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An innovative deformation 
coordination method for analyzing 
distortion effects on box girders
Chenguang Wang 1,2, Mingxin Shi 3, Jianqiang Huang 2, Yuanhai Zhang 1, Weiwen Li 2*, 
Walid Mansour 2,4, Linyuwen Ke 5 & Peng Wang 2,5*

A deformation coordination method is proposed in this study to account for the distortion effects 
on a box girder. The differential equation for distortion in vertical web box girders is derived based 
on the deformation coordination condition of the distortion angle, considering both external loads 
and internal forces. Subsequently, a comparative analysis is conducted to explore the similarities 
and differences between the differential equations derived from the proposed deformation 
coordination method, the plate element analysis method and the total potential energy variation 
method. The accuracy of the proposed approach is verified through bench-scale tests and numerical 
simulations. The findings indicate that the derived governing distortion differential equation and 
distortion attenuation coefficients in the proposed method align with those obtained from the plate 
element analysis method and the total potential energy variational method, which enhances the 
applicability to allow for the distortion equations to be obtained simply by calculating the distortion 
displacements. The analytical findings regarding the distortion warping normal stresses on the cross-
sections of the box girders demonstrate favorable correspondence with the experimental results, 
displaying an acceptable error ranging from − 0.3% to 5.4%. Moreover, the peak of distortion warping 
normal stresses on the mid-span cross-section increases with higher span-to-depth ratios and height-
to-thickness ratios of the web. Consequently, augmenting the thickness of the box wall proves to be 
an effective means of reducing the distortion effect in box girders.

Keywords Box girder, Distortion effects, Deformation coordination method, Plate element analysis method, 
Total potential energy variation method

Thin-walled single-cell box beams have gained widespread acceptance in the construction of medium- and long-
span highway  bridges1, primarily due to their visual aesthetic and exceptional resistance to bending and torsional 
forces. However, when subjected to torsional loading, the cross-section of a thin-walled box beam may suffer 
from distortion, which primarily results in warping stresses. These warping stresses can be comparable in magni-
tude to longitudinal bending stresses, especially in the absence or insufficient rigidity of transverse diaphragms. 
Therefore, in the transition towards lightweight, thin-walled structures with larger spans, wider rib spacing and 
reduced transverse diaphragms, it becomes crucial to consider the potential occurrence of distortional behavior, 
in addition to accounting for bending and torsional  effects2–4.

Numerous research efforts have been undertaken to investigate the impact of distortion on box girders com-
prehensively using both analytical and numerical methods. A significant advancement in addressing the general 
solution of the problem was made through the introduction of the generalized coordinate  method5. Building 
upon the generalized coordinate method, Razaqpur and  Li6,7 and  Maisel8 introduced an orthogonalization proce-
dure for addressing distortional modes and shear lag modes in the formulation of box beam elements.  Schart9–11 
developed an advanced formulation referred to as Generalized Beam Theory (GBT), which extended the clas-
sical Vlasov beam theory to incorporate flexural and torsional distortion. Also, Jonsson and  Andreassen12,13 
established a comprehensive set of deformation modes using eigenvalue-type cross-sectional analysis and then 
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proposed an analytical solution of beam equations to formulate the semi-discretized thin-walled beam element 
under distortional effects.

The finite element (FE) modeling approach is also utilized to undertake a comprehensive investigation into 
the effects of distortion.  Boswell14–17 proposed an FE model for thin-walled box beams with variable cross-
sections and then experimentally validated the model’s correctness.  Li18 developed a one-dimensional beam 
element with four degrees of freedom (DOF) to study the influence of distortion on thin-walled multi-cellular 
beams with cantilevered flanges. This approach unifies the displacement components around the cross-section’s 
edge concerning the distortional center. Zhu et al.19 introduced a one-dimensional model (26 DOFs) for curved 
composite box beams, considering the actual issues such as constrained torsion, distortion, shear lag, biaxial slip 
at the interface and curvature differences along the width of the beam.

