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Continuous sepsis trajectory 
prediction using tensor‑reduced 
physiological signals
Olivia P. Alge 1*, Joshua Pickard 1, Winston Zhang 1, Shuyang Cheng 1, Harm Derksen 2, 
Gilbert S. Omenn 1,3, Jonathan Gryak 4, J. Scott VanEpps 5,6,7,8 & Kayvan Najarian 1,5,6,9

The quick Sequential Organ Failure Assessment (qSOFA) system identifies an individual’s risk to 
progress to poor sepsis‑related outcomes using minimal variables. We used Support Vector Machine, 
Learning Using Concave and Convex Kernels, and Random Forest to predict an increase in qSOFA 
score using electronic health record (EHR) data, electrocardiograms (ECG), and arterial line signals. 
We structured physiological signals data in a tensor format and used Canonical Polyadic/Parallel 
Factors (CP) decomposition for feature reduction. Random Forests trained on ECG data show 
improved performance after tensor decomposition for predictions in a 6‑h time frame (AUROC 0.67 ± 
0.06 compared to 0.57 ± 0.08, p = 0.01 ). Adding arterial line features can also improve performance 
(AUROC 0.69 ± 0.07, p < 0.01 ), and benefit from tensor decomposition (AUROC 0.71 ± 0.07, p = 0.01 ). 
Adding EHR data features to a tensor‑reduced signal model further improves performance (AUROC 
0.77 ± 0.06, p < 0.01 ). Despite reduction in performance going from an EHR data‑informed model to a 
tensor‑reduced waveform data model, the signals‑informed model offers distinct advantages. The first 
is that predictions can be made on a continuous basis in real‑time, and second is that these predictions 
are not limited by the availability of EHR data. Additionally, structuring the waveform features as a 
tensor conserves structural and temporal information that would otherwise be lost if the data were 
presented as flat vectors.

Sepsis is a syndrome induced by an existing infection in the body that produces life-threatening organ dysfunction 
in a chain reaction. The clinical criteria for sepsis include suspected or documented infection and an increase in 
two or more Sequential Organ Failure Assessment (SOFA) points. Septic shock, a more severe subset, consists 
of substantially increased  abnormalities1 and higher risk of  mortality2. It is imperative to risk-stratify patients 
early in their course in order to appropriately direct critical, but potentially limited, resources and therapies.

Sepsis’ heterogeneity complicates its diagnosis and prognosis. Its current definition, based on SOFA score, 
requires measurement or collection of variables which may not be immediately available. The quick-SOFA 
(qSOFA) is a screening tool that can be performed at the bedside. It consists of three criteria—Glasgow Coma 
Scale of < 15 (indicating mental status change), respiratory rate ≥ 22 breaths per minute, and systolic blood 
pressure ≤ 100 mmHg—where two of the three must be  met1. It includes the poorly characterized variable mental 
status change, but it is a better predictor of organ dysfunction than systemic inflammatory response syndrome 
(SIRS), which is less  sensitive3,4. SIRS is the body’s response to a stressor such as inflammation, trauma, surgery, 
or infection, while sepsis is specifically a response to infection; many septic patients have SIRS, but not all patients 
who meet SIRS criteria have an infection or experience septic organ failure. In comparison to qSOFA, SIRS has 
four criteria, three of which must be met to positively identify SIRS. These are: respiratory rate > 20 breaths 
per minute or partial pressure of  CO2 < 32 mmHg; heart rate > 90 beats per minute; white blood cell count > 
12,000/microliter or < 4000/microliter or bands > 10%; and temperature >38 ◦ C or < 36 ◦C5. For each of these 
scoring systems, factors such as comorbidities, medication, and age may confound the phenotype in different 

