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Regiomontanus angle 
maximization for catadioptric 
sensors with paraboloidal mirrors
Stathis Hadjidemetriou 

Dioptric cameras with conventional perspective projection have well established analytical properties. 
However, they suffer from perspective distortions and only have a limited field of view. Catadioptric 
cameras offer panoramic imaging. Their extensive field of view together with projection specific 
image analysis, can simplify many computer vision tasks. Several properties of catadioptric projection 
for geometric primitives such as points and lines have been addressed and have also been used for 
calibration. However, higher order geometric properties are yet to be investigated. Such analysis is 
complicated by the specifics of the warping of the scene by catadioptric projection. One such property, 
that is the subject of this work, is the Regiomontanus angle maximization relative to the effective 
viewpoint of the sensor. This work considers catadioptric sensors with paraboloidal mirrors, that is, 
paracatadioptric sensors. Analytical ray tracing of a simplified 1D world object gives its projection in 
the image and an expression for its length. The optimization of the length of the projection results in 
a third degree equation for the Regiomontanus distance that can be solved explicitly. The Khayyam 
geometric solution of this equation provides the Regiomontanus distance of maximum subtended 
projection for these cameras. Applications of these results in various contexts are presented and 
discussed.

Catadioptric cameras enable panoramic imaging and offer several advantages compared to conventional cameras 
based on perspective projection. Panoramic imaging also provides extensive information about the environment. 
The benefits of catadioptric imaging together with projection specific analysis can simplify many computer vision 
tasks. For example, it decreases artifacts from boundary effects in image analysis and simplifies the tracking of 
motion. Catadioptric cameras can more closely preserve the local shape of objects. Systems based on catadioptric 
cameras can also enable effective visualization and even  telepresence1. Other more recent applications are for 
assisted vehicle  driving2 and as robotic vision  systems3,4.

The optical properties of reflective surfaces, mirrors, namely catoptrics, were investigated geometrically since 
antiquity. They were initially physically associated with burning. They examined mirrors that were shaped as 
conic sections. The first to discover that the ellipse, the hyperbola, and the parabola are conic sections was Menae-
chmus (born c.380 BC). Archimedes (287-c.212 BC) worked on both conic sections and catoptrics. Apollonius 
of Perga (240 BC-c.190 BC) in his books “Conic sections” and “On the burning mirrors” derived the focal and 
reflection properties of ellipses and  hyperbolas5,6. Diocles (240 BC-c.180 BC) in his book “On burning mirrors” 
derived the focal property of the  parabola7. Later, Anthemius of Tralles (474 AC–c534 AC) wrote a book, “On 
burning mirrors”, where he elaborated further on the properties of the foci of the parabola and of the ellipse as 
well as on their applicability to  architecture8. Ptolemy (150 AD) posed the problem of reflection on a spherical 
surface that does not have a single  viewpoint9. Alhazen (c.965–c.1040) in the “Book of optics” provided a geo-
metrical solution to this problem.

In a large scale the reflective properties of the paraboloid are used for the focusing of parallel beams. Some 
examples are satellite dish  antennas10 and catadioptric telescopes that avoid the chromatic aberrations from which 
the lenses  suffer9. Omnidirectional sensors are also used in a smaller scale for various purposes. In medicine, 
the ellipsoid is used for lithotripsy with  ultrasound11. In medical imaging they have been used for endoscopy. 
An example has been with a cylindrical camera that gives a flat cylindrical  image12 and another example is for 
a system that combines forward dioptric and radial catadioptric  views13. An early omnidirectional camera was 
implemented with a four-sided mirrored  pyramid14. Also, an early system with a dodehahedral mirror enabled 
visualization with a single  viewpoint15. A hyperboloid mirror has also been used for panoramic  television16. 
Similarly, a catadioptric projector models the catadioptric imaging projection and inverts it to create a panoramic 
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 projection17. Also, a system for telepresence has used a hyperboloidal mirror  camera1. More recently, omnidi-
rectional sensors have been used for surveillance of traffic light  intersections18 as well as for assisted vehicle 
 driving2 and mobile robotic  navigation19. Other uses have been as catadioptric stereo imaging sensors for mobile 
 robotics3,4 and as omnidirectional sensors for aerial  robotics20.