Based on the abovementioned analytical and numerical approaches, the actual distortion issue can be further 
simplified under the assumption of independent distortion and torsion behaviors, i.e., it is assumed that there 
is no interaction between these  effects20–22. Xu et al.23 employed the Hellinger–Reissner variational principle 
to incorporate distortional shear deformation effects, utilizing the first derivative of the distortion angle as the 
distortional warping function for conventional hollow sections in bridge structures. The research outcome indi-
cated that the distortional shear deformation effects can be neglected. A similar conclusion was obtained by Zhao 
et al.24, confirming the limited influence of the coupling between torsion and distortion in box beam bridges. 
This observation contributes to the understanding of eccentric load effects in such structures.

Further, the theorem of the total potential energy variational method and the analysis of plate elements are 
commonly employed to establish the governing equilibrium equations based on the uncoupling assumption. 
Based on the Newmark method from the conjugate beam theory and incorporated fundamental principles of 
plate element analysis, Li et al.25 developed a distortion calculation method for variable cross-section corru-
gated steel web composite box beams. Deng et al.26 utilized the total potential energy variational method and 
derived differential equations for the distortion in single-box three-cell cantilever girders with corrugated steel 
webs. Although the total potential energy variation method and the plate element analysis method are mature 
techniques for analyzing distortion effects in box girders, they both exhibit certain limitations. Specially, the 
total potential energy variation method primarily emphasizes the ultimate state of distortion deformation and 
derives the distortion control differential equation using energy principles. However, this method does not 
provide insights into the underlying mechanism through which box girders undergo distortion when subjected 
to loading conditions. The plate element analysis method establishes the distortion control differential equation 
by effectively balancing internal and external distortion forces. Nevertheless, it does not elucidate the intricate 
relationship between generalized distortion forces and distortion displacements.

This study introduces a method analyzing the distortion effect of vertical web plate girders, which utilizes the 
coordination condition of the deformations caused by distortion-induced warping normal stresses, distortion-
induced warping shear stresses, and externally induced distortion moments to comprehensively analyze the 
distortion effects in box girders. In contrast to the two existing methods, the approach proposed in this study 
offers enhanced clarity regarding its physical interpretation in terms of distortion deformation. The new approach 
enhances the applicability to allow for the distortion equations to be obtained simply by calculating the distor-
tion displacements. A comparative analysis is conducted to discern the inherent disparities and fundamental 
correlations between the proposed method and the two existing methods, establishing their consistency in evalu-
ating distortion effects. This congruity substantiates the accuracy and validity of the proposed method, thereby 
affirming its suitability for practical engineering applications, akin to its existing  counterparts24–27. Additionally, 
the research investigates the impact of variations in geometric parameters on the distortion effects observed in 
box girders. By establishing this framework, a comprehensive understanding of the distortional behavior of box 
girders can be achieved.

Distortion deformation and distortion internal forces
The cross-section of the box girder is schematically shown in Fig. 1, where b denotes the width of the bottom 
plates, h denotes the height of the girder, bf denotes the flange width, bs denotes the width of the top plate, and 
δt, δd, and δw denote the thicknesses of the top, bottom and web plates, respectively. Moreover, e implies the 
eccentricity of load P(z). The points A, B, C and D correspond to the intersections of the top and bottom plates 
with the web plate.

The eccentric load P(z) can be decomposed into symmetric bending loads, rigid torsion loads and distor-
tion loads. In particular, it is noteworthy that bending loads and rigid torsion loads do not induce distortion 
deformation in the cross-section. Hence, in the analysis of distortion effects, it is sufficient to consider only the 
influence of distortion loads. The distortion loads, denoted as Pdt, Pdb and Pdw, acting on the top plate, bottom 
plate and web plate as illustrated in Fig. 2, are defined by Eq. 122:

where Pv = Pe
b  denotes the load that has been transformed or converted.

