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Assessing surface water quality 
in Hungary’s Danube basin 
using geochemical modeling, 
multivariate analysis, irrigation 
indices, and Monte Carlo 
simulation
Omar Saeed 1*, András Székács 1,2, Győző Jordán 3, Mária Mörtl 2, Mostafa R. Abukhadra 4, 
Ahmed M. El‑Sherbeeny 5, Péter Szűcs 6 & Mohamed Hamdy Eid 4,6*

Evaluation of water quality is crucial for managing surface water effectively, ensuring its suitability 
for human use, and sustaining the environment. In the lower Danube River basin, various methods 
were employed to assess surface water quality for irrigation, drinking, human health risk purposes 
and the main mechanism control the surface water chemistry. These methods included water quality 
indicators (WQIs), complex statistical analyses, geographic information systems (GIS), Monte 
Carlo simulation, and geochemical modeling. Physicochemical analyses of surface water samples 
revealed primarily Ca–Mg–HCO3

− is the dominant water types. Principal component analysis (PCA), 
ionic ratios and piper, chloro alkaline index, Chadha, and Gibbs diagrams identified three distinct 
water characteristics influenced by water‑rocks interaction, evaporation, ions exchange, and human 
activities. The geochemical modeling showed Danube River water’s strong ability to dissolve gypsum, 
halite, and anhydrite (SI < 0) and precipitate aragonite, dolomite, and calcite with saturation index (SI) 
value greater than 0 along its flow path. The irrigation water quality index (IWQI = 99.6–107.6), sodium 
adsorption ratio (SAR = 0.37–0.68), sodium percentage (Na% = 13.7–18.7), soluble sodium percentage 
(SSP = 12.5–17.5), Potential Salinity (PS = 0.73–1.6), and Residual Sodium Carbonate (RSC = − 1.27–
0.58) values were used, mainly indicating acceptable quality with some limitations. Danube River 
water was unsuitable for drinking based on WQI value (WQI = 81–104). Oral exposure of children to 
specific components showed a higher hazard index (HI > 1) compared to adults, indicating a 2.1 times 
higher overall non‑carcinogenic risk hazard index. However, Monte Carlo simulation demonstrated 
negligible iron, manganese, and nitrate health hazards for both age groups. These findings are 
valuable for water quality management decisions, contributing to long‑term resource sustainability.
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Water constitutes a crucial and invaluable natural asset integral to the environmental  system1–3. The global 
challenge of inadequate access to clean and safe drinking water affects over a billion  individuals4,5. Tragically, 

OPEN

1Doctoral School of Environmental Science, Hungarian University of Agriculture and Life Sciences (MATE), Páter 
Károly u. 1, Gödöllő 2100, Hungary. 2Agro-Environmental Research Centre, Institute of Environmental Sciences, 
Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő 2100, Hungary. 3Eötvös 
Loránd University (ELTE), Budapest, Hungary. 4Geology Department, Faculty of Science, Beni-Suef University, 
Beni-Suef 65211, Egypt. 5Industrial Engineering Department, College of Engineering, King Saud University, 
P.O. Box 800, 11421 Riyadh, Saudi Arabia. 6Institute of Environmental Management, Faculty of Earth Science, 
University of Miskolc, Miskolc 3515, Hungary. *email: Saeed.Omar.Abdulhakim.Hizam@phd.uni-mate.hu; 
mohamedhamdy@science.bsu.edu.eg; mohamed.hemida@uni-miskolc.hu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-69312-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18639  | https://doi.org/10.1038/s41598-024-69312-8

www.nature.com/scientificreports/

an annual toll of 6–8 million lives is attributed to water-related illnesses and natural disasters, underscoring the 
profound significance of addressing water supply issues on a global  scale6,7. Surface water, among the freshwater 
sources, assumes paramount importance for various purposes, including residential, recreational, agricultural, 
and commercial  applications8,9. The endpoint for used water, commonly referred to as wastewater, manifests 
within the aquatic milieu, encompassing rivers, ponds, or other aqueous  reservoirs10–13. Among these water 
resources, rivers play a pivotal role as a supply of water for individuals, crop production, and industrial pro-
cesses. The increasing pollution of surface water due to human activities and the deposition of pollutants from 
the atmosphere, such as heavy metals, is a pressing concern, especially in urban regions, highlighting the urgent 
need for comprehensive environmental management strategies.

Surface water quality is adversely affected by various factors such as human-induced effects, floodplain chemi-
cal constituents, geochemical parameters, and the interaction between natural water and lithogenic  origins13–15. 
These elements collectively contribute to the degradation of surface water quality, presenting significant risks 
to both ecological systems and human  health1,13. Surface water quality is influenced by a spectrum of contami-
nants, encompassing inorganic, organic, and biological agents, Including both non-toxic and highly toxic heavy 
 metals10,16, biodegradable materials such as refuse, fecal matter, and  sewage17,18. Both natural phenomena and 
anthropogenic actions, such as the discharge of industrial effluents, agricultural runoff, and residential sewage 
into river systems, exacerbate the degradation of water  quality13,19–21. Hence, performing an initial evaluation 
of these environmental assets is imperative to guaranteeing their sustained conservation over the long  term22. 
Moreover, consistent monitoring of surface water quality and quantity is vital for promoting environmental 
well-being and realizing sustainable development objectives, exemplified by specific goals like “Aim 6: water 
purification and sanitation” and “Aim 14: Life beneath water” within the framework of the Sustainable Develop-
ment Goals (SDGs)23,24. Executives, policymakers, and governments employ the Water Quality Index (WQI) as 
a tool to assess the present condition of water quality. This index integrates measurable parameters and presents 
outcomes through a numerical rating system, classifying water quality on a spectrum from good to  bad25. Water 
quality is determined using a comprehensive method that takes into account all of the physical, chemical, and 
biological qualities of the  water13. Given the heightened susceptibility of surface water supplies to harmful con-
stituents, particularly in developing nations, assessing freshwater quality becomes  imperative26,27. The widespread 
adoption of the Water Quality Index (WQI) technique by numerous countries attests to its singular value and 
ease of comprehension for evaluating the overall condition of  rivers13,28. Alterations in water quality can have 
various repercussions on irrigation, leading to a decline in the productivity and fertility of agricultural soil. 
Excess salts, for instance, can adversely affect the soil’s structure, texture, permeability, and  aeration29. Improper 
irrigation techniques utilizing polluted surface water, as well as soil mismanagement, may result in the forma-
tion of too many soluble salts, causing the soil to become  alkaline30. Consequently, assessing the water’s qual-
ity for agricultural purposes is crucial, especially in dry and semiarid regions or countries where salt and sod 
development often occur in agricultural  soil13. Water management for irrigation and field distribution considers 
factors such as corrosion and scale potentials, addressing undesirable changes in water quality that may result in 
hydrological, economic, and aesthetic  losses31. Excessive contamination can potentially diminish efficiency and 
lead to tube obstruction in industrial equipment, thereby escalating the overall costs of industrial  operations29,32. 
In the broader context encompassing drinking, irrigation, and commercial uses, water quality emerges as a 
pivotal concern in water supply management, necessitating thoughtful planning for the judicious utilization of 
surface  water33. In this investigation, we employed Monte Carlo methodology to assess the non-carcinogenic 
risk connected with exposure to Iron, Manganese, and Nitrate within the lower Danube River basin. Monte 
Carlo simulation offers a powerful tool for quantifying uncertainty and variability inherent in environmental 
risk assessments, particularly when dealing with complex systems and multiple contaminants. Our investigation 
contributes to a more thorough knowledge of the health implications posed by these contaminants, facilitating 
the development of targeted mitigation strategies to safeguard human health and ecosystem integrity in this vital 
riverine ecosystem. The Danube River, Europe’s second-longest river, rises in Germany’s Black Forest Highlands 
and flows over 2800 km. Before entering the Black Sea, it flows through nine countries, including Germany, 
Slovakia, Austria, Hungary, Croatia, Serbia, Ukraine, Bulgaria, and Romania. Its catchment area encompasses 
around 817,000  km234, the Danube River boasts a diverse aquatic ecosystem inhabited by a rich variety of plants 
and animals. However, this ecosystem is not immune to the potential threat of heavy metal pollution. Accumula-
tion or increasing of PTEs in aquatic environments can impact various components of aquatic life, encompassing 
fish (ichthyofauna), benthic fauna residing on the riverbed, and macrophytes, aquatic  plants35,36.