There has also been progress with analytical work on the focal properties of reflective mirror surfaces. It has 
been proven that any surface with a focal property both is and has to be a surface of revolution of a conic section. 
A proof of this result has used differential equations in polar and spherical  coordinates21. Another proof of this 
result has been coordinate free based on the orthogonality properties of the  foci22. Results along these lines were 
also derived and introduced to the context of computer vision by a classification of panoramic catadioptric imag-
ing cameras with a single viewpoint  constraint23,24. These derivations also describe the principles for the design 
of a catadioptric camera with a paraboloidal convex reflective surface and a quantification of its properties with 
respect to field of view, resolution, and  blurring23,25,26. There have also been studies to construct an analytical 
model of the catadioptric projections from mirrors of different types of conic sections in a unified  manner27 and 
further refinements of that  construction28.

There has been extensive work on the calibration for catadioptric cameras in particular with a single view-
point. This has been for paracatadioptric camera  sensors29 and more generally for their calibration using images 
of geometric primitives such as of three parallel  lines30, vanishing  points31,32, or of circular  sections33,34. The 
imaging of motion has also been investigated. A study has examined the time-to-contact with paracatadioptric 
 sensors35. There have also been studies on the egomotion of catadioptric sensors. A simple approach first recon-
structs the motion field from the 2D image to the surface of a sphere and then applies conventional methods to 
estimate translation and  rotation36,37. Other methods process directly the image of the catadioptric projection and 
assume correspondence to compute the essential  matrix38. Catadioptric stereo has been achieved with various 
arrangements of these  sensors39–41. The corresponding models of projection from the world to the images and 
the respective epipolar geometries have been developed for each of these  arrangements42.

The properties of catadioptric projection have been investigated for basic geometric primitives of points and 
parallel  lines31,32, simple motions of translations and rotations, as well as early computer vision operations such 
as calibration and stereo. The properties of the projection of many higher order geometric features of the scene 
have yet to be studied. This work examines one such property. This is the maximum size of the final angle an 1D 
object subtends in the catadioptric image projection as a function of the distance of the object. The problem has 
been formulated for central projection and is known as the Regiomontanus angle maximization problem. It was 
posed by mathematician Johannes Mueller (1436–1476)43–45. This work extends the Regiomontanus angle maxi-
mization for angles of a 1D object to the case where the effective viewpoint is that of a catadioptric paraboloidal 
imaging sensor. It examines directly the properties of the projection in catadioptric image space.

The paraboloidal mirror shape is associated with an orthographic projection. This is called a paracatadioptric 
imaging sensor and implements panoramic imaging with a single viewpoint. The first step is the analytical ray 
tracing from a point in the world, to the intermediate mirror surface, and eventually to its vertical reflection that 
is recorded by the camera to form an image. Then, two points in the world are considered together that are the 
boundaries of a 1D world object parallel to the optical axis. The distance between the orthographic projections of 
these two points in the image give the length of the object in the image. This length is computed and represents 
the angle between the parallel rays. The optimization of the length of the projection of an object results in a third 
degree equation for the Regiomontanus distance. This equation can be solved explicitly. The Khayyam geometric 
solution of this equation provides the paracatadioptric Regiomontanus distance of the object. Applications of 
these results for the calibration of a paracatadioptric imaging sensor, for navigation with such an imaging sensor, 
and a general biomedical application are discussed.

Background
This section provides general information on paracatadioptric sensors and a formulation for Regiomontanus 
maximization. It also describes a catadioptric sensor with a planar mirror.

Paracatadioptric imaging sensors
The mirror surface of a catadioptric omnidirectional sensor that has a single viewpoint has to be a surface of 
revolution of a conic  section21,23. In this study the conic section giving the mirror is shaped as a paraboloid with 
the external surface convex and reflective. The reflected rays project to an orthographic telecentric lens in the 
camera that constrains the image projection to be orthographic and parallel to the optical axis. The parallel rays 
are assumed to meet at infinity under a negligible  angle23. This negligible angle when measured in radians can 
be represented by the arc length it subtends, which is the distance between the parallel rays on the image plane. 
Hence, the angle difference in radians between the parallel rays is their distance on the image plane.