Under the action of distortion loads, the individual components of the box girder experience distortion warp-
ing deformation within their respective planes, as well as lateral frame deformation outside their planes. When 
analyzing distortion effects in box girders, the change in the angle ∠ADC (denoted as γD ) between the web plate 
and bottom plate under the influence of distortion loads is often chosen as the fundamental unknown distortion 
quantity. It is pertinent to acknowledge that γD is dependent on distortion warping deformation, distortion frame 
deformation, and external distortion moment. Ultimately, this leads to the establishment of distortion control 
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differential equations for box girders based on distortion warping shear flow. The various distortion deformations 
of the box girder are depicted in Fig. 3.

When the box girder undergoes distortion warping deformation as depicted in Fig. 3a, it is assumed that the 
distortion warping normal stress exhibits a linear distribution across the cross-section. Consequently, distortion 
warping normal stresses, denoted as Mt, Md, and Mw arise in the top plate, bottom plate, and web plate, respec-
tively. Based on the self-balancing condition of distortion warping normal stresses, the following relationships 
are established:

Figure 1.  Cross-section of a box girder.

Figure 2.  Distortion load on the cross-section of box girder.

Figure 3.  Distortion deformations of a box girder. (a) Distortion warping deformation (b) Distortion frame 
deformation.
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where Jt =
δt b

3
s

12 , Jd =
δdb

3
d

12 ,Jw =
δwb

3
w

12 ;  β represents the ratio of distortion warping curvature at the corners (e.g., 
ω̃B and ω̃C ) to the web plate’s thickness, and it can be determined from the self-balancing condition of distortion 
warping normal stresses:

where At is the top plate area, Ad is the bottom plate area, and Aw is the web plate area.
The distortion angle γD, arising from the bending moments within the planes of the top plate (Mt), bottom 

plate (Md), and web plate (Mw), can be determined through the utilization of a plate-beam hinge model. By 
considering the assumptions of cross-sectional equilibrium and the geometric interdependencies among dis-
placements of different plate elements, the correlation between γD and the bending moment Mw generated by 
distortion warping normal stress on the web plate can be formulated as follows:

where E is the elastic modulus.
When the box girder undergoes distortion frame deformation as depicted in Fig. 3b, a model is proposed to 

establish the relationship between the distortion angle γD and the transverse bending moments at specific corner 
points within a slender frame of unit length, subjected to a horizontal displacement hγD at the top plate. The 
lateral bending moments mAB and mDC at nodes A and D can be determined as follows:

where K2 =
2h

2−X1bh

2δh
, K1 =

X1bh

2δh
,  X1 and δh represent the shear force and lateral displacement at the midspan 

of the top plate when it is subjected to a unit horizontal force.

where X = X1/2, I1 =
δ3w
12 , I2 =

δ3d
12 , I4 =

δ3t
12 represent the structural resistance to transverse bending of the web, 

bottom plate, top plate and flange, respectively.
Upon determining the distortion bending moments affecting the cross-section of the box girder, it becomes 

possible to evaluate the girder’s capacity to resist distortion frames. By utilizing Eqs. 6 and 7, the values of the 
distortion shear forces Qdt, Qdb and Qdw exerted on the web plate, bottom plate and top plate, respectively, due 
to the presence of the distortion frame, can be expressed as follows:

Under internal shear forces Qdt, Qdb and Qdw, a pair of self-equilibrating distortion moments Mγ is formed 
on the thin plate frame:

Substituting Eqs. 6, 7, 10 and Eqs. 11 into Eq. 12, the following Eq. 13 can be obtained:
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where Kd = 24EI1
hζ0

 represents the stiffness of the distortion-resistant frame, indicating the distortion moment 

required to generate a unit distortion angle in the box-beam thin plate frame, ζ0 = 1+
2 b
h+3

I2+I4
I1

I2+I4
I1

+6
hI2I4
bI21

 denotes a 

parameter associated with the geometric characteristics of the box beam.