OPEN

1Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 
USA. 2Department of Mathematics, Northeastern University, Boston, MA, USA. 3Departments of Internal 
Medicine, Human Genetics, and Environmental Health, Ann Arbor, MI, USA. 4Department of Computer Science, 
Queens College, CUNY, Queens, NY, USA. 5Michigan Center for Integrative Research in Critical Care, University 
of Michigan, Ann Arbor, MI, USA. 6Department of Emergency Medicine, University of Michigan, Ann Arbor, 
MI, USA. 7Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA. 8Macromolecular Science and 
Engineering, University of Michigan, Ann Arbor, MI, USA. 9Electrical Engineering and Computer Science, University 
of Michigan, Ann Arbor, MI, USA. *email: oialge@umich.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-68901-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18155  | https://doi.org/10.1038/s41598-024-68901-x

www.nature.com/scientificreports/

patient groups. In previous work, SOFA score predicted sepsis onset upon ICU admission with AUROC of 0.73, 
qSOFA with AUROC of 0.77, and SIRS with AUROC of 0.616. Among patients with suspected infection in the 
ICU, SOFA score predicted in-hospital mortality with AUROC of 0.74, qSOFA with AUROC of 0.66, and SIRS 
with AUROC of 0.644.

A system of sepsis detection which is too strict or time-consuming can delay necessary care to patients, and 
criteria that are too broad can lead to over-treatment or inappropriate use of limited resources. For example, false 
positive sepsis prognoses can lead to patients receiving unnecessary care and antibiotics, which contribute to 
antibiotic resistance and emergence of “superbugs”7–9. Similarly, qSOFA is not recommended as a single screening 
tool for diagnosis of  sepsis10, but it can be used as a method of predicting prolonged ICU stay or in-hospital 
 mortality4. Predicting the trajectory of a patient with suspected infection may be a more efficient use of resources 
than detecting existing sepsis, and therefore trajectory prediction is the focus of this study.

Many models for detecting, monitoring, or predicting outcomes related to sepsis depend on Electronic Health 
Record (EHR) data, including SOFA  score1, EPIC’s sepsis  model11, and  others12–14. EHR data can include static 
variables like demographics information, and dynamic variables such as vital signs or lab values. While useful 
for determining a patient’s status, EHR data are limited by time. Lab values require time for collection and 
processing, and continuous variables may be updated less than hourly or at irregular intervals. In contrast, 
physiological readings, such as those generated from electrocardiography, blood pressure monitoring, or pulse 
oximetry, are collected continuously. Our study examines the use of continuous physiological signals, namely 
electrocardiogram (ECG) and arterial line, in outcome prediction related to sepsis.

ECG signal information has previously been used in the study of risk for sepsis and sepsis  progression15–17. The 
advantage that continuous monitoring devices like ECG offer over EHR data is real-time, continuous assessment 
of a patient’s status. In addition, ECG is routinely collected in the intensive care unit (ICU), and is minimally 
invasive. In our analysis, we also include arterial line. Yearly, roughly eight million arterial catheters are placed 
in patients at hospitals in the United States, or roughly 10–12% of patients that undergo  anesthesia18,19. We 
choose to include arterial line in the study as both SOFA and qSOFA use blood pressure to assess the status of 
a patient’s cardiovascular  system1.

Given sepsis’ complexity and heterogeneity, it is necessary to incorporate multiple variables into a trajectory 
prediction method. Modeling data as a tensor provides the ability to observe changes in different variables with 
respect to time and to one another. The prognosis and severity assessment of sepsis rely on a large amount of 
heterogeneous data, including body temperature, arterial blood pressure, blood culture tests, and molecular 
assays. Treatment of sepsis does not rely on any individual variable, but on all of these measurements, which vary 
as a function of time. Because no individual feature is sufficient, integrating data across time and incorporating 
structure is necessary for improved sepsis prognosis, and therefore can better inform care decisions.

In this study, we use ECG and arterial line signals to predict an increase in an individual’s qSOFA score, where 
a qSOFA of ≥ 2 indicates poor outcomes related to sepsis. The results of signal-trained models are then compared 
to models trained using both signals and EHR data. This is to (1) predict which individuals are at risk of septic 
shock, future organ failure, or other complications related to sepsis, rather than focusing on a sepsis diagnosis, 
and (2) assess the usefulness of continuous physiological signals in the event that EHR data are unavailable, 
such as the time between EHR data collection times. Outside of the hospital, one such scenario is the case of 
home monitoring, where after a patient is released from the hospital, their ECG is still being recorded in case 
of a cardiac  event20.

Methods
A schematic of the methods used in this paper is presented in Fig. 1.