This study represents the inaugural comprehensive endeavor to assess temporal and regional changes in river 
water’s physicochemical qualities. It investigates the causes and factors causing spatiotemporal discrepancies in 
the water purity of the Danube River using statistical approaches, employing multivariate statistical methods. 
The investigation also scrutinizes the suitability of the water’s viability for various purposes, including irrigation, 
drinking, and health risks with Monte Carlo simulation. The outcomes of this study are anticipated to furnish 
policymakers with valuable insights for advancing the UN Goals-2030 and achieving Sustainable Development 
Goals (SDGs2030) within this ecosystem. The focus lies on mitigating pollution and restoring the ecological 
balance of the riverine environment.

Materials and methods
Study geographic features and water sampling
The study focused on evaluating Hungary’s Danube River water quality, specifically within Baja, Dunaföldvár, and 
Hercegszántó, spanning January to December 2019. Sampling occurred at seven monitoring locations throughout 
southern Hungary’s Danube River, between coordinates 46°10′54.4548″ N and 18° 57′ 15.5016″E. These samplings 
were identified as “S1, S2, S3” for the right bank, left bank, and mid-streams of samplings in Dunaföldvár, “S4” 



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18639  | https://doi.org/10.1038/s41598-024-69312-8

www.nature.com/scientificreports/

for the left bank in Baja, and “S5, S6, S7” for the right bank, left bank, and mid-streams in Hercegszántó and 
their distribution map was created using QGIS 3.34.3. (Fig. 1). Samplings intended to encompass varied land use 
activities, such as agricultural, commercial, and residential areas on both riverbanks, potentially contributing 
to water contamination. Collected samples offer a comprehensive insight into water quality dynamics in these 
areas, which is crucial for assessing anthropogenic impacts on the Danube River. Beyond the studied cities, the 
Danube River then flows through additional countries before reaching the Black Sea. Hungary experiences a 
continental climate with hot, low-humidity summers and cold, snowy winters. Moderate precipitation occurs 
throughout the year, resulting in significant regional weather variations. Climatological data from 1991 to 2020 
indicates an average maximum temperature of 29 °C in July–August and an average minimum temperature of 
− 2.59 °C in December–February. Substantial rainfall, averaging 619 mm annually, typically falls between May 
and July in the study area.

Samples collection and analytical approaches
In 2019, an overall of 85 water samples were methodically gathered from seven predetermined sampling loca-
tions (Fig. 1) along a 120-km segment of the Danube River, adhering to the upstream-to-downstream flow. The 
seven locations covered all different landcover around Danube River including agricultural land, industrial sec-
tor, urban area, and small streams from other cities that discharge its water to the river and could affect its water 
quality regarding potential toxic elements. The measured parameters included the most important indicators 
or elements (15 parameters) that could explain the water quality concerning drinking, irrigation, and health 
risk issues, as well as the mechanism governing the chemical characteristics of the river. The evaluation based 
on these criteria could be crucial for water management plans and decision-makers for sustainable develop-
ment. To guarantee uniformity, composite samples were manually drawn from 30 cm beneath the water surface, 

Figure 1.  Study area and the distribution of sampling points in the lower Danube River basin.
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particularly in regions with swift water currents, ensuring comprehensive representation from each sampling 
point. Each sample was meticulously curated by amalgamating water collected at each site on three separate 
occasions, yielding 10 sets of composite water samples. Before collection of samples, 500-ml polyethylene bottles 
were rigorously washed with chemicals, thoroughly rinsed with filtered water, and submerged in a 10% HNO3 
solution overnight. The obtained samples were then sent to a laboratory with a regulated temperature of 4 °C 
for further chemical analysis. On-site measurements of pH, temperature (T), total dissolved solids (TDS), and 
electrical conductivity (EC) were conducted using specialized instruments: a pH meter and a digital thermometer 
(Hannah, Woonsocket, RI, USA). Additionally, TDS and EC were analyzed utilizing digital TDS and EC meters 
(HM digital, Redondo Beach, CA, USA). To ensure accuracy, all digital meters underwent standardization with 
deionized water and buffer solutions before the commencement of sample analysis. For cations analysis, the 
samples underwent filtration through 0.45 µm filters. Subsequently, ten drops of ultra-pure HNO3 were added to 
one set of  samples37. Calcium  (Ca2+) and magnesium  (Mg2+) contents were assessed using the EDTA titrimetric 
method, which employs ethylenediaminetetraacetic acid. Sodium  (Na+) and potassium  (K+) ion contents were 
measured utilizing a flame photometer (ELEX 6361, Eppendorf AG, Hamburg, Germany). Total hardness (TH) 
was evaluated using Eriochrome Black-T  (C20H12N3O7SNa) and ammonium chloride (NH4Cl) indicators in an 
EDTA solution. To assess chloride  (Cl−) concentrations, a titration method employing silver nitrate  (AgNO3) and 
potassium chromate  (K2CrO4) indicators was employed. For the detection of bicarbonate  (HCO3

−) and carbonate 
 (CO3

2−) concentrations, a titrimetric technique involving a standard solution of sulfuric acid  (H2SO4) and methyl 
orange indicator was utilized. Additionally,  Cl− concentrations were determined through titration with silver 
nitrate. Concentrations of sulfate  (SO4

2−) and nitrate  (NO3
−) were measured using a spectrophotometer based 

on the visible ultraviolet (UV) spectrum (DR/2040- Loveland, CO, USA). Iron and manganese were assessed 
through flame atomic absorption spectrometry (FAAS).

Quality assurance and control
The water quality analysis followed the standard methodology specified by the American Public Health Asso-
ciation (APHA) in  201238. To ensure the accuracy of on-site testing equipment, we carefully standardized all 
instruments with deionized water and buffer solutions before starting sample analysis. Various quality assur-
ance procedures were applied during the water sample examination. The analytical processes were validated by 
instrument calibration, accuracy, and predictability evaluations. Charging balance errors (CBE) were evaluated 
following field observations and then validated in the laboratory. The samples were examined in triplicate, and 
the average values were also given. Equation (1) 39 was used to analyze anion-cation balance errors based on the 
principle of neutrality, which states that the sum of the number of cations equals the sum of the number of anions 
in meq/L − 1. The CBE for all examined samples was within the permissible range of ± 5%.

Furthermore, the quality assurance of the analytical procedure was doublE−checked through a meticulous 
examination involving Certified Reference Material (CRM) and the blank technique analysis.

Indexing techniques
The index of processes influencing surface−water chemistry (IPIC)
An alternative method for discerning the provenance and mutual dependencies of principal constituents involves 
the juxtaposition of  [SO4

2−] against  [Ca2+],  [HCO3
− +  SO4

2−] against  [Ca2+ +  Mg2+],  [Na+] against  [Cl−], and 
 [HCO3

−] against  [Ca2+ +  Mg2+]. In this investigation, the chloro-alkaline indices.
(CAI-I and CAI-II) (Eqs. 2 and 3) were employed to ascertain the mineral composition within the aquifers 

and the ionic exchanges occurring in surfacE−water  systems39.

Saturation indices (SI)
A speciation approach was applied to ascertain minerals’ saturation index (SI) in surface water (SW) samples 
collected throughout Hungary’s Danube River. The SI of a mineral denotes its saturation status concerning the 
prevailing conditions of the surrounding system. Employed within this study, the SI served as a predictive tool 
to assess the potential existence of responsive minerals in water, utilizing water samples rather than solid-phase 
samples or thorough mineral  characterization40. Equation (4) was utilized for SI computation:

IAP stands for “ion activity product,” and Ksp stands for “solubility product” at a given temperature. A SI of 
zero implies saturation, a positive number shows oversaturation and a negative number indicates undersatura-
tion regarding mineral equilibrium.