Deformation coordination method
Figure 4 is a schematic diagram of the decomposition of distortion displacements. In the computation of dis-
tortion effects in a box beam employing the distortion angle deformation coordination method, a differential 
equation governing distortion control is formulated by establishing the deformation coordination relation-
ship between distortion bending normal stress, distortion bending shear stress, and distortion angles induced 
by external distortion loads. This method enables a comprehensive consideration of the impacts of distortion 
bending normal stress and distortion bending shear stress throughout the analysis procedure, and it exhibits a 
well-defined physical concept.

The distortion bending normal stress σWD exerted on the cross-section of the box beam can be expressed in 
generalized coordinates as follows:

where f(z) is the generalized displacement, and ω̃(s) is the generalized coordinate for distortion bending.
By considering the longitudinal equilibrium relationship between distortion bending normal stress and dis-

tortion bending shear stress on the elemental box wall, along with the constraint that distortion bending shear 
flow does not induce torsion at the cross-section, the expression for distortion bending shear flow qWD can be 
formulated as follows:

where f ′ is the derivative of f(z), SWD = SWD − 1
2bh

∫
A SWDρds is the generalized distortion warping static 

moment of the box beam, and SWD=
∫ s
0 ω̃tds is the distortion warping static moment of the box beam. The 

distribution of the generalized distortion warping static moment S̄WD is shown in Fig. 4.
The horizontal distortion shear force H’d acting on the top and bottom plates, as well as the vertical distortion 

shear force V’d on the web plate, exhibit a state of self-equilibrium within the thin plate frame, thereby giving 
rise to the distortion moment MγQ:

Based on Eq. 13, the distortion angle γQ produced by the distortion moment MγQ is given by:

(14)σWD=f (z)ω̃(s)

(15)qWD = −f ′ · S̃WD

(16)MγQ = V ′
db = −f ′′

bhω̃B

12

(
2− β

β
Aw +

1

β
Ad

)

(17)γQ = −
W

Kd
f ′′

Figure 4.  Schematic diagram of the decomposition of distortion displacements.
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where f ′′ is the 2nd-order derivative of f(z), W = bhω̃B
12

(
2−β
β

Aw + 1
β
Ad

)
 is the geometric characteristic parameter 

of the cross-section of the box beam.
The distortion bending normal stress, as defined by Eq. 14, results in the generation of the distortion bending 

moment Mw on the web plate:

Substituting Eqs. 18 into 5, the distortion angle γD satisfies the following condition:

The self-equilibrated distortion external load (Fig. 2) gives rise to the distortion moment Mγp on the thin 
plate frame of the box beam, with its value equal to MγP = Pvb/2 . Subsequently, the induced distortion angle 
γp can be calculated based on Eq. 13:

Based on the deformation coordination condition of distortion angles, i.e., the distortion angle generated 
by the box beam under external distortion loads is equal to the distortion angle jointly produced by distortion 
bending normal stress and distortion bending shear stress, the distortion angle deformation coordination equa-
tion is established as follows:

Substituting Eqs. 17, 19 and 20 into Eq. 21, the governing distortion differential equation for the box beam 
is obtained based on the deformation coordination method:

where the distortion attenuation coefficients ( �S= 4

√
EIWS
4EIDS

 ), distortion framework stiffness ( EIWS =
24EI1
hζ0

 ), exter-
nal load distortion moment ( M̃DS =

Pvb
2  ) and torsional stiffness against distortion ( EIDS = Eb2h2

48
(2−β)Aw+Ad

1+β
 ) 

are computed in accordance with the deformation coordination method.