Dataset
The retrospective dataset consisted of 1803 unique individuals age ≥ 18 years with 3516 unique encounters 
between 2013 and 2018 at Michigan Medicine. Individuals’ characteristics are presented in Supplementary 
Table 1. The detailed inclusion/exclusion criteria for the dataset are provided in Supplementary Materials 
Sect. 1.3, but, briefly, inclusion criteria selected for inpatient encounters with: ECG lead II waveforms at least 
15 min in length and ICD9/10 codes for pneumonia, cellulitis, or urinary tract infection (UTI), excluding UTIs 

Figure 1.  Schematic.
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associated with catheters. These are infections that have been documented in previous sepsis cases. Exclusion 
criteria included positive HIV status, solid organ or bone marrow transplant, and ongoing chemotherapy. These 
exclusion criteria were selected as individuals undergoing organ/bone marrow transplants are usually given 
immunosuppressant medications, and therefore react differently to infection than a typical patient who enters 
the ICU with an infection. Additionally, positive HIV status and chemotherapy treatments also affect the immune 
system, and therefore affect how these individuals react to infection. These criteria created a dataset that did 
not specifically select for sepsis diagnosis, but instead focused on patients with an infection who were at risk to 
develop sepsis and septic shock.

This dataset that we used was selected from an existing Michigan Medicine biobank, whose original data 
collection was approved by the institutional review board of University of Michigan’s medical school, IRBMED. 
The protocols of this retrospective study (accession number HUM00092309) were reviewed and approved by 
IRBMED. The protocols were carried out in accordance with applicable guidelines, state and federal regulations, 
and the University of Michigan’s Federalwide Assurance with the Department of Health and Human Services. 
Informed consent was waived, as this was a retrospective study of previously collected and de-identified data, 
without direct involvement of human subjects and therefore no chance of physical harm or discomfort to the 
individuals being studied. Individuals reported their own sex and race/ethnicity, from categories defined by 
Michigan Medicine, and this information is included in Supplementary Table 1 to provide information on the 
population of this study. The study performed in this paper only used the retrospective data previously collected 
by the existing biobank, and did not perform any new recruitment or data collection. Individuals’ data are not 
shared in this project’s publicly available code. The risk of re-identification from the de-identified dataset is low; 
(1) the key linking de-identified patients to their original patient records is not made available at any point of 
the machine learning stages, from feature extraction to model training or deployment, (2) dates of EHR data 
collected are obfuscated from the model, and instead, relative dates (e.g., time between collections) are used, so 
training data retained within the model cannot necessarily be linked back to exact dates within the EHR data.

This larger dataset was reduced by selecting for individuals who had EHR, ECG, and arterial line data 
available. In this study, EHR data included labs, medications, hourly fluid output, and vital signs. Because poor 
signal quality can result in false  alarms21, the ECG signal was reviewed automatically using Pan-Tompkins to 
identify QRS  complexes22,23. Upon collecting 10-min signals for feature extraction, signals determined to be 50% 
or more noise were discarded. The method for identifying noise in ECG has previously been used in studies of 
arrhythmia and atrial  fibrillation24,25.

Change in qSOFA score was used to assign positive and negative classes for machine learning. Given an 
individual who meets one of the criteria for qSOFA, the model predicts whether the score will increase to ≥ 
2, which Sepsis-3 deems as “likely to have poor outcomes”1. This increase in qSOFA is considered the positive 
outcome in a learning context, because the patient meets at least 2 qSOFA criteria as defined by Sepsis-3 after 
the prediction gap. Thus, the negative outcome is qSOFA < 2 after the prediction gap.

We tested prediction gaps of 6 and 12 h. These gaps were chosen because, if a decompensation event is 
predicted six or more hours in advance, this gives ample time for healthcare providers to give the appropriate 
therapies or move the patient to appropriate facilities. For a 6-h gap, there were 199 negative and 59 positive 
cases. For a 12-h gap, there were 189 negative and 37 positive cases.

Signal processing
For every sample, we collected the 10 min of signal occurring directly before the prediction gap for processing. 
This 10-min signal was divided into 2 5-min windows, and then preprocessed according the relevant sections 
below.