Regiomontanus’ angle maximization problem
It involves the angle subtended at a viewpoint directly by a 1D object that is vertical as the viewpoint moves away 
from the object horizontally. The coordinates in 3D space are (x, y, z). This analytical development represents 
the 2D plane, (x, y), with a radial coordinate r = (x,y)

�(x,y)�2 . The lower point of the vertical 1D object is at height a 
and the higher point is at height b. The values of z = a and z = b satisfy b ≥ a.

The point a at distance r subtends an angle α . Similarly, the point b, at the same distance r, subtends an angle 
β . The subtended angle of the difference β − α as a function of r is given  by43,44:

(1)tan(β − α) = (b− a)
r

r2 + ab
.
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The geometry is in Fig. 1a. The simulation of Eq. (1) for (a, b) = (6, 12) and r = [0, 90] is in Fig. 2. The maximiza-
tion of the subtended angle in Eq. (1) gives the condition for radial Regiomontanus distance, rRM . The condition 
can also be expressed in terms of tan α = a

r  and tan β = b
r  to give

in trigonometric form.

(2)rRM =
√
ab ⇔ tan α tan β = 1

Figure 1.  In (a) is a diagram with the geometry for direct Regiomontanus maximization. In (b) is a diagram 
with the geometry of catadioptric imaging with a planar mirror for Regiomontanus maximization.

Figure 2.  Simulation for the geometries in Fig. 1 of subtended angle (β − α) as a function of distance r from an 
object. The values of the parameters are (a, b) = (6, 12) , and r = [0, 90].
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Angle maximization for a planar mirror catadioptric camera
A camera is placed facing down with its center of projection, its pinhole, at a distance f above a planar  mirror27. 
The plane of the mirror is given by z = f  and the camera pinhole is taken to be at (0, 2f). The result is that the 
effective single viewpoint is at the origin, (0, 0). Hence it follows the direct Regiomontanus analysis and satis-
fies its results already obtained in Sect. "Regiomontanus’ angle maximization problem" above. The catadioptric 
camera is in an upright position imaging a 1D object. In this case the difference between the final values of the 
projection angles optimized becomes βf − αf .

The 1D object is parallel to the optical axis with a lower point at height a and a higher point at height b. The 
trajectory of the object is normal to the optical axis. The 1D object and its trajectory, the rays emanating from 
the object that are reflected by the mirror impinging normally on the image, and the optical axis are all coplanar. 
The geometry is in the diagram in Fig. 1b. Due to the symmetry with respect to the mirror, Eq. (1) and its simu-
lation in Fig. 2 still hold. The field of view of this catadioptric system with a planar mirror is limited. This work 
examines the use of a paraboloidal mirror that has an extended omnidirectional field of view and also preserves 
the single viewpoint constraint.

Methods
The geometry of a vertical catadioptric camera with a planar mirror imaging a 1D object is also used for the 
paracatadioptric camera considered. Rays from points of the object in the world are traced analytically to the 
intermediate mirror surface and are then projected to the camera to form an image. The ray tracing for two points 
of the object, the lower and the upper, gives the projection and length of the object in the image. The derivative 
of the length of the projection with distance r between the optical axis of the camera and the 1D object in the 
world is computed. Setting this derivative to zero gives a third degree equation for the Regiomontanus distance 
of maximum projection length.

Paraboloidal catadioptric mirror
The axis of the paraboloid coincides with the vertical z-axis and its focal point is at the origin (0, 0). It is also 
concave down, that is, d

2z
dr2

∣

∣

∣

r=0
< 0 . These properties are set Without Loss Of Generality (WLOG). The resulting 

paraboloid has equation:

which satisfies these properties. The paraboloid intersects the r axis at (±2f , 0) and the z-axis at (0, f). The 
geometry is in Fig. 3.