Plate element analysis method
When analyzing the distortion effects of a box beam using the plate element method, the various plate compo-
nents that make up the box beam are discretized into plate elements. The forces corresponding to lateral bending 
distortion are defined as the in-plane external force systems of each plate element, while the forces corresponding 
to torsional distortion are defined as the in-plane internal force systems of each plate element. The relationship 
between distortion deformation under distortion loads and torsional deformation is determined through the 
balance conditions of the in-plane internal force systems. Subsequently, the governing differential equations 
for the distortion of box beam are derived through supplementary balance conditions of the in-plane external 
force systems.

The in-plane internal force systems acting on each plate element are shown in Fig. 5, where qt and qd respec-
tively represent the longitudinal restraining forces exerted by the web plate elements against the top and bottom 
plates, qAx and qBx represent the lateral restraining forces exerted by the left and right-side web plate elements 
on the top plate elements, qCx and qDx represent the lateral restraining forces exerted by the left and right-side 
web plate elements on the bottom plate elements, qAy and qDy represent the vertical restraining forces exerted by 
the top and bottom plate elements on the left-side web plate element, and Qdt , Qdb and Qdw represent the shear 
forces acting on the top plate element, bottom plate element, and web plate element, respectively.

By considering the equilibrium of forces among the plate elements, the following relationships for the distor-
tion and deformation of a box girder can be established:

where W1, W2 and W3 are quantities related to distortion warping deformation, distortion frame deformation 
and distortion external loads, respectively:

(18)Mw =
(1+ β)Jw

βh
f ω̃B

(19)γ ′′
D = −

f

E

(20)γP =
Pvb

2Kd

(21)γP = γD + γQ

(22)γ ′′′′
D +4�4SγD=

M̃DS

EIDS

(23)W3 = W2 −W1

(24)W1 =
d2Mw

dz2
+

bw

2bt

d2Mt

dz2
+

bw

2bd

d2Mb

dz2

(25)W2 = Qdw +
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2bt
Qdt +

bw

2bd
Qdb

(26)W3 =
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2bt
Pdt+
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It is noteworthy that Eq. 21 demonstrates the deformation coordination relationship among distortion dis-
placements, while Eq. 23 illustrates the equilibrium relationship between distortion internal forces and distortion 
external loads.

Substituting Eqs. 2 and 3 into Eq. 24, Eqs. 10 and 11 into Eqs. 25, and 1 into Eq. 26, W1, W2 and W3 can be 
further expressed as:

where Ŵ1 = 1+ h2(βJt+Jd)
(1+β)b2Jw

 and Ŵ2=
−4
EJwb

.
Substituting Eqs. 27, 28 and 29 into Eq. 23, the governing distortion differential equation for a box girder 

can be obtained based on the plate element method:

where �P= 4

√
EIWP
4EIDP

 is the distortion attenuation coefficients, EIWP = 4h2

δh
 is distortion frame stiffness,M̃DP = Pvb 

is the distortion external moment and EIDP = −Ŵ1b
Ŵ2

 is the distortion warping stiffness of the box girder.

Total potential energy variational method
By considering the distortion angle as the primary unknown in distortion displacement, the governing distor-
tion differential equation for the box girder can be derived by evaluating the distortion frame strain energy (U1), 
distortion warping strain energy (U2) and external load potential energy (V) of the box girder when distortion 
deformation takes place. This derivation follows the principle of minimum potential energy.

Based on Eqs. 6 and 7, the distortion frame strain energy U1 can be computed  as24:

K3 =
1
6E

[
K2
1
b
I4
+ K2

2
b
I2
+

2h
(
K2
1+K2

2−K1K2

)

I1

]
.