(1)CBE =
�Cations−�Anions

�Cations+�Anions
∗ 100

(2)CAI− I =
Cl− −

(

Na+ − Ca2+
)

Cl−

(3)CAI− II =
Cl− −

(

Na+ − Ca2+
)

So2−4 +HCO−

3 + CO2−
3 +NO2−

3

(4)SI = log
(

IAP/Ksp
)
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Drinking water quality index calculations (DWQI)
The Drinking Water Quality Index (DWQI) is a valuable tool for assessing the overall quality of surface water, 
specifically in the context of its suitability for  consumption13,41. The preliminary assessment of water quality, 
facilitated by the WQI, is crucial in aiding decision-makers as they navigate policy implications and plan for 
future water resource management. WQI, as a grading system, provides a holistic representation of the cumulative 
impact of diverse water quality parameters on the overall water  quality42,43. Unlike traditional approaches that 
focus on absolute assessments of contamination or specific water quality parameters, WQI introduces a novel 
technique for evaluating the overall health of  rivers44. The uniqueness of WQI lies in its capacity to amalgamate 
various environmental parameters, effectively condensing them into a singular numerical value that reflects the 
prevailing status of water quality. This departure from conventional methods underscores the transformative 
potential of WQI in providing a more comprehensive and integrative perspective on water quality assessment. 
The DWQI method emerges as a highly effective approach for accurately evaluating and controlling water quality, 
providing knowledge concerning the overall  quality45. In Hungary’s lower Danube River basin, the calculation 
of WQI took into account a spectrum of critical parameters, including pH, temperature, electrical conductivity 
(EC), dissolved solids (TDS), dissolved oxygen (DO), sodium  (Na+), calcium  (Ca2+), potassium  (K+), magnesium 
 (Mg2+), chloride  (Cl−), sulfate  (SO4

2−), nitrate  (NO3
−), and bicarbonate  (HCO3

−). This inclusive consideration of 
various indicators underscores the WQI’s ability to encapsulate a broad array of water quality factors, facilitating 
a more holistic and integrated assessment approach (Eq. 5).

The variable “wi” represents the weight assigned to each parameter, while "n" denotes the overall number of 
variables used in this research.

“Ci” signifies the concentration of each chemical parameter measured in milligrams per liter for every water 
sample, and ‘si” represents the corresponding World Health Organization (WHO) water quality guidelines.

The calculation of “wi” for each parameter is determined in accordance with the prescribed  standards46 Eq. (6):

Here, the constant of proportionality, denoted as “K,” is computed using Eq. (7):

Drinking Water Quality Index calculation (DWQI) involves assigning a weight  (wi) to each surface water 
variable, followed by the determination of the relative weight  (Wi). Consequently,  Wi scores were allocated 
for all physicochemical parameters listed in Table 1, with  wi computed using Eq. (6). The resulting scores for 
guidelines, unit weights  (wi), and arithmetic weights  (Wi) for the water elements are presented in Table 1. WQI 
is classified into five categories Table 1S.

Irrigation water quality indices
Water quality indices (WQI) are a set of physicochemical factors employed to measure water quality, reduc-
ing a massive quantity of data to a short and straightforward  expression47,48. The irrigation water quality index 

(5)DWQI =

(

wi
∑n

i=1 wi

)

×

(

100×
Ci

Si

)

(6)wi = K/Si

(7)K = 1/
∑

1/Si

Table 1.  Determining the Drinking Water Quality Index (DWQI) using the arithmetic weight method for 
physicochemical parameters.

Nos. Parameters Unit WHO (2017) (Si)(1) (1/Si) Wi = (K/Si) Qi = (Ci/Si) *100 WiQi

1 pH 8.5 1.176E−01 8.640E−03 9.581E+01 8.278E−01

2 EC µs/cm 1500 6.667E−04 4.896E−05 3.119E+01 1.527E−03

3 TH mg/L 500 2.000E−03 1.469E−04 2.276E+01 3.343E−03

4 TDS mg/L 500 2.000E−03 1.469E−04 5.450E+01 8.005E−03

5 Ca2+ mg/L 75 1.333E−02 9.792E−04 7.260E+01 7.109E−02

6 Mg2+ mg/L 50 2.000E−02 1.469E−03 3.227E+01 4.739E−02

7 Na+ mg/L 200 5.000E−03 3.672E−04 8.279E+00 3.040E−03

8 K+ mg/L 12 8.333E−02 6.120E−03 2.153E+01 1.318E−01

9 Cl− mg/L 250 4.000E−03 2.938E−04 9.800E+00 2.879E−03

10 NO3
− mg/L 50 2.000E−02 1.469E−03 1.673E+01 2.458E−02

11 HCO3
− mg/L 120 8.333E−03 6.120E−04 1.628E+02 9.966E−02

12 CO3
2− mg/L 350 2.857E−03 2.098E−04 2.619E+00 5.496E−04

13 SO4
2− mg/L 250 4.000E−03 2.938E−04 1.490E+01 4.377E−03

14 Fe3+ mg/L 0.3 3.333E+ 00 2.448E−01 2.000E+02 4.896E+01

15 Mn2+ mg/L 0.05 2.000E+ 01 7.344E−01 7.000E+01 5.141E+01

∑ 1 1.016E+02
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(IWQI) is a powerful and informative tool for assessing and controlling soil assets and agricultural productivity. 
Indeed, irrigation water may complicate soil properties and crop yields owing to the numerous influences of 
water quality factors. The IWQI, Na%, RSC, PS, SSP, and SAR were computed using the surface−water samples’ 
physicochemical properties, as given in Table 2.

Irrigation water quality index
To compute the IWQI, the following Eqs. (8–10) applied a non-dimensional scale with an interval of 0–100 to 
the relationship between variables such as SAR, EC,  Cl−,  Na+, and  HCO3

−49.

Particularly,  Qi reflects the output of the quality measurement within the acceptability boundaries, and  Wi 
represents the weight of each variable (Table 3).

where  Xinf is the integer equivalent to the class’s lower threshold, and  Xij is the recorded number for every vari-
able.  Qimap: The class amplitude,  Xamp: The amplitude class to which the variable corresponds. Subsequently the 
 Wi values were then determined using the equation below:

where i is the total amount of physicochemical variables considered by the approach, varying from 1 to n; j is the 
number of variables considered by the approach, ranging from 1 to k; and F is the default number of element 1, 
A = The substantially limited of variable i by component j.

Utilizations of multivariate statistical approaches and GIS tools
Researchers may undertake multivariate investigations utilizing physicochemical data as well as chemical com-
pounds (major anions and cations) to acquire a better knowledge of the surface water system and its  chemistry50. 
This research used Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) implemented 
by IBM® SPSS® Statistics 29, while Monte Carlo method was simulated using Python. To demonstrate regional 
and temporal fluctuations in water quality within Hungary’s Danube River distribution system, inverse distance 
weighting techniques (IDW) interpolation was used using QGIS 3.34.3. IDW, a deterministic technique, is used 
to spatially interpolate data and estimate values between observations. This approach was chosen over spline 
and kriging methods because of its reduced computational and modeling needs, while kriging requires more 
user  input51–53. GIS mapping was employed to illustrate the geographical and temporal distribution patterns of 

(8)IWQI =

n
∑

i=1

Qi ×Wi

(9)Qi = Qmax −
(((

Xij − Xinf

)

×Qimap

)

/Xamp

)

(10)Wi =

∑k
j=1 FjAij

∑k
j=1

∑n
i=1 FjAij

Table 2.  The IWQIs, formula, and reference. *IWQIs are determined in meq/L.