Arterial line data
Arterial line signals were sampled at 120 Hz. We applied a third order Butterworth bandpass filter with cutoff 
frequencies 1.25 and 25 Hz to remove artifacts. These cutoff frequencies were selected from a previous study 
that used equipment from the same  hospital26, and were determined to adequately capture the movement of the 
arterial waveform while also reducing noise and other artifacts. The BP_Annotate software  package27 annotated 
the signal. Following previous  methodology28, we extract features from the annotated signal: number of peaks, 
as well as the minimum, maximum, mean, median, and standard deviation (SD) of time between sequential 
systolic peaks, time between a systolic peak and its subsequent diastolic reading, relative amplitude between 
systolic peaks, and relative amplitude between a systolic peak and its subsequent diastolic reading.

Electrocardiogram data
ECG data consisted of four leads and signals were sampled at 240 Hz. We used lead II of the ECG, following 
previously established  methods29. A second order Butterworth bandpass filter with the cutoff frequencies 0.5 
and 40 Hz removed noise, and baseline wander. This follows from previous  work26. Lead II was selected as it is 
commonly used for monitoring in the ICU, and therefore is clinically relevant.

Taut string
Peak-based and statistical features were calculated from the Taut String (TS)  estimation30 of the ECG waveform. 
Others have previously used such features to detect hemodynamic  instability29 and predict hemodynamic 
 decompensation26,31. TS provides a piecewise linear estimation of an input signal at a specified level of “wiggle 
room”, ǫ . After applying TS, the resulting approximation looks like a piece of string pulled tight between the peaks 
and valleys of input signal ±ǫ . An illustration of the Taut String approximation is provided in Fig. 2
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TS estimation functions as follows. Given a discrete signal f = (f0, f1, ..., fn) for a fixed value ǫ > 0 , the TS 
estimate of f is the unique function g such that

and

is minimal, with D being the difference operator.
TS estimation was applied to the filtered ECG signal using the five values of the parameter ǫ : 0.0100, 0.1575, 

0.3050, 0.4525, and 0.6000. These values were selected from previous  work26. Six features were computed from 
each TS estimate of a 5-min window and value of ǫ . These features were: number of line segments, number of 
inflection segments, total variation of noise, total variation of denoised signal, power of denoised signal, and 
power of noise. This resulted in a tensor of size 2× 5× 6 for each signal, where the modes of the tensor were 
window, ǫ , feature.

Electronic health record data
We assigned an ordinal encoding to labs and cardiovascular infusions ranging from 0–4 or 0–3, respectively. A 
score of 1 indicates less severity and a score of 3 or 4, more severity. If a lab value had been recorded before the 
time of interest, this value was carried forward. This would be considered the most up-to-date assessment of 
a lab value and not be considered missing data. To differentiate from missing data, we assigned a score of 0 to 
represent a missing value with no previous recordings. The Supplementary Materials Sect. 1.2 provides tables 
detailing these assignments. Vital signs and urine output were included, but not given an ordinal encoding. If 
vital signs or urine output were not reported in the time of interest, we carried forward the most recent known 
value. As it cannot be guaranteed that missing urine output or vital signs were missed completely at random, 
carrying the last value forward has some risk of biasising the  data32.

We added a retrospective component for lab values, cardiovascular infusions, and vital signs where, in 
addition to the 10 min occurring before the prediction gap, we include four look-back periods. For the prediction 
gap of 6 h, these look-back periods are increments of 4 h; for the prediction gap of 12 h, they are increments of 8 
h. Look-back periods were developed in a previous study of postoperative cardiac decompensation  events31. They 
allow for the inclusion of previous observations of data, before signal collection began for patients in the ICU.
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Figure 2.  Creation of a taut string approximation for windows of signal.
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Feature reduction with tensor methods
For each 10-min ECG signal, 60 features were computed and arranged as a tensor of size 2× 5× 6 . For each 
10-min arterial line signal, 42 features were arranged as a tensor of size 2× 1× 21 , where the second mode, TS 
parameter ǫ , was inflated to create a uniform presentation to the tensor reduction algorithms. The reasoning 
behind using a tensor structure was similar to envisioning the different incoming signals as an image. Similar to 
how the rows of pixels in an image have spatial relationships to one  another33, the series of TS approximations of 
ECG have temporal relationships to one another. By separating these features into different vectors, that temporal 
relationship would be lost. As an example, flattening image data into a vector before feature reduction was found 
to be less effective than tensor reduction when training a model to detect changes in  images34. See Fig. 3 for an 
illustration of how tensors are produced from the ECG signal.