(27)W1 =
Ŵ1

Ŵ2
γ ′′′′
D

(28)W2 =
4h2

bδh
γD

(29)W3=Pv

(30)γ ′′′′
D + 4�4PγD =

M̃DP

EIDP

(31)U1 =

∫ l

0

∫

s

M2

2EI
dsdz = K3

∫ l

0
γ 2
Ddz

Figure 5.  The in-plane force system of the plate element. (a) Top plate (b) Web plate (c) Bottom plate.
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where the distortion warping internal moment Mw acting on the web plate is expressed in terms of the distor-
tion warping normal stress σD at point D, as obtained from Eq. (5):

K4=
bh

4(1+β)
.

where the distortion warping normal stress σWD is linearly distributed across the cross-section, so the distor-
tion warping normal stress at any point can be obtained from the distortion warping normal stress σD at point 
D. Thus, the distortion warping strain energy U2 is given  by24

where

The external load potential energy V of box girder under distortion loads is expressed  as24

When disregarding shear deformation, the total potential energy � of the box girder under distortion loads 
can be expressed as � = U1 + U2 + V  . The requisite condition for attaining an extremum of � is that its first-
order variation is equal to zero. Therefore, the governing distortion differential equation is derived as

where �E = 4

√
EIWE
4EIDE

 is the distortion attenuation coefficients, EIWE = 2K3 is the distortion frame stiffness, 
M̃DE = Pvb

2  is the distortion external moment, and EIDE = 2H is distortion warping stiffness of the box girder, 
respectively.

Through a comparison of Eqs. 22, 30 and 36, it can be observed that the distortion geometric parameters of 
vertical web plate box girders, computed using the deformation coordination method, the plate element analysis 
method and the total potential energy variational method, satisfy the following relationships:

It can be observed from Eqs. 37 ~ 40 that the distortion effects obtained by the three different methods are 
identical, demonstrating the consistency of the three different methods in calculating the distortion effects of 
a box girder.

Notwithstanding the notable variations in derivation processes and physical interpretations associated with 
these three methods for analyzing distortion effects, the distortion control differential equations generated by 
each approach exhibit complete consistency. This remarkable level of agreement holds significant theoretical 
significance.

First-order generalized beam theory (GBT) describes the behavior of prismatic structures by ordinary uncou-
pled differential equations, using deformation functions for extension, bending, torsion, and distortion. In the 
GBT theory, the ordinary differential equation is expressed  as9

where kC, kD, and kB represent the section properties applicable to mode k. kV represents the generalized defor-
mation in mode k. kq represents the distributed load applicable to mode k10. The theory of the deformation 
coordination method distortion effect of box beams can also be explained by generalized beam theory. The dis-
tortion differential equation obtained by the deformation coordination method also satisfies the GBT in which 
the warping constants satisfy the following conditions:

(32)σD=EK4γ
′′
D

(33)U2 =

∫ l

0

∫

A

σ 2
WD(z, s)

2E
dAdz = H

∫ l

0

(
γ ′′
D

)2
dz

(34)H =
EK2

4

6

[
b2sβ

2δt

b2
+bδd + 2hδw

(
β2 − β + 1

)]

(35)V = −

∫ l

0
PdtγDhdz=−

b

2

∫ l

0
γDPv(z)dz

(36)γ ′′′′
D + 4�4EγD =

M̃DE

EIDE

(37)�P = �E = �S

(38)EIDP = 2EIDE = 2EIDS

(39)EIWP = 2EIWE = 2EIWS

(40)M̃DP = 2M̃DE = 2M̃DS

(41)EkC · kV ′′′′ − GkD · kV ′′ + kB · kV = kq

(42)

kC = IDS
kB = IWS

kD = 0



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:19854  | https://doi.org/10.1038/s41598-024-69130-y

www.nature.com/scientificreports/

Vlasov’s thin-walled beam theory comes closest to GBT. Vlasov introduced the concepts of generalized coor-
dinates and generalized displacements, enabling the determination of longitudinal and transverse displacements 
on the cross-section of box beams. Using the fundamental principles of elasticity theory, the strain and stress 
distributions in closed thin-walled box girders are determined. Subsequently, applying the principle of virtual 
displacements, a sixth-order differential equation with constant coefficients is derived to solve the restrained 
torsion problem of box girders with deformable cross-sections, as illustrated below.