IWQIs Formula

IWQI IWQI =
n
∑

i=1
Qi ×Wi

SAR SAR =

(

Na+√
(Ca2++Mg2+)/2

)

× 100

Na % Na% =
(Na++K+)

(Ca2++Mg2+)+(Na++K+)
× 100

SSP SSP =
Na+

Ca2++Mg2++Na+
× 100

PS PS = Cl− +

(

SO2−
4
2

)

RSC RSC =
(

HCO−

3 + CO−

3

)

−
(

Ca2+ +Mg2+
)

Table 3.  The range of limit values of the parameters used in the computation of quality measurement (Qi).

Qi SAR EC (µs/cm) HCO3
− (meq/L) Na+ (meq/L) Cl− (meq/L)

0–35  ≥ 12 EC < 200 or EC ≥ 3000 HCO3 < 1 or HCO3 ≥ 8.5 Na < 2 or SAR ≥ 9 Cl < 1 or Cl ≥ 10

35–60 6 ≤ SAR < 12 1500 ≤ EC < 3000 4.5 ≤  HCO3 < 8.5 6 ≤ Na < 9 7 ≤ Cl < 10

60–85 3 ≤ SAR < 6 750 ≤ EC < 1500 1.5 ≤  HCO3 < 4.5 3 ≤ Na < 6 4 ≤ Cl < 7

85–100 2 ≤ SAR < 3 200 ≤ EC < 750 1 ≤  HCO3 < 1.5 2 ≤ Na < 3 1 ≤ Cl < 4
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physicochemical variables, the Drinking Water Quality Index (DWQI), main ion concentrations, irrigation water 
quality parameters, and statistical analysis in surface water.

Human health risk
Non‑carcinogenic technique for assessing human health risks
Consuming drinking water polluted with hazardous metals doubles the risk of both non-carcinogenic and car-
cinogenic disorders in  people36,54,55. In this research, the evaluation of non-carcinogenic hazards associated with 
components such as  Mn2+,  Fe3+, and  NO3

− was carried out utilizing procedures defined by the US Environmen-
tal Protection Agency (USEPA)56. The health risk evaluation methodology developed by the USEPA in  200436 
was used to analyze non-cancer human health hazards caused by heavy metal ions found in water bodies. This 
evaluation included possible dangers from eating, inhalation, and skin contact. The major hazard is from direct 
water  use36,56,58. This technique uses the chronic daily intake (CDI) method to calculate the quantity of pollutants 
consumed by people. The CDI technique estimates the daily dosage of contaminants in kilograms Eq. (11) 57,59.

The attributes used in the calculations include (chronic daily intake (CDI), mg/kg/day), Ccon (heavy metal’s 
concentration, mg/L), IR (intake rate with values for adults at 2.2 L  day−1 and children at 1.8 L  day−1), ED 
(exposure duration with values for adults at 70 years and children at 6 years), BW (body weight with values for 
adults at 70 kg and children at 15 kg), EF (exposure frequency for both adults and children at 350 days/year), 
and ATnc (average time for assessing non carcinogenic risks with values for adults at 25,550 days and children 
at 2190 days)56,60,61.

The HQ (hazard quotient) is then calculated by dividing the (CDI) by the reference dose (RFD) for oral 
exposure (Eq. 12), respectively. The RFD oral for manganes, iron and nitrates are 0.024, 0.7 and 1.6 (mg/kg/
day),  respectively36,61.

Ultimately, the comprehensive non-carcinogenic hazards were evaluated by computing the hazard index 
(HI) according to Eq. (13) 36,62.

Toxic metals exhibiting a (HQ) or (HI) surpassing 1 are indicative of potential deleterious effects on human 
health, whereas those with an HI or HQ below 1, are regarded as unlikely to cause adverse  consequences36,56.

Monte Carlo simulation model (MCS)
The MCS main objective in our research was to evaluate the probabilistic distributions of several variables, 
including  Fe3+,  Mn2+, and  NO3

− concentrations, ingestion rate, exposure time, average time, exposure duration, 
exposure frequency, body weight, skin-surface area, and permeability coefficient (Fig. 2).This analytical process 
was undertaken to delineate the probabilistic distributions of uncertainties associated with assessment  metrics55.

The integration of Monte Carlo model combined with the USEPA’s health risk evaluation approach facilitates 
the comprehensive evaluation of uncertainties related to human health hazards from heavy metal exposure. 
This is accomplished by constructing a probabilistic distribution for cancer risk (CR) values. Our study used 
the Monte Carlo approach to predict (HQ) oral readings for adults and children. This technique reduces uncer-
tainty and improves the reliability of non-carcinogenic health risk evaluations for iron, manganese, and nitrates 
in Hungary’s lower Danube River basin. The input parameters included  Fe3+,  Mn2+, and  NO3

− concentrations, 
as well as the appropriate variables from Eqs. (11) and (12). To ensure the Monte Carlo simulation’s accuracy, 
the Python programming ran 10,000 iterations, with observed and anticipated identical HQ values, proving the 
model’s success. While heavy metal and  NO3

− concentration distributions were determined from existing 2019 
evaluated data, other factors like as exposure time, ingestion rate, skin surface area, and body weight were mod-
eled as normal distributions to better represent their genuine  distributions36,55.

Limitation of research methodology
The study on the Danube River’s water quality is limited by its spatial coverage, as the 120-km segment may not 
represent the entire river. However, the sampling locations cover the most locations that could be affected by 
contaminations from anthropogenic and natural activities. Though crucial, the choice of 15 parameters might 
miss out on indicators, and the distribution of different types of land cover at sampling sites may not be evenly 
represented, potentially causing biased outcomes. Furthermore, the study may not fully consider all human-made 
and natural impacts on water quality, and variations in water flow dynamics and sources of pollution could impact 
the results more. Further research could involve more parameters, such as PTEs and stable isotopes, to detect the 
source of contamination and its health risk effect. Collecting samples from the groundwater with surface water 
in future work could explain the impact of the surface water and groundwater interaction on the water quality. 
The research concentrating on the lower Danube River basin in Hungary may restrict the applicability of the 
results to areas with varying environmental and demographic characteristics. The upper basin could be covered 
in future work. Additionally, although the Monte Carlo method helps mitigate uncertainty, its effectiveness is 

(11)CDIoral =
Ccon × IR× ED

BW× ATnc
× EF

(12)HQoral =
CDIoral

RfDoral

(13)HI(oral) =
∑

HQoral
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contingent upon the assumptions within the model; any errors in these assumptions could affect the credibility 
of health risk assessments.

Results and discussion
Hydrochemical properties of Hungary’s Danube river
To evaluate the surface water quality of Hungary’s Danube River, it is helpful to categorize the examined sam-
plings according to their physicochemical properties and ion compositions, as evaluated against established 

Figure 2.  The procedural steps of a Monte Carlo simulation model.
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standards for irrigation water activities (Table 4)63. The pH values of sampling vary from 7.6 to 8.6, with an 
average of 8.1, suggesting a slightly alkaline character commensurate with the suggested pH range (6.5–8.4) for 
irrigation  purposes63,64. The EC values changed between samples significantly from 360 to 680 μS  cm−1. How-
ever, none of the recorded EC values surpass the established irrigation standard limit of 3000 μS/cm across all 
sampling  locations63. Based on total dissolved solids (TDS) measurements ranging from 199 to 370 mg/L, it has 
been noted that all samples are appropriate for irrigation. The predominant cations in descending order of abun-
dance are  Ca2+  >  Mg2+ >  Na+  >  K+, with average concentrations of 53.8, 15.37, 16.06, and 2.6 mg/L, respectively. 
 HCO3

− emerges as the most prevalent anion, followed by  SO4
2−,  Cl−,  CO3

2−, and  NO3
−, with average concentra-

tions of 189.5, 36.2, 23.36, 9.59, and 7.7 mg/L, respectively. These substantially elevated levels can be attributed to 
the dissolving of evaporite minerals and the cation exchange process with mineral  clay65–67. Sodium concentra-
tions range from 11 to 25.5 mg/L, all falling below the FAO standard irrigation limit, with higher levels observed 
in samples collected from the northern regions, indicating accumulation due to agricultural runoff. Potassium 
levels range from 0.1 to 4 mg/L, averaging at 2.6 mg/L, suggesting suitability for irrigation, with higher concen-
trations in the southern parts possibly attributable to weathering of potash feldspars or chemical  fertilizers64.