Rather than treating this information as 60 or 42 feature vectors, we preserved the underlying tensor structure 
by using a tensor-based dimensionality reduction method, inspired by previous  work26 and described below.

First, each tensor’s underlying structure was determined. All 2× 5× 6 ECG-feature tensors in the training 
set were stacked along the fourth mode, generating a new tensor of size 2× 5× 6× N , where N was the number 
of observations in the training set. Similarly, all 2× 1× 21 arterial line-feature tensors were stacked along the 
fourth mode to generate a new tensor of size 2× 1× 21× N.

Tensor Toolbox’s35 Canonical Polyadic / Parallel Factors (CP)  decomposition36 was used to obtain the 
underlying structure of the tensors. A CP decomposition breaks the initial tensor down into a sum of rank-1 
tensors, so it can be considered an extension of singular value decomposition to a higher order. Similar to how 
performing a singular value decomposition on an image (matrix) can create a compressed and simplified image, 
the CP decomposition creates a compressed and simplified estimation of the original tensor.

In general, given a tensor

Figure 3.  Creating a third order tensor from ECG data.
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and a predetermined rank r, the CP decomposition gives a tensor

such that �X − X̂� is minimized, where ⊗ denotes the Kronecker product. The multiplication of vectors v1, . . . vd 
yields a component rank-1 tensor. Because the tensors used in this specific case are fourth-order, this can be 
written as:

The vectors a1, . . . , ar ∈ R
n1 , and so on, can be combined to form factor matrices, such as 

A = [a1, . . . , ar] ∈ R
n1×r , and similarly for B, C, D. In this manner, each mode of the original tensor X can be 

approximated by the product of these factor matrices, such as:

where ⊙ denotes the Khatri-Rao product for the first mode. Because finding a CP decomposition is NP-hard37, 
we used the Alternating Least Squares (ALS) heuristic method, which is an iterative algorithm to find the best 
approximation of X for a given rank r36.

The dataset was divided into an 75/25 split 100 times, and tensor reduction was performed on each of those 
splits. A fit score, defined as

was calculated to determine how well the reduced tensor approximated the original. This CP-ALS process was 
repeated 15 times, with the selected reduction being the one with the highest fit, or the first reduction with fit 
score equal to one, whichever occurred first. CP-ALS was run using rank values of 1–4.

After applying CP-ALS to the training data, the resultant factor matrices A and B were retained, which related 
to the modes of the original tensor that were not the feature mode (C) or the patient encounter mode (D).

With this process completed, for any given individual’s third-order tensor T, a reduced set of features was 
extracted using the factor matrices computed from the training data. The feature vectors cT ,1, . . . , cT ,r were 
computed via a least squares problem, where

is minimal. After computing the individual vectors, they were concatenated to create CT , a feature matrix with a 
reduced set of features compared to matricization T(3) of the original tensor T along the third mode.

Machine learning
When constructing training and test datasets, 75/25 splits were created based on individuals so that no individual 
would overlap between the training and test sets.

After extracting features, the three types of learning models used for training were linear Support Vector 
Machines (SVM)38, Random Forest (RF)39, and Learning Using Concave and Convex Kernels (LUCCK)40. We 
selected a linear kernel for SVM in this experiment because it would be less susceptible to overfitting when many 
features are  present41 (such as in the case when no tensor reduction is used), and a linear kernel is both faster 
to train and more easily interpretable than a nonlinear  kernel42. Additionally, datasets with many features can 
become linearly separable, making the linear kernel a good option both in terms of its transparency as well as its 
faster training  time43. We opted not to test deep learning models because we wanted to offer transparency to the 
end user of the model and to patients who would receive care, as deep learning models are known for operating 
as a “black box”; a patient would trust a clinician who understands the “explainable” machine learning method 
that they use to assist in their decision-making (referred to as the AI-user dyad)44.