Intermediate projection on the paraboloidal mirror
The point at height a and distance r in the world subtends an angle α at the effective viewpoint. The ray emanating 
from the point at a meets the paraboloidal mirror at (rpα , zpα ) under angle:

(3)z = f −
1

4f
r2,

Figure 3.  Diagram with the geometry of catadioptric imaging with a paraboloidal mirror for Regiomontanus 
maximization.
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The replacement of Eq. (4) in Eq. (3) of the paraboloid gives:

The solution of Eq. (5) for rpα gives:

The root signs of Eq. (6) correspond to the two antipodal meeting points of the ray with the mirror surface. The 
positive sign corresponds to the meeting point proximal to the emanating point and the negative sign corresponds 
to the distal meeting point. The distal point does not satisfy physical constraints and is ignored. The positive sign 
that corresponds to the proximal point is selected to give:

with rpα > 0 . The replacement of tan α = a
r  and cosα = r√

a2+r2
 in this equation gives:

Orthographic projection for the image
The point where the ray meets the surface of the paraboloidal mirror is (rpa , zpa ) . The final projection from 
the mirror to the camera is orthographic. Thus, the depth coordinate, zpa , is ignored and the radial coordinate 
remains the only coordinate of interest. The radial coordinate of the projection at the mirror is the same as the 
radial coordinate of the projection to the camera given by Eq. (8). The derivative of the radial coordinate of the 
point on the mirror in Eq. (8) with respect to r in space is:

Length of projection of object on the image
The image projections of the two points at heights a and b give the length of the 1D object in the image. The points 
at the surface of the paraboloidal mirror are (rpa , zpa ) and (rpb , zpb ) . Similarly to the radial projection of point 
at height a under angle α in Eq. (8), the point at height b and under angle β has radial projection rpβ . The rays 
projecting on the image plane are parallel. Hence the difference between the final values of the angles, βf − αf  , 
in radians, is equal to the length of the projection, l. The length of the projection in the image is the difference 
between the r-coordinates of the projections of points a and b in the image, l = rpα − rpβ,

Equations (9) and (10) give the derivative of the length of the projection as:

Maximization of the length of the projection of the object in the image
The condition for the maximum is dl(r)dr = 0 . Considering Eq. (11), this leads to,

(4)tan α =
a

r
=

zpα
rpα

⇒ zpα = rpα tan α.

(5)rpα tan α = f −
1

4f
r2pα ⇒

1

4f
r2pα + tan αrpα − f = 0.

(6)rpα = 2f

(

− tan α
root
±

√

tan2 α + 1

)

= 2f

(

− tan α
root
±

1

cosα

)

.

(7)rpα = 2f

(

− tan α +
1

cosα

)

,

(8)rpα = 2f

(

−a+
√
a2 + r2

r

)

.

(9)
drpα
dr

=2f
r2(a2 + r2)−1/2 + a− (a2 + r2)1/2

r2
.

(10)l =rpα − rpβ = 2f

(

−a+
√
a2 + r2

r

)

− 2f

(

−b+
√
b2 + r2

r

)

.

(11)

dl

dr
=
d(rpα − rpβ )

dr
=

drpα
dr

−
drpβ

dr

=2f

[

r2(a2 + r2)−1/2 + a− (a2 + r2)1/2

r2

]

−

−2f

[

r2(b2 + r2)−1/2 + b− (b2 + r2)1/2

r2

]

.

(12)

2f

[

r2(a2 + r2)−1/2 + a− (a2 + r2)1/2

r2

]

− 2f

[

r2(b2 + r2)−1/2 + b− (b2 + r2)1/2

r2

]

=0

⇒

r2
[

(a2 + r2)−1/2 − (b2 + r2)−1/2
]

+ (a− b)−
[

(a2 + r2)1/2 − (b2 + r2)1/2
]

=0.
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The rationalization of the denominators in Eq. (12) is developed in appendix A of supplementary information 
to give the maximization condition as:

This equation is simplified with the removal of the radicals. The development is in appendix B of supplementary 
information. It gives an intermediate polynomial of eighth degree in the powers of r, 

∑8
i=0 c

′
i(a, b)r

i = 0 . The 
polynomial is even in terms of the powers of r and the zeroth order term is zero. The odd terms are zero because 
of the symmetry of the problem around the axis x = 0 . The zeroth order term is zero because both the projec-
tion and its derivative are zero at x = 0.

The coefficients of the powers of r of the eighth degree polynomial are in turn polynomials of a and b. The 
coefficients are simplified by removing terms that are common to all of them. The result is an equation of the 
form:

where c8(a, b) , c6(a, b) , c4(a, b) , and c2(a, b) are polynomials of powers of a and b as computed in appendix B of 
supplementary information and given in Table 1. The symbolic algebraic development of the methodologies in 
appendix B of supplementary information and of this work in general make use of the SymPy software  library46 
of the Python programming  language47.