Calcium concentrations gradually increase from south to north, varying notably between 39 and 68 mg/L. 
Notably, all samplings exhibit calcium levels lower than the irrigation standard threshold, with these significant 
concentrations potentially stemming from the dissolution of gypsum and the dolomite’s incongruent dissolving, 
commonly known as  dedolomitization39,64,68. The equation for the dedolomitization procedure is as follows:

The concentrations of magnesium, ranging significantly from 12 to 24 mg/L, exhibited an increase from 
south to north within the study area, with all surface water samples falling below the FAO  guidelines63. These 
deficient magnesium levels may be connected to the dissociation of ferromagnetic minerals and cation-exchange 
 reactions67,69. Regarding bicarbonate concentrations, which varied from 125 to 255 mg/L, all samplings were 
confirmed to be under the acceptable level for irrigation, around 610 mg/L.

The chloride concentration of all samples varied between 15 and 40 mg/L, and all samples fell below the 
irrigation threshold. Notably, chloride levels were raised in the northern part of the research region owing to 
buildup caused by increasing human activities in agricultural and industrial/urban sectors.

Sulfate contents in surface water varied from 27 to 51 mg/L, with nearly all samples demonstrating sulfate con-
tents below the FAO standard  limit63. The presence of sulfates can be attributed to anthropogenic activities and/
or the dissolution of gypsum (Eq. 15) and/or anhydrite minerals (Eq. 16), as outlined by the following equations:

Figure 1S displays the distribution maps illustrating the physicochemical parameters along with the heavy 
metals across the study area.

(14)
CaMg(CO3)2(s)+ CaSO4 · 2H2O(s) + H+

⇋ CaCO3(s)+ Ca2+ + Mg2+ + SO2−
4 +HCO−

3 + 2H2O

(15)CaSO4 · 2H2O ⇋ Ca2+ + SO2−
4

(16)CaSO4 ⇋ Ca2+ + SO2−
4

Table 4.  Descriptive statistics of pH and mean concentrations of surface water quality parameters in drinking 
and irrigation water sources in the Danube River basin, south of Hungary.

Sampling S1 S2 S3 S4 S5 S6 S7 FAO WHO77

Ca2+ 54.45 54.15 54.41 53.93 53.59 53.72 53.11 400 75

Mg2+ 16.13 15.59 15.7 15.31 15.25 14.76 14.5 60 50

Na+ 16.56 16.68 16.56 15.63 15.87 15.57 15.27 919 200

Cl− 24.5 24.25 24.17 22.92 22.5 22.33 22.23 1036 250

SO4
2− 37.25 37.08 37.08 36.67 35.08 35 34.85 960 250

HCO3
− 195.42 188.33 193.33 190.83 190 188.33 181.15 610 120

CO3
2− 9.17 10.08 8.08 10.42 8.75 9.17 10.23 350

T 14.53 14.06 14.93 14.48 15.51 15.44 16.21

EC 467.92 466.67 462.08 464.58 463.75 464.17 451.15 3000 1500

TDS 272.5 263.38 251.88 255.71 296.36 254.7 257.44 2000 500

K+ 2.58 2.69 2.6 2.5 2.74 2.64 2.57 2 12

NO3
− 8.37 7.86 8.11 8.04 7.13 7.35 7.28 50

pH 8.14 8.16 8.16 8.14 8.16 8.18 8.13 8.5 8.5

TH 113.82 112.14 112.73 115.02 110.56 109.61 108.15 500

Fe3+ 0.6 0.58 0.57 0.6 0.63 0.53 0.65 5 0.3

Mn2+ 0.07 0.06 0.07 0.05 0.07 0.05 0.05 0.2 0.1
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Surface water facies and source determination
Surface water categories
Surface water in Hungary’s lower Danube River basin could be categorized into distinct water facies by classify-
ing ions based on their dominance levels. Several diagrams, such as Piper’s diagram, may assist in identifying 
chemical water  facies70. The Piper diagram enabled Danube River surface water to be classified into a single 
chemical water type, precisely a Ca–Mg–HCO3

− type (Fig. 3a). These water facies are primarily characterized 
by the predominant proportions of bicarbonate, indicating continuous recharge, whereas cations show a general 
tendency towards the calcium pole in most samples.

On the other hand, the Gibbs diagram, widely utilized to analyze the connection between the composition of 
water and lithological features, indicates all SW samples belong to the area of rock weathering dominance due to 
water–rock interactions along the flow path from south to north (Fig. 3b). This shows that solutE−enriched water 
resulting from carbonate mineral dissolution and/or ion exchange with silicate minerals, as well as irrigation 
water return, have the most significant impact on surface water  composition65,71,72. Nevertheless, these samples 
also show a preference for the rock weathering pole, indicating the influence of cation-exchange mechanisms.

Ion exchange
Statistical analysis, focusing on the correlations and proportions of various main ions, was applied to determine 
the key mechanisms driving surface water chemistry in the research region (Fig. 4). In aquifer systems where 
clay minerals are relatively abundant, ion exchange is pivotal in controlling surface water mineralization. Clay 
minerals often balance their electrical charge by storing monovalent cations (such as  Na+ and  K+) while releasing 
bivalent cations (such as  Ca2+ and  Mg2+), or vice versa.

The graph of [(Ca2
+ +  Mg2+)−(Na+ +  K+)] versus  [HCO3

–−(SO4
2− +  Cl−)] demonstrates that all surface water 

samples fall within the Ca–Mg–HCO3
− class, indicating that the river is continuously recharged and that Ca, 

Mg, and  HCO3
− ions dominate the water chemistry throughout the flow channel (Fig. 4a). This underscores 

the importance of ion exchange in surface water mineralization in the Danube  River72, a phenomenon closely 
tied to cationic interactions with minerals of clay observed in the examined river  network73. Throughout this 
procedure,  Ca2+ and  Mg2+ ions, which had previously been adsorbed onto the outermost layer of clay minerals, 
interchange with the  Na+ and  K+ ions in surface water. This ionic exchanging mechanism can be represented by 
the following Eq. (17) 72,74.

Silicate weathering or ion exchange processes are responsible for reducing the  (Ca2+  +  Mg2+)/HCO3
− ratio 

and the  Ca2+ +  Mg2+ /  (HCO3
− +  SO4

2−) ratio to values below 1 (Fig. 4b,c). In ion exchange,  Ca2+ +  Mg2+ ions are 
removed from the water while  Na+ and  K+ ions are  added64. Plotting the summation of  Ca2+ +  Mg2+ ions against 
 HCO3

− +  SO4
2− ions on a linear graph helps identify the source of  Ca2+ +  Mg2+ in water  samples39,64. Ratios below 

0.5 may indicate ion exchange or bicarbonate enrichment as the leading causes of calcium and magnesium 

(17)
(

Ca2+, Mg2+
)

− Clay + 2
(

Na+, K+
)

⇋

(

Na+, K+
)

− Clay +
(

Ca2+, Mg2+
)

Figure 3.  Surface water facies according to Piper diagram (a) and geochemical controlling mechanisms 
according to Gibbs diagram (b).
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depletion. All samples fall below the 1:1 line, indicating higher proportions of  HCO3
− than  Ca2+ +  Mg2+, sug-

gesting sources of  HCO3
− ions other than the dissolution of calcite and dolomite.

The linear relationship between  Na+ and  Cl− (Fig. 4d) reveals an unbalanced presence of these ions in water 
samples. This correlation suggests that halite dissolution does not significantly contribute to sodium and chloride 
ions, and the dominance of chloride ions over sodium ions reflects anthropogenic sources of  Cl− ions through 
agricultural drainage and industrial activities. Most samples shift to the right of the 1:1 line, indicating additional 
 Cl− sources or attributing to  Na+ removal through recharge water (Fig. 4d).