For all methods, the training phase consisted of threefold cross-validation (3FCV) on a 75/25 split of the data, 
where the test set was held and not used for training. The test set was presented to the three models generated 
from 3FCV to produce three sets of prediction scores. We computed the final prediction scores for the test set 
by taking the median of the three prediction scores, thus creating a voting system. This process was repeated 100 
times to obtain mean and standard deviation values of model performance.

A grid search selected optimal hyperparameters for each model using the validation fold in 3FCV. For 
RF, these hyperparameters included: number of trees, minimum leaf size, fraction of maximum number of 
splits, and number of predictors to sample. For SVM, grid search selected the best box constraint C. Sequential 
minimal  optimization45 was used for the optimization routine. For LUCCK, grid search selected optimal � and 
� parameters. All grid searches used F1 score as the value to optimize.

Different signal feature based models were tested using tensor reduction. The first, using only ECG data and 
presented in Figs. 4 and 5, was the most restricted model, assuming that both EHR and arterial line data were 

X ∈ R
n1×···×nd ,

X̂ =

r
∑

i=1

v1i ⊗ · · · ⊗ vdi ,

X ≈ X̂ =

r
∑

i=1

ai ⊗ bi ⊗ ci ⊗ di .

X(1) ≈ A(D ⊙ C ⊙ B)⊤,

fit = 1−
�X − X̂�

�X�
,

�T −

r
∑

i=1

ai ⊗ bi ⊗ cT ,i�,
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unavailable. This would apply to patients recently admitted, who would not have lab values or other EHR data 
available, and is also minimally invasive compared to having an arterial line in place. Next, a model trained on 
both ECG and arterial line features, presented in Figs. 6 and 7, which was tested to determine if the invasive 
arterial line improved performance compared to only using ECG data. Lastly, a model trained on signal features 
alongside EHR data was built, presented in Figs. 8 and 9.

Results
RF, LUCCK, and SVM were trained on tensor-reduced ECG features, presented in Figs. 4 and 5. We compare 
these models to those trained on tensor-reduced ECG features and arterial line features, presented in Figs. 6 and 
7. These figures display the mean F1 Score and AUROC over 100 iterations, with error bars indicating one SD. 
The x-axis indicates the rank selected for CP-ALS, with the rightmost columns, separated with a dashed line, 
representing the case where no tensor decomposition was applied. Figures 8 and 9 show the results of models 
trained on both the tensor-reduced signal features and EHR data.

Data can also be viewed in a table format. Tables 1 and 2 present ECG-trained models at 6- and 12-h 
prediction intervals, Tables 3 and 4 show results for models trained with ECG and arterial line, and Tables 5 and 
6 for models trained with ECG, arterial line, and EHR data, and Table 7 is for models trained with only EHR 
data. In these tables, “Rank” indicates the rank selected for CP-ALS, and a rank of “None” that CP-ALS was not 
performed.
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Figure 4.  Models trained with ECG, 6-h data.
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Figure 6.  Models trained with ECG and arterial line, 6-h data.
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Figure 7.  Models trained with ECG and arterial line, 12-h data.
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Figure 8.  Models trained with ECG, arterial line and EHR data, 6-h data.
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Figure 9.  Models trained with ECG, arterial line and EHR data, 12-h data.

Table 1.  ECG-only models, 6-h gap.

Model Rank F1 score Recall Specificity AUROC

LUCCK

1 0.47 (0.08) 0.63 (0.12) 0.69 (0.10) 0.61 (0.09)

2 0.48 (0.07) 0.68 (0.11) 0.66 (0.09) 0.64 (0.08)

3 0.48 (0.07) 0.67 (0.11) 0.67 (0.08) 0.64 (0.08)

4 0.48 (0.07) 0.69 (0.12) 0.67 (0.09) 0.65 (0.07)

None 0.43 (0.06) 0.66 (0.13) 0.60 (0.11) 0.60 (0.07)

RF

1 0.46 (0.06) 0.66 (0.12) 0.64 (0.11) 0.64 (0.06)

2 0.47 (0.05) 0.71 (0.09) 0.63 (0.10) 0.66 (0.06)

3 0.47 (0.06) 0.69 (0.11) 0.64 (0.09) 0.66 (0.06)

4 0.48 (0.06) 0.72 (0.10) 0.64 (0.09) 0.67 (0.06)