The condition in Eqs. (13) and (14) has at least a double root at r = 0 ; however, as Eq. (10) can show, this 
corresponds to an object projection of length limr→0l = 0 . Also, the configuration with the camera located 
immediately above the mirror renders the solution for r = 0 physically impossible. Hence, this solution is ignored.

The polynomial from Eq. (14) that remains is:

The replacement:

gives:

The development of the solution of this equation is in Sect. "Geometric solution of the cubic polynomial equa-
tion" below.

Geometric solution of the cubic polynomial equation
Equation (17) is a third degree equation. The constrain w = r2 > 0 gives real final solutions for the Regiomonta-
nus distance as r =

√
w in Eq. (16). The algebraic solution to the cubic equations can be computed directly with 

the method of  Cardano48. However, that method is inconvenient. Instead, this section presents a more intuitive 
geometric solution of this equation provided by Omar Khayyam that conveniently provides their  roots48. The 
solutions for w are described as intersections of conic sections. Specifically, the intersection of a parabola and 
hyperbola. The solution steps are given below.

Depressed form of cubic equation
A polynomial in standard form in Eq. (17) is normalized so that the coefficient of the third order becomes unity 
to give:

The substitutions for the fractions:

in Eq. (18) give:

(13)b2(a2 + r2)1/2 − a2(b2 + r2)1/2 − (b− a)(a2 + r2)1/2(b2 + r2)1/2 = 0.

(14)r2
(

c8(a, b)r
6 + c6(a, b)r

4 + c4(a, b)r
2 + c2(a, b)

)

= 0,

(15)c8(a, b)r
6 + c6(a, b)r

4 + c4(a, b)r
2 + c2(a, b) = 0.

(16)w = r2

(17)c8(a, b)w
3 + c6(a, b)w

2 + c4(a, b)w + c2(a, b) = 0

(18)w3 +
c6

c8
w2 +

c4

c8
w +

c2

c8
= 0

(19)cp =
c6

c8
, cg =

c4

c8
, cr =

c2

c8

Table 1.  The coefficients of the eighth degree polynomial directly in terms of a and b.

Eighth degree polynomial coefficients Expressions of a and b

c8(a, b) (b− a)2

c6(a, b) −4ab(a2 − ab+ b
2)

c4(a, b) 4a2b2(a2 − ab+ b
2)

c2(a, b) 4a4b4
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A cubic is symmetric around its inflection point. The inflection point of Eq. (20) is located at w = − cp
3

 . The 
cubic is shifted so that the inflection point is located on the vertical axis. This gives its depressed form where the 
quadratic term is zero. This is achieved with the substitution,

in Eq. (20) to give Eq. (22) and finally Eq. (23):

The substitutions of the coefficient of χ in Eq. (23) with cs and the zero order term in the same equation with ct 
gives:

The substitution of the relations in Eq. (24) above into Eq. (23) gives:

The substitutions of cg , cp , and cr from Eq. (19) in Eq. (24) gives both cs and ct as a function of c2 , c4 , c6 , and c8 . 
The cs becomes

and the ct becomes:

The substitutions of c2, c4, c6, c8 from Table 1 in Eqs. (26) and (27), respectively, give

and

The coefficients of the depressed polynomial in terms of a and b are also given in Table 2.
These relations can more conveniently be expressed in terms of ba to give:

(20)w3 + cpw
2 + cgw + cr = 0.

(21)χ = w +
cp

3
⇒ w = χ −

cp

3

(22)
(

χ −
cp

3

)3

+ cp

(

χ −
cp

3

)2

+ cg

(

χ −
cp

3

)

+ cr =0 ⇒

(23)

(

χ −
cp

3

)2(

χ −
cp

3
+ cp

)

+ cg

(

χ −
cp

3

)

+ cr =0 ⇒
(

χ −
cp

3

)2
(

χ +
2cp

3

)

+ cg

(

χ −
cp

3

)

+ cr =0 ⇒

(

χ −
cp

3

)

[

(

χ −
cp

3

)

(

χ +
2cp

3

)

+ cg

]

+ cr =0 ⇒

(

χ −
cp

3

)

[

χ2 +
cp

3
χ −

2

9
c2p + cg

]

+ cr =0 ⇒

χ3 +
cp

3
χ2 −

2

9
c2pχ + cgχ −

cp

3
χ2 −

c2p

9
χ +

2

27
c3p −

cp

3
cg + cr =0 ⇒

χ3 + χ

(

cg −
c2p

3

)

+
(

2

27
c3p −

cp

3
cg + cr

)

=0

(24)cs = cg −
c2p

3
, ct =

2

27
c3p −

cp

3
cg + cr .