Examining the ionic relationship between  Ca2+ +  Mg2+ (Fig. 4e) shows that all samples fall above the 1:1 line, 
indicating an excess of calcium ions and a depletion of magnesium ions. This implies that the river in the research 

Figure 4.  Relationships between the main cations and anions in the sample water using stoichiometry: 
(a) Ca + Mg–(Na + K) versus  (HCO3-(SO4 + Cl), (b)  Ca2+ +  Mg2+ versus  HCO3, (c)  Ca2+ +  Mg2+ versus 
 HCO3

− +  SO4
2−, (d)  Na+ versus  Cl−, (e)  Ca2+ versus  Mg2+.
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area receives Ca ions from different sources rather than dolomite dissolution, which could be from calcite dis-
solution or agricultural drainage rich in Ca ions from calcium fertilizers.

Chloro‑alkaline indices
The chloro-alkaline method was employed to discern the predominant mechanism, whether ion exchange or 
reverse ion exchange, influencing the minerals within the lower Danube River Basin. Overall, the Chloro-alkaline 
indices (CAI) values, including CAI-I and CAI-II, exhibited negative values across all water samples (Fig. 5a,b). 
This negativity signifies a notable inclination towards ion exchange, particularly between  K+ and  Na+ in the 
research area’s surface water, and between  Ca2+ and  Mg2+ within the neighboring geological formations. Through 
analysis of various ionic ratio relationships, it was determined that ion exchange predominantly governed the 
surface water chemistry in the area.

Geochemical modeling and mineral saturation state
We used the PHREEQC  model75, to analyze mineral levels, saturation metrics, and surface water’s (SW) abil-
ity to dissolve or precipitate minerals. The model generated saturation metrics for significant minerals such 
as dolomite, calcite, gypsum, halite, aragonite, and anhydrite, along with the potential pressure of  CO2. The 
inputs included pH, T (°C), (TDS), (EC), and main anions and cations (Fig. 6). The study revealed a negative 
partial pressure of  CO2 below saturation levels within the lower Danube River basin, suggesting a deficit in 
water recharge relative to extraction from the nearby aquifer. Additionally, it was observed that carbon dioxide 
concentrations diminish in tandem with the directional flow of water, attributable to a concurrent reduction in 
surface water recharge in the same direction.

Cluster and correlation matrix analysis
We used the Euclidean distance along with Ward linkage technique to determine the similarity of SW samplings 
in the research region. Figure 7a shows a dendrogram that categorizes the numerous physicochemical parameters 
detected in the gathered surface water samples. Z-scores were computed for every factor and used in statistical 
analysis. All factors were logarithmically transformed, and the data distribution was almost identical to normal. 
Within the dendrogram depicting eight physicochemical parameters  (Ca2+,  SO4

2−,  NO3
−,  Cl−,  Mg2+,  Na+,  HCO3

−, 
TDS) and two heavy metals (iron and manganese), three primary clusters were identified. Each height parameter 

Figure 5.  Relationships between Samples versus CAI-I, and (a) Samples versus CAI-II (b).

Figure 6.  Mineral saturation state showing the ability of precipitation and dissolution of minerals in Danube 
River.
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was then separated into two groups based on TDS and  HCO3
− levels. Cluster1 encompassed  Ca2+ and  SO4

2−. 
Conversely, cluster 2 comprised  NO3

−,  Fe3+,  Mn2+,  Mg2+,  Na+ and  Cl− representing predominantly carbonate 
components. Finally, cluster 3 illustrated varied associations of all metrics with salinity and  HCO3

− in the region, 
indicating diverse sources influencing surface water composition.

The Pearson correlation matrix (Table 5) reveals complex interactions among water quality  parameters21. At 
p < 0.01, calcium strongly & positively correlated with magnesium, sodium, chloride, sulfate, bicarbonate, and 
nitrate, suggesting common sources or geochemical behaviors. Magnesium strongly correlated with  Na+,  Cl−, 
 SO4

2−,  HCO3
−, and  NO3

−, indicating similar sources such as mineral dissolution or anthropogenic inputs. Sodium 
strongly correlated with  Cl− (r = 0.970),  SO4

2− (r = 0.860),  HCO3
− (r = 0.803), and  NO3

− (r = 0.695), reflecting 
geochemical processes and anthropogenic activities like agricultural runoff and wastewater discharge. Chloride’s 
strong correlations with  Na+,  Mg2+, and  Ca2+ suggest associations from NaCl,  MgCl2, and  CaCl2 sources. Sulfate’s 
strong correlations with  Mg2+,  Na+,  Cl−,  Ca2+ and  HCO3

−, point to sources like mineral dissolution (e.g., gypsum) 
and industrial pollution. Water alkalinity  (HCO3

−) is higher at all locations, perhaps due to  CO2 dissolution from 
the atmosphere and carbonate mineral  weathering21,22,58. Total Dissolved Solids (TDS) moderately correlate with 
 Mg2+,  Na+,  Cl−,  SO4

2−, and  HCO3
−, reflecting these ions’ contributions to overall dissolved substances. Iron (Fe) 

negatively correlated with Mg and  SO4, indicating different sources or processes affecting iron levels. Manganese 
(Mn) has very weak correlations with all other ions, suggesting it behaves independently in the water system due 
to distinct sources or geochemical behavior.

Figure 7.  Multivariate statistical analysis: (a) Cluster dendrogram for variables showing the number of clusters; 
(b) Scree plot showing optimum number of component and (c) PCA scores for PC2 versus PC1 versus PC3.
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Principal component analysis (PCA)
In this investigation, PCA was performed to pinpoint the factors that impact water quality indicators in the 
Danube River. First, these factors were identified based on their eigenvalues, keeping those components with 
eigenvalues above 1 using the Kaiser criterion. This approach ensures that only factors explaining a significant 
variance are considered.

Varimax rotation was employed to help the components be understood. This method aims to maximize the 
variance of factor loadings squared across variables, simplifying the components’ structure and helping to identify 
which variables are strongly linked to each element. It was chosen to distinguish between variables and provide 
insight into the processes influencing water quality.

In this investigation, we utilized the PCA to ascertain the likely sources of the investigated water quality 
indicators. Through PCA, we identified four key factors that exert significant control, each with eigenvalues 
exceeding one based on scree plot (Fig. 7b), across the datasets collected during the sampling period. Detailed 
findings from the PCA analysis are presented in Table 6. Our investigation applied PCA with Kaiser normaliza-
tion (≥ 0.75) to extract four principal components across all sampling points. These components were recog-
nized as influential factors shaping the condition of Danube surface water in our investigation area. The dataset 
yielded by this analysis was characterized by four principal components, collectively explaining 82.098% of the 
overall variance with eigenvalues greater than 1 and the PC1, PC2, and PC3 were vizualized on 3D plot (Fig. 7c). 
Principal Component 1 (PC1) accounted for 49.76% of the total variance observed, with an eigenvalue of 7.47. 
Variables associated with PC1 emerged as crucial indicators, reflecting both anthropogenic activities and natural 
phenomena in shaping surface water chemistry. Notably, variables such as  Ca2+,  Mg2+,  Na+,  Cl−,  SO4

2−,  HCO3
−, 

EC,  NO3
−, and TH demonstrated strong positive loadings.

Table 5.  Pearson correlation matrix showing the association between measured attributes.

Ca2+ Mg2+ Na+ Cl− SO4
2− HCO3

− TDS NO3
− Fe Mn

Ca2+ 1 0.757** 0.844** 0.876** 0.628** 0.854** 0.244* 0.827** 0.065 0.092

Mg2+ 1 0.920** 0.877** 0.930** 0.681** 0.305** 0.599** − 0.286** 0.063

Na+ 1 0.970** 0.860** 0.803** 0.340** 0.695** − 0.125 0.060

Cl− 1 0.801** 0.819** 0.330** 0.766** − 0.014 0.024

SO4
2− 1 0.596** 0.259* 0.463** − 0.460** − 0.022

HCO3
− 1 0.280** 0.771** 0.029 0.118

TDS 1 0.209 − 0.073 0.001

NO3
− 1 0.163 0.164

Fe 1 0.126

Mn 1

Table 6.  Varimax rotated factor of principal component analysis.

