent years by implementing 
strict energy policies, such as promoting clean energy alternatives and limiting coal use. For example, by 
promoting the use of renewable energy such as photovoltaic and wind power, the consumption of fossil energy 
is effectively reduced.  Guan31 points out that the changes in energy carbon emissions in the Beijing-Tianjin-Hebei 
region fully demonstrate the significant impact of policies on carbon emissions. By formulating and implementing 
effective carbon emission reduction policies, optimizing energy structure and promoting clean energy utilization, 
carbon emission growth can be effectively controlled and green sustainable development of regional economy 
can be promoted. According to the research of Zhong et al.51, since the regional coordinated development policy 
in Beijing-Tianjin-Hebei region was proposed in 2014, it has significantly reduced carbon emissions through 
structural and technological effects, especially by optimizing the energy structure, and effectively reversed the 
long-term growth trend of carbon emissions. Technological progress provides an important means for reducing 
carbon emissions, which can reduce energy consumption and carbon emissions through energy conservation, 
industrial upgrading and other effects.  Kim52 selected the data of 23 cities in South Korea from 1989 to 2013, 
and analyzed the contribution of each city’s scientific and technological progress to reducing carbon emissions 
based on the spatial state model. Yang et al.53 believe that scientific and technological progress does not always 
promote carbon emission reduction, but also leads to more energy consumption through promoting economic 
growth, which ultimately increases carbon emissions. Ying Fan et al.54 selected the data of a number of countries 
from 1975 to 2000, classified them according to the income level of different countries, and conducted a research 
using the STIRPAT Model. The results showed that countries with different levels of economic development 
have different degrees of impact on carbon emissions from technological progress. In summary, policy changes 
and technological progress are important socio-economic factors affecting carbon emissions in the Beijing-
Tianjin-Hebei region. Future research is needed to explore the interaction of these factors with land use change 
in more depth to gain a fuller understanding of the drivers of carbon emissions. This will help us formulate 
more scientific and effective carbon emission reduction policies and promote the sustainable development of 
the Beijing-Tianjin-Hebei region.

Recommendations
(1) Precise Planning and Regional Coordination.

Based on the changes in the center of gravity of carbon emissions in Beijing-Tianjin-Hebei, make full use of 
the framework of the Beijing-Tianjin-Hebei Cooperative Development Strategy to strengthen cooperation and 
coordination among cities, and jointly promote low-carbon land use and low-carbon economic development, 
especially in areas with high carbon emissions, such as Beijing, Tianjin and Tangshan, to formulate a more precise 
policy on land use and industrial development. Optimize the land use structure, reduce land for high-carbon 
emission industries, and increase greenfield and ecological land.

(2) Strengthen ecological protection and restoration.
Increase the protection and restoration of ecosystem carbon sink functions, especially in key areas in the 

northeast-southwest direction, and strengthen the protection and construction of forests, wetlands and other 
ecosystems. Carry out restoration projects for degraded ecosystems to improve the stability and carbon storage 
capacity of ecosystems. For example, Chengde City can continue to strengthen ecological protection and green 
development, while other cities can improve the carbon sink capacity of their land by increasing the area of green 
space and building ecological corridors.

(3) Promoting industrial transformation and upgrading is the key to reducing carbon emissions. Led by the 
Beijing-Tianjin-Hebei coordinated development strategy, the transformation and upgrading of high-energy-
consuming and high-emission industries should be actively promoted, and low-carbon and environmentally 
friendly emerging industries should be vigorously developed. At the same time, the development of the tertiary 
industry should be encouraged, especially low-carbon emission service industries such as information technology, 
finance and education. For high-emission industries within the tertiary sector, such as transport, catering and 
accommodation, they should be promoted for green and low-carbon transformation.

Shortcomings and prospects
Using the GTWR model, this study analyses the spatial and temporal heterogeneous characteristics of carbon 
emissions in Beijing-Tianjin-Hebei and explores the influencing factors. However, it only considers carbon 
emissions from energy consumption and does not cover the comprehensive carbon emissions of the entire 
society. Furthermore, the study does not include the simulation and prediction of future carbon emissions. As a 
next step, it is important to comprehensively consider carbon emission scenarios and simulate carbon emissions 
under different development scenarios. This will provide valuable policy recommendations for achieving carbon 
neutrality and carbon peaking.

Conclusion
(1) The carbon emissions of Beijing-Tianjin-Hebei have continued to grow, albeit at a slower rate, from 
140.1143 million tons in 2000 to 347.3489 million tons in 2020. The growth was rapid before 2010, after which 
it levelled off. The expansion of construction land is the primary cause of the increase in carbon emissions, and 
it also affects the distribution of carbon emission centers.
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(2) The carbon emissions in Beijing-Tianjin-Hebei exhibit significant spatial and temporal heterogeneity. The 
amount of carbon emissions is distributed randomly, but core cities such as Beijing and Tianjin consistently emit 
high levels of carbon. During the study period, carbon emissions in the Beijing-Tianjin-Hebei region showed a 
small fluctuation, with a trend of initially increasing and then decreasing, ultimately showing an overall decrease.

(3) The spatial and temporal heterogeneity of the factors influencing carbon emissions in Beijing-Tianjin-
Hebei is evident. Factors such as total population, economic development, industrial structure, degree of land 
use, and landscape patterns have a significant impact on carbon emissions. An increase in total population, 
economic development, and expansion of construction land use results in a rise in carbon emissions. Carbon 
emissions from land use exhibit significant spatial heterogeneity across regions due to variations in population, 
land use, industrial structure, landscape patterns, and economy.

Data availability
Data availability The datasets generated during and/or analysed during the current study are available from the 
corresponding author on reasonable request.
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