(25)χ3 + csχ + ct = 0.

(26)cs = cg −
c2p

3
=

c4

c8
−

1

3

c26
c28

=
3c4c8 − c26

3c28

(27)

ct =
2

27
c3p −

cp

3
cg + cr =

2

27

c36
c38

−
c6

3c8

c4

c8
+

c2

c8
=

=
2c36 − 9c4c6c8 + 27c28c2

27c38
.

(28)cs = −
4a2b2

(

a4 + a3b+ ab3 + b4
)

3a4 − 12a3b+ 18a2b2 − 12ab3 + 3b4

(29)ct =
4a3b3

(

4a6 − 21a5b− 12a4b2 + 26a3b3 − 12a2b4 − 21ab5 + 4b6
)

27
(

a6 − 6a5b+ 15a4b2 − 20a3b3 + 15a2b4 − 6ab5 + b6
) .
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and

The denominator of the fraction in Eq. (30) for cs is equal to zero for ba = 1 and positive for ba > 1 . Hence, when 
b
a > 1 , that is the range of interest, then cs < 0 . The value of ct in Eq. (31) can be both positive and negative in 
the range of interest, ba > 1.

Khayyam’s geometric solutions
The cubic equations can be classified into several Khayyam types so that the coefficients are positive. Each type is 
solved differently. Several of the types are either reducible to simpler ones or do not result in real  solutions48. The 
two remaining types that are relevant in this work are in Table 3. In the range of interest, ba > 1 , the coefficient cs 
satisfies cs < 0 and the coefficient ct satisfies ct < 0 and ct > 0 . Hence, Eq. (25) can be of type 3 or of type 2 and 
the geometric solutions for these two types are given below.

Khayyam’s solutions for type 3 and type 2
The Khayyam equation of type 3 is:

Its geometric solution is in Fig. 4a. The Khayyam equation of type 2 is:

Its geometric solution is in Fig. 4a.
Khayyam treated these types in Eq. (32) and in Eq. (33) separately but by allowing negative horizontal lengths 

we can combine these two types and corresponding solutions into one:

Let AB be perpendicular to BC. Two auxiliary shapes are employed. The first is a square with side AB so that:

The second auxiliary shape is a solid with base equal to (AB)2 and volume equal to c23,b:

Place BC to the left if the sign in front of c23,b is negative (Type 3) as in Fig. 4a. Place BC to the right if the sign in 
front of c23,b is positive (Type 2) as in Fig. 4b. The first main shape is a parabola with vertex at B and parameter 
AB. The definition and equation of the parabola with (BE) = χ and (BZ) = y becomes:

(30)cs = −
4

3
a2b2

(

1+
(

b
a

)

+
(

b
a

)3

+
(

b
a

)4
)

(

1− 4

(

b
a

)

+ 6

(

b
a

)2

− 4

(

b
a

)3

+
(

b
a

)4
)

(31)ct =
4

27
a3b3

(

4− 21

(

b
a

)

− 12

(

b
a

)2

+ 26

(

b
a

)3

− 12

(

b
a

)4

− 21

(

b
a

)5

+ 4

(

b
a

)6
)

(

1− 6

(

b
a

)

+ 15

(

b
a

)2

− 20

(

b
a

)3

+ 15

(

b
a

)4

− 6

(

b
a

)5

+
(

b
a

)6
) .

(32)χ3 = c3,aχ + c3,b.

(33)χ3 + c2,b = c2,aχ .

(34)χ3 ± c23,b = c23,aχ .

(35)(AB)2 = c23,a.

(36)(AB)2 · BC = c23,b.

Table 2.  The coefficients of the depressed polynomial directly in terms of a and b.