 Measured parameters/PCA analalysis PC1 PC2 PC3 PC4

    Rotated component matrix

  Ca2+ 0.945 − 0.053 − 0.149 − 0.003

  Mg2+ 0.897 0.011 0.347 0.040

  Na+ 0.933 − 0.199 0.190 0.003

  Cl− 0.957 − 0.130 0.062 − 0.013

  SO4
2− 0.791 − 0.002 0.526 − 0.031

  HCO3
− 0.843 − 0.414 − 0.084 − 0.049

  CO3
2− − 0.076 0.940 − 0.026 − 0.044

 EC 0.926 0.054 0.043 − 0.086

 TDS 0.308 − 0.197 0.110 − 0.598

  K+ 0.127 − 0.042 0.321 0.774

  NO3
− 0.825 − 0.104 − 0.302 0.069

 pH − 0.102 0.904 0.145 − 0.009

 TH 0.985 − 0.029 0.047 0.014

  Fe3+ − 0.028 − 0.096 − 0.904 0.033

  Mn2+ 0.093 − 0.179 − 0.246 0.518

 Eigenvalues 7.464 2.029 1.577 1.245

 % of variance 49.759 13.527 10.511 8.300

 Cumulative % 49.759 63.287 73.798 82.098
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Conversely, PC2 accounted for 13.53% with an eigenvalue of 2.029, representing the influence of human 
activities on surface water resources, exhibiting a positive correlation with pH and carbonate  (CO3

2−) concentra-
tions. This finding suggests that localized and limited anthropogenic activities within the study area can affect 
surface water quality by altering pH and carbonate  levels76. While silicate weathering is still the dominant gov-
erning mechanism for pH and carbonate levels, it is essential to recognize that human activities such as farming 
procedures and industrial emissions may bring new ions into surface water. These newly added ions may interact 
with existing geochemical processes, possibly generating changes in pH and carbonate levels. Consequently, 
natural and human activities both have an impact on surface water quality in the studied area. PC3 was shown 
to explain 10.51% of the total observed variance, with an eigenvalue of 1.58. Notably, it showed a negative con-
nection only with iron. Conversely, Component PC4 accounted for 8.300% of the total variance, characterized 
by an eigenvalue of 1.24. This component exhibited a positive correlation with Potassium  (K+) and Manganese 
 (Mn2+), while displaying a negative correlation with Total Dissolved Solids (TDS).

Drinking water quality index (DWQI)
The aquatic environment standards established by WHO in  201777 were applied in computing the DWQI scores 
about drinking water quality. The evaluation of the DWQI throughout the seven sampling sites within the 
Lower Danube River Basin showed alarming findings, revealing variations in water suitability for different uses. 
Specifically, sampling locations S2, S3, S4, S6, and S7 exhibited WQI values falling within the range of 76–100, 
indicating water quality suitable for drinking purposes. However, contrasting results were observed in sampling 
locations S1 and S5, where WQI values exceeded 100, designating restricted use for drinking due to poorer 
water quality. This nuanced analysis sheds light on the diverse water quality characteristics within the basin and 
underscores the importance of tailored management approaches for different areas. Factors contributing to the 
inappropriateness of the water for consumption include elevated levels of Iron and bicarbonate contaminants 
exceeding the permissible limits of the WHO  201777. These results draw attention to the crucial significance of 
regular surveillance, strict regulatory measures, and stakeholder collaboration to protect water resources, reduce 
pollution sources, and ensure safe drinking water for the Lower Danube River Basin population. Resolving those 
issues requires a multidimensional strategy that includes severe pollution reduction policies, effective wastewater 
treatment techniques, and comprehensive watershed management plans to protect the basin’s ecological integrity 
and public health (Fig. 8a).

Figure 8.  The spatial variation maps of the WQI and IWQIs for the lower Danube River basin: (a) WQI for 
drinking purposes (b) IWQI for irrigation purposes, (c) SAR, (d) Na %, (e) SSP, (f) PS, and (g) RSC.
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Comparison between water quality in Danube River with different rivers
In our research, DWQI was performed or computed based on WHO in 2017. When assessing water quality 
at seven sampling sites in the Lower Danube River Basin, we discovered varying suitability levels for drinking 
purposes. Specifically, sites S2, S3, S4, S6, and S7 had WQI values ranging from 76 to 100, indicating that the 
water quality was suitable for drinking. In contrast, sites S1 and S5 showed WQI values above 100, suggesting 
that drinking water is unsuitable due to poorer water quality. The main factors contributing to this unsuitability 
were levels of iron that exceeded WHO standards.

Comparing our findings with similar global studies, such as the one by  Ghimire78 on rivers in Damak, Jhapa, 
Nepal, highlights common water quality index across different regions. In both studies, high iron concentrations 
were a significant factor in water quality assessments. For instance, Ghimire et al. found that the water quality 
in several rivers was unsuitable for drinking and other uses due to iron levels exceeding permissible limits. This 
comparison highlights the significance of iron, as a contaminant impacting water quality and underscores the 
importance of robust monitoring and management strategies.

Indices of water quality of irrigation (IWQIs)
The evaluation of the soil’s water quality and its impact on the crops specifications demands an investiga-
tion of numerous key parameters. These indications might include specific chemical  markers79 or a group of 
 indicators80,81. Decision-makers may develop effective irrigation water management strategies by understanding 
the results of these indicators. This is exactly the topic of the current research, which investigates the following 
indicators. Water quality was classified for irrigation purposes using known parameter values, and all six IWQIs 
listed in Table 2S.

IWQI and categorization
The IWQI, computed applying the formula given in Table 2S 39,81, is a critical tool for assessing water quality in the 
research area, especially for agricultural irrigation. This index meticulously measures several water composition 
characteristics, which may considerably impact irrigation appropriateness and soil condition. The full evaluation 
divides water quality into five separate  groups63, each with specific implications for irrigation practices and soil 
condition. Interestingly, the distribution of these classes across the dataset reveals that 100% of samples indicate 
no restrictions for irrigation. This meticulously delineated distribution is visually (Fig. 8b), emphasizing the 
consistency of water quality throughout the research region.

The numerical results attributed to the IWQI vary widely, ranging from 99.6 to 107.6, with an average of 
104.36. This diversity highlights the many elements that influence water quality. Geospatial analysis (Fig. 8b), 
identifies specific areas with compromised water quality, raising concerns about their suitability for irrigation 
and potential impacts on soil health. Notably, all samples exhibit water quality levels classified as excellent and 
suitable for irrigation with no restrictions. This finding holds significant implications, as such conditions may 
adversely affect soil’s permeability, availability of nutrients, and total agricultural production. Therefore, based on 
the IWQI findings, there is no necessity for and effective cost associated with water purification and fertilization 
before irrigation in the investigated locations along the Danube River.

Impact on soil composition
Agricultural water quality has a considerable impact on the composition of soil, particularly impacting perme-
ability, filtration rate, and ventilation owing to its specific chemical  qualities82. Despite these characteristics, 
sodium ion concentration is particularly critical. Excessive sodium’s levels affect soil filtration systems by displac-
ing calcium and magnesium ions via  adsorption64. In assessing water suitability for irrigation, indicators such 
as the Sodium Percentage (Na%), the Sodium Adsorption Ratio (SAR), and Soluble Sodium Percentage (SSP) 
serve as valuable tools. These indices, calculated based on sodium, magnesium, and calcium levels, not only help 
identify areas susceptible to soil deterioration, but also provide a basis for informed soil management techniques.