Consequently, the restrained torsion problem incorporating distortion transforms into solving a sixth-order 
differential equation with constant coefficients for the function f(z). The generalized displacements and internal 
forces can be ascertained once the function f(z) is obtained. Unlike GBT, the generalized coordinate method 
does not decouple restrained torsion and distortion in box beams, considering only the shear stress generated 
by free torque while neglecting shear stress from constrained torsion in closed-section box beams. Moreover, 
Vlasov’s classical thin-walled beam theory applies only to doubly symmetric rectangular box beams. However, 
this theory remains an effective tool for analyzing the spatial force characteristics of box beams. This study 
adopts the fundamental principles of Vlasov’s generalized coordinate method, decoupling restrained torsion 
and distortion to separately analyze the distortion effects in box beams.

Numerical examples
In the previous  literature17, a bench scale test of a cantilever box girder was conducted to investigate the dis-
tortion effects. The specific configuration of tested cantilever box girder is shown in Fig. 6. The cross-section 
of girder is b × h = 300 mm × 150 mm, with a wall thickness of 3.18 mm. The employed cold-rolled low carbon 
steel plate with dimensions of 610 × 610 × 20  mm3 has an elastic modulus of E = 196.2 GPa. The selection of the 
measurement section, located at 3/4 of the span from the free end, was based on calculations that determined it 
to have minimal torsion-induced warping stress. Due to space limitations of the paper, the detailed calculations 
are not presented herein. Nonetheless, this choice ensures that the measured warping stress values obtained are 
representative of the overall behavior. The experiment utilized cold-rolled low-carbon steel plates with a thick-
ness of 3.18 mm, which satisfies the essential assumptions of thin-walled box beam distortion theory, namely the 
insignificance of shear deformation and the uniform distribution of distortion stress across the wall thickness. 
It is important to note that challenges associated with boundary conditions and the accuracy of load application 
may introduce disparities between the experimental results and theoretical predictions. However, in accord-
ance with Saint–Venant’s principle, the chosen test sections were specifically designed to effectively mitigate the 
influence of these adverse factors.

(43)f VI − 2r2f ′′′′ + s4f ′′ = 0

Figure 6.  Configuration of cantilever box girder (unit: mm). (a)3D view (b) Layout of the cantilever box girder 
test (c) Cross-sectional dimensions and measurement point layout.
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Table 1 tabulates the values of various distortion geometric parameters using the three different methods. The 
outcomes obtained through various methodologies fulfill the conditions stated in Eqs. 37 ~ 40, thereby confirm-
ing the correctness of the proposed formulas.

Furthermore, a finite element model is developed on the ANSYS software platform using the Shell 63 element. 
The finite element model employed in this study adopted a grid size of 10 mm, achieving the discretization of the 
box girder into 13,500 elements and 13,590 nodes. To ensure model coherence and stability, all nodal displace-
ments at the fixed end were consistently constrained during the entire modeling process. Figure 7 illustrates the 
contour diagram depicting normal stress distribution for both the complete beam and the designated test section.

As shown in Table 2, the numerical results of the cantilever box girder are in good agreement with the 
experimental and analytical results with acceptable errors (< 10%), confirming the correctness of the proposed 
calculation methods in this paper. Table 2 demonstrates that the analytical and finite element solutions exhibit 
high agreement. Nonetheless, higher errors are observed at specific test points, primarily due to experimental 
challenges such as boundary conditions, load application accuracy, and sample preparation consistency. These 
factors may contribute to deviations between experimental results and theoretical predictions. Moreover, the 
precision and sensitivity of the sensors employed and the accuracy of data collection methods have a substantial 
impact on the final measurement outcomes.

In addition, a parametric study is conducted by taking a simply supported box girder bridge as an example. 
As shown in Fig. 8, the bridge span (l) is 40 m in length, the cross-section is 950 mm in width ( δw ) and 240 mm 
in height (h). The box girder is made of C40 concrete with an elastic modulus of E = 34 GPa. An eccentric load 
of P = 451.0 kN is applied at the top-left corner on the mid-span cross-section of the box girder.