Depressed polynomial coefficients Expressions of a and b

cs − 4a2b2(a4+a
3
b+ab

3+b
4)

3a4−12a3b+18a2b2−12ab3+3b4

ct
4a3b3(4a6−21a5b−12a4b2+26a3b3−12a2b4−21ab5+4b6)

27(a6−6a5b+15a4b2−20a3b3+15a2b4−6ab5+b6)

Table 3.  The two types of equations for solutions.

csct Assignments Type

cs < 0ct < 0 c3,a = −csc3,b = −ct Type 3

cs < 0ct > 0 c2,a = −csc2,b = ct Type 2
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The square of Eq. (37),

is also used for convenience. The replacement of c23,a in Eq. (37) gives the parabola as

The second main shape is a hyperbola with vertices B and C and parameter BC as is shown in Fig. 4. The defini-
tion and equation of the hyperbola is:

It involves the length of BC given by replacing Eq. (35) in Eq. (36) to get:

Khayyam’s solutions for Type 3
In type 3 the definition of the hyperbola leads to:

The definition and equation of hyperbola in Eq. (40) for relation (42) of type 3 is

(37)(BE)2 = (BZ)(AB) ⇒ χ2 = y
√
c23,a ⇒ y =

χ2

√
c23,a

.

(38)y2 =
χ4

c23,a
,

(39)y =

√

3a4 − 12a3b+ 18a2b2 − 12ab3 + 3b4

4a2b2
(

a4 + a3b+ ab3 + b4
) χ2

.

(40)(ED)2 = (BE)(CE)

(41)(AB)2(BC) = c23,b ⇒ c23,a(BC) = c23,b ⇒ (BC) =
c23,b

c23,a
.

(42)(BE) = χ ⇒ (CE) = (EB)+ (BC) = χ +
c3,b

c3,a

Figure 4.  In (a) is the solution for type 3 and in (b) is the solution for type 2.
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The parameter of this equation is c3,bc3,a
= ct

cs
.

The meeting point D of the parabola and hyperbola with χ = (BE) and y = (ED) is a solution. Substitute to 
Eq. (43) of the hyperbola above the relation y2 = χ4

c3,a
 of the square of the equation of the parabola from Eq. (38) 

to get:

This is indeed type 3 of Khayyam’s in equation (32).

Khayyam’s solutions for type 2
In type 2 the definition of the hyperbola leads to:

The definition and equation of hyperbola in Eq. (40) for relation (45) of type 2 is

The parameter of this equation is − c2,b
c2,a

= ct
cs
.

The meeting point D of the parabola and hyperbola with χ = (BE) and y = (ED) is a solution. Substitute to 
Eq. (46) above of the hyperbola the relation y2 = χ4

c2,a
 of the square of the equation of the parabola from Eq. (38) 

to get:

This is indeed type 2 of Khayyam’s in equation (33).

Khayyam’s solutions for type 3 and type 2 at intersections of hyperbola and parabola
The equation of the hyperbola both on type 3 in Eq. (43) and type 2 in Eq. (46) by replacing the coefficients 
becomes:

Each intersection of parabola in Eq. (39) and hyperbola in Eq. (48), except of B at the origin, gives a root of the 
 cubic48.

Recovery of roots of original polynomial
The Khayyam’s solution are for the depressed form of the cubic in Eq. (25). The solutions for the standard form 
of the cubic in Eq. (18) are recovered using the relation in Eq. (21) with:

The value of cp as a function of a and b is obtained from Eq. (19) and Table 1:

This expression for cp in terms of a and b shows that cp < 0 . Hence, the term − cp
3
≥ 0 , in relation (49) is able to 

map a negative value of χ into a positive value of w.
The value of w must be greater than zero. This is because from Eq. (16) the square root of w gives the value of r,

that must be a real number for a meaningful physical solution. The value of r can be positive or negative due to 
the symmetry around the optical axis.

(43)(ED)2 = (BE)(CE) ⇒ y2 = χ

(

χ +
c3,b

c3,a

)

⇒ y2 = χ2 +
c3,b

c3,a
χ .

(44)y2 = χ2 +
c3,b

c3,a
χ ⇒

χ4

c3,a
= χ2 +

c3,b

c3,a
χ ⇒ χ3 = c3,aχ + c3,b

(45)(BE) = −χ ⇒ (CE) = (BE)+ (BC) ⇒ (CE) = −χ +
c2,b

c2,a

(46)(ED)2 = (BE)(CE) ⇒ y2 = −χ

(

−χ +
c2,b

c2,a

)

⇒ y2 = χ2 −
c2,b

c2,a
χ

(47)y2 = χ2 −
c2,b

c2,a
χ ⇒

χ4

c2,a
− χ2 +

c2,b

c2,a
χ = 0 ⇒ χ3 + c2,b = c2,aχ .