The range of values for SAR, Na%, and SSP spans a diverse spectrum. Minimum values recorded are 0.37, 
13.75, and 12.52, respectively, while upper limits peak at 0.68, 18.72, and 17.59. Remarkably, average values 
for these indices stand at 0.49, 16.11, and 14.88, respectively. Classification based on these indices reveals that 
100% of samplings are classified as good for irrigation (Fig. 8c,d,e). This detailed analysis highlights the intricate 
interchange between soil integrity, agricultural yield, and irrigation water quality. The correlation between levels 
of sodium and soil condition emphasizes that expensive water treatment techniques may not be necessary in 
specific regions where current water quality poses no negative impacts on soil structure and fertility.

Potential salinity index (PSI)
The Potential Salinity Index (PSI), which is generated from chloride and sulfate ion concentrations, is applied 
to assess the appropriateness of irrigation water for farming fields 64. The PS index divides findings into three 
levels: excellent to good (PS < 3.0), good to injurious (PS = 3.0–5.0), and injurious to unsatisfactory (PS > 5.0). The 
PS index findings show a notable trend: all water samples in the collection, accounting for 100% of the overall, 
were classed as acceptable to excellent for irrigation (Fig. 8f). This discovery reaches beyond only assessing water 
quality; it also shows possible benefits for the soil’s structure, availability of nutrients, and agricultural output.

The ramifications of such a categorization are significant, suggesting that intervention methods to maintain 
soil sustainability may be ineffective. The accumulated consequences of using samplings with injurious to unsat-
isfactory PS scores might jeopardize soil conditions, diminish crop yields, and impede agricultural sustainability. 
However, in the present investigation, this situation does not occur.



17

Vol.:(0123456789)

Scientific Reports |        (2024) 14:18639  | https://doi.org/10.1038/s41598-024-69312-8

www.nature.com/scientificreports/

Precipitation of alkali elements and RSC
Excess carbonates and bicarbonates may negatively impact irrigation water quality when combined with Ca 
and Mg. This imbalance may cause precipitation of alkali metals, especially Ca and Mg, degrading the irrigation 
water’s quality. Carbonate minerals precipitate Ca and Mg ions, leading to increased sodium ion concentrations 
and Sodium Adsorption Ratio (SAR)83. In arid environments, high Residual Sodium Carbonate (RSC) levels 
can disrupt soil physical properties. This process often results in the dissociation of organic matter, leaving a 
noticeable black mark on the soil’s surface after  desiccation84,85.

This work used RSC calculations to predict  Ca2+ and  Mg2+ precipitation on soil particle surfaces is widely 
recognized and applied in arid and semi-arid regions, where greater levels are related with soil  salinization86. 
Our investigation, conducted in a wet climate, revealed a notable classification based on RSC values, as depicted 
in Fig. 8g. In accordance to this categorization structure, irrigation water with an RSC more than 2.5 is inap-
propriate for irrigation, but water with an RSC less than 1.25 is considered acceptable. Water has an RSC of 
1.25–2.5, making it dubious for irrigation  usage83. A remarkable finding of our study is that all samplings had 
an RSC value of less than 1.25. This cumulative observation significantly supports the usefulness and safety of 
surface water for irrigation.

Human health risk assessment
Non‑carcinogenic health risk
The daily intake of Iron  (Fe3+), Manganese  (Mn2+), and Nitrate  (NO3

−) through oral ingestion relies on key 
parameters sourced from USEPA (2004)57,61. Figure 9 illustrates the non-carcinogenic risk assessment of these 
elements in surface water for both adults and children across various sampling sites, while Table 3S presents the 
hazard quotient (HQ) values and resultant non-carcinogenic risks. In children, HQ values for  Fe3+,  Mn2+, and 
 NO3

− range from 0.002 to 0.477, 0.096 to 1.678, and 0.190 to 0.927, respectively, with means of 0.092, 0.281, 
and 0.523. For adults, corresponding HQ values span from 0.001 to 0.125, 0.025 to 0.439, and 0.050 to 0.243, 
with means of 0.024, 0.074, and 0.173, respectively (Table 4S). Surface water contaminants pose a significantly 
higher mean hazard index (HI) for children compared to adults, indicating a substantial non-carcinogenic risk 
within the study area (Table 4S)). Notably,  NO3

− and  Mn2+ concentrations play a pivotal role in contributing 
to non-carcinogenic risk, followed by  Fe3+. Moreover, HI values for children via oral exposure pathway exceed 
those of adults for the studied elements, and the total hazard index for non-carcinogenic risk is 2.1 times higher 
for children than for adults (Table 4S). Monte Carlo was utilized to forecast the HQ (oral) values of  Fe3+,  Mn2+, 
and  NO3

− for both adults and children, employing 10,000 iterations in Python. The simulated outcomes of the 
Monte Carlo indicated that the projected HQ values for  Fe3+,  Mn2+, and  NO3

− remained below the standard 
limits (HQ < 1) for adult and children (Fig. A, B). Consequently, according to the Monte Carlo simulation, the 
estimated exposure levels are improbable to pose a significant health risk for either population via oral pathways. 
Nonetheless, it is crucial to acknowledge that risk assessments typically rely on conservative assumptions and 
uncertainties in the available data. Thus, it is imperative to persist in monitoring exposure levels and updating 
risk assessments as new information emerges (Fig. 9).

Conclusion
The assessment of water quality is critical in ensuring effective water resource utilization, human consumption, 
and environmental stability. In Hungary’s lower Danube River basin, a comprehensive range of approaches were 
used to analyze, replicate, and predict the quality of surface water for irrigation. These approaches incorporated 
the use of water quality indicators (WQIs), complex statistical analyses with many variables, and the integration 
of geographic information systems (GIS). Detailed physicochemical investigations were conducted on surface 
water samples to uncover their compositional attributes. Results indicated a sequence of ion abundance with 
 Na+  >  Ca2+  >  Mg2+  >  K+ and  SO4

2− >  HCO3
−  >  Cl−. Physicochemical analyses of surface water samples revealed 

primarily Ca-Mg-HCO3 is the dominant water types. Principal component analysis (PCA), ionic ratios and piper, 
chloro alkaline index, Chadha, and Gibbs diagrams identified three distinct water characteristics influenced by 
processes such as water–rock interaction, dolomite dissolution, evaporation, ion exchange, and human activi-
ties. The and geochemical modeling showed strong ability of Danube River water to dissolve gypsum, halite, 
and anhydrite (SI < 0). and precipitate aragonite, dolomite and calcite with saturation index (SI) value greater 
than 0 along its flow path. The irrigation water quality Index (IWQI = 99.6–107.6), sodium adsorption ratio 

Figure 9.  Predicted oral hazard quotient: (A) Adults, (B) Children.
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(SAR = 0.37–0.68), sodium percentage (Na% = 13.7–18.7), soluble sodium percentage (SSP = 12.5–17.5), Potential 
Salinity (PS = 0.73–1.6), and Residual Sodium Carbonate (RSC = − 1.27–0.58) values were used, indicating mostly 
acceptable quality with some limitations. Danube River water was not suitable for drinking purposes based on 
WQI value (WQI = 81–104). Oral exposure of children to certain components showed a higher Hazard Index 
(HI > 1) compared to adults, indicating a 2.1 times higher overall non-carcinogenic risk hazard index. However, 
Monte Carlo simulation demonstrated negligible health hazards from iron, manganese, and nitrates for both age 
groups. These findings are valuable for water quality management decisions, contributing to long-term resource 
The application of modern approaches, such as WQIs, detailed statistical analysis, and GIS integration, provides 
a complete view of surface−water quality changes. Moreover, the discovery of various water categorizations, the 
explication of fundamental processes, and the complete assessment of irrigation-related indicators all contribute 
significantly to water quality control in comparable geographical settings. This research lays the groundwork for 
potential water resource control and provides prospective measures to promote both human and environmental 
well-being.

Data availability
Most of the data is available in tables and figures inside the manuscript and supplementary. The concentration 
of ions and metals in each sample is available upon request and the corresponding authors are responsible to 
provide these data.
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