Figure 9 illustrates the variation of distortion warping normal stress at the loaded point with respect to the 
span-to-height ratio (l/h). It can be observed that the maximum distortion warping normal stress in the box 
girder occurs at the mid-span, and its peak value significantly increases with l/h. In contrast, the presence of 
stationary points at approximately l/12 from the mid-span of the box girder can be attributed to the support 
constraints imposed at both ends of the box beam. According to the stress distribution depicted in Fig. 9, the 

Table 1.  Parameters associated with various theories employed for distortion calculation.

Plate element analysis method Total potential energy variational method Shear flow analysis method
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Figure 7.  The normal stress contour diagram for the entire beam and the test section. (a) stress contour 
diagram for the entire beam and the test section. (b) stress contour diagram for the test section.

Table 2.  Distortion warping normal stress (unit: MPa). Δ1 = (σANA—σFE)/σFE × 100%; Δ2 = (σANA—σEXP)/σEXP 
× 100%

Measurement point in Fig. 6 Analytical result σANA Finite element solution σFE Experimental value σEXP Δ1 (%) Δ2 (%)

1 − 33.3 − 33.5 − 31.6 − 0.6 5.4

2 33.3 33.5 32.5 − 0.6 2.5

3 − 33.3 − 33.5 − 33.4 − 0.6 − 0.3

4 33.3 33.5 32.1 − 0.6 3.7
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introduction of a diaphragm at the middle or quarter span in practical engineering applications can significantly 
alleviate the distortion effect encountered by the box beam.

Figure 10 uncovers the variation of distortion warping normal stress at point A with the height-to-thickness 
ratio ( h/δw ). It can be observed that the peak distortion warping normal stress occurs at the mid-span and gradu-
ally decreases towards both ends of the beam. The distortion warping normal stress at the mid-span significantly 
increases with h/δw . Therefore, the increase in δw is an effective approach to reduce the distortion effects.

Conclusion
This paper presents a novel deformation coordination method for analyzing the distortion effect of box beams. 
The method establishes a governing distortion differential equation to effectively control and mitigate distor-
tion. A comparative analysis is conducted to evaluate the proposed method in comparison to the plate element 
analysis and the total potential energy variational method. Additionally, the study investigates the influence of 
geometric parameters on the distortion of box beams. Through comprehensive analysis, several major findings 
are concluded as follows:

1. In the case of vertically web-plated box girders, the governing distortion differential equation and distortion 
attenuation coefficients derived from the deformation coordination method presented in this paper align 
with the equations obtained through the plate element analysis method and the total potential energy vari-
ational method.

Figure 8.  Simple support box girder.
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2. Under a concentrated load, the maximum distortion warping normal stress in the box girder occurs at the 
mid-span and increases with the span-to-height ratio. In contrast, at approximately 1/12 bridge span from 
the mid-span, the distortion warping normal stress remains constant regardless of variations in the span-
to-height ratio.

3. As the height-to-thickness ratio of the web plate increases, there is a notable rise in the distortion warping 
normal stress at the mid-span cross-section. Consequently, enhancing the thickness of the box girder’s walls 
emerges as an effective strategy for mitigating the distortion effects during the design phase of box girders.

Despite yielding fruitful outcomes, this study is subject to certain limitations. The analysis conducted solely 
investigates the distortion effects of box girders under simplified loading conditions. To explore the distortion 
effects under more intricate loading conditions, it is recommended to incorporate the nonlinear material proper-
ties of steel and concrete in the future research. Furthermore, while the present paper focuses exclusively on box 
girders, it is essential to extend the investigation to include other types of girders in order to verify the broader 
applicability of the proposed model. Nonetheless, this study provides valuable insights to engineers regarding 
the distortion effects on box girders.

Data availability
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