(48)

y2 =χ2 +
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(49)w = χ −
cp

3
> 0.
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=

−4ab(a2 − ab+ b2)

(b− a)2
= −4ab
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√
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This shows that for type 3 it may be necessary to check one, two, or even three roots χ if they are positive. It 
also shows that for type 2 it may be necessary to check two or even three roots χ if they are positive. A solution 
must then also be checked to satisfy the original condition in Eq. (13).

Discussion
This work develops a method to compute the Regiomontanus distance that maximizes the length of the projec-
tion of a 1D object imaged with a paracatadioptric sensor, that is, using a paraboloidal mirror. The optical axis 
is assumed vertical since, in practice, catadioptric omnidirectional sensors are fixed on another object such as a 
wall, a vehicle, a ground robot, or an aerial robot (Unmanned Aerial Vehicle). The direction of the vertical axis 
can be upwards or downwards depending on the application.

The first step of the methodology is to trace rays from two world points bounding a 1D object to the mirror 
surface. Then, the orthographic projection on the paracatadiotric camera sensor simplifies the computation 
of the image projection. The expression giving the length of the projection, l, is computed as a function of the 
distance between the optical axis of the sensor and the 1D object. The derivative of this expression is set to zero, 
dl
dt = 0 , to give the maximization condition through the developments in Sect. "Length of projection of object on 
the image", "Maximization of the length of the projection of the object in the image", and "Geometric solution 
of the cubic polynomial equation". This condition is a third degree equation that can be solved directly. In this 
work, this equation is solved geometrically with Khayyam’s method to provide in a more meaningful way the 
Regiomontanus distance. The solutions for the Regiomontanus distance do not depend on parameter f of the 
paraboloid because of the orthographic projection forming the final image.

The Regiomontanus analysis can be extended to single viewpoint catadioptric sensors with hyperboloid 
and ellipsoid mirrors that involve a central projection from the mirror to the camera. The derivations can 
also be extended to more general situations for a 1D object in 3D space. In that case a linear trajectory of an 
object may not be co-planar with the optical axis, in which case the projection of the trajectory will be a conic 
 section29–32,49. The projections of the trajectories of its two end points will be two different conic sections that 
meet at two vanishing points that correspond to the two opposite directions along the linear  trajectories30. There 
exist methodologies for the analysis of the projection of parallel lines on catadioptric sensors to conic  sections31. 
The Regiomontanus approach is complementary to those in that it investigates the effect of radial motion across 
such projected conic sections. The extension can also be for a general projection of a 2D object in 3D space or 
a 3D object.

The analysis presented in this work can have direct applications in various contexts. It can be used for telecon-
ferencing and for online remote teaching under optimal viewing angles. Notably, the Regiomontanus angle is 
independent of the focal length (f) or on other intrinsic camera parameter, making it applicable even for uncali-
brated cameras. However, the initial portion of this study, which computes the radial length of the projection, 
has the potential to contribute to paracatadioptric calibration. This calibration method would be simpler than 
existing approaches based on images of geometric primitives such as parallel lines and vanishing  points31 that 
require the fitting of conic  sections31,33,34. Other applications of this Regiomontanus analysis can be for the navi-
gation and positioning using paracatadioptric sensors such as those used by robots in indoor  environments19 as 
in a museum and aerial robotics in outdoor environments. These results may extend to other contexts where the 
focal properties of conic sections play a role, such as ultrasound-based imaging and therapies. In those contexts, 
the ultrasound waves under Regiomontanus angle could potentially enhance imaging resolution.

The Regiomontanus angle maximization can be derived for other types of catadioptric sensors or even under 
different media. The results presented in this study can be implemented and tested experimentally in various 
contexts.

Data availability
The data and materials are promptly available to readers by contacting the corresponding author, Stathis Had-
jidemetriou, email: stathis@uol.ac.cy.

Code availability
The code is promptly available to readers by contacting the author.
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