None 0.41 (0.06) 0.64 (0.12) 0.57 (0.11) 0.57 (0.08)

SVM

1 0.37 (0.08) 0.50 (0.15) 0.66 (0.15) 0.49 (0.10)

2 0.38 (0.08) 0.52 (0.14) 0.64 (0.15) 0.50 (0.10)

3 0.38 (0.08) 0.52 (0.14) 0.66 (0.11) 0.50 (0.10)

4 0.38 (0.09) 0.53 (0.16) 0.64 (0.12) 0.50 (0.11)

None 0.44 (0.07) 0.64 (0.12) 0.63 (0.14) 0.62 (0.09)

Table 2.  ECG-only models, 12-h gap.

Model Rank F1 score Recall Specificity AUROC

LUCCK

1 0.47 (0.10) 0.69 (0.12) 0.74 (0.11) 0.69 (0.10)

2 0.47 (0.09) 0.69 (0.12) 0.75 (0.11) 0.68 (0.10)

3 0.49 (0.08) 0.72 (0.12) 0.76 (0.09) 0.71 (0.09)

4 0.49 (0.09) 0.73 (0.12) 0.75 (0.10) 0.72 (0.09)

None 0.41 (0.08) 0.67 (0.13) 0.69 (0.10) 0.65 (0.09)

RF

1 0.43 (0.08) 0.69 (0.12) 0.70 (0.11) 0.68 (0.09)

2 0.44 (0.08) 0.70 (0.12) 0.71 (0.10) 0.69 (0.08)

3 0.47 (0.08) 0.73 (0.11) 0.72 (0.09) 0.72 (0.08)

4 0.48 (0.09) 0.73 (0.12) 0.73 (0.09) 0.73 (0.08)

None 0.38 (0.07) 0.67 (0.12) 0.63 (0.12) 0.62 (0.09)

SVM

1 0.31 (0.10) 0.47 (0.16) 0.68 (0.15) 0.46 (0.12)

2 0.33 (0.09) 0.52 (0.16) 0.66 (0.16) 0.48 (0.13)

3 0.32 (0.09) 0.51 (0.16) 0.67 (0.14) 0.48 (0.11)

4 0.35 (0.10) 0.54 (0.17) 0.70 (0.12) 0.52 (0.13)

None 0.40 (0.08) 0.70 (0.14) 0.63 (0.13) 0.64 (0.10)



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18155  | https://doi.org/10.1038/s41598-024-68901-x

www.nature.com/scientificreports/

Table 3.  Models trained on ECG and art line, 6-h gap

Model Rank F1 score Recall Specificity AUROC

LUCCK

1 0.50 (0.07) 0.74 (0.11) 0.65 (0.12) 0.69 (0.08)

2 0.52 (0.07) 0.72 (0.10) 0.69 (0.10) 0.71 (0.07)

3 0.51 (0.06) 0.69 (0.10) 0.70 (0.08) 0.70 (0.06)

4 0.51 (0.06) 0.72 (0.10) 0.68 (0.09) 0.70 (0.06)

None 0.50 (0.06) 0.73 (0.11) 0.65 (0.10) 0.69 (0.07)

RF

1 0.49 (0.06) 0.72 (0.12) 0.65 (0.11) 0.68 (0.07)

2 0.51 (0.06) 0.74 (0.10) 0.66 (0.09) 0.70 (0.06)

3 0.51 (0.06) 0.73 (0.11) 0.67 (0.08) 0.70 (0.05)

4 0.52 (0.06) 0.75 (0.10) 0.67 (0.09) 0.71 (0.07)

None 0.49 (0.06) 0.71 (0.10) 0.66 (0.09) 0.69 (0.07)

SVM

1 0.42 (0.08) 0.61 (0.15) 0.63 (0.13) 0.58 (0.09)

2 0.41 (0.07) 0.61 (0.14) 0.61 (0.12) 0.57 (0.09)

3 0.43 (0.07) 0.64 (0.14) 0.61 (0.12) 0.58 (0.09)

4 0.42 (0.08) 0.64 (0.14) 0.60 (0.12) 0.58 (0.10)

None 0.47 (0.07) 0.70 (0.13) 0.64 (0.12) 0.63 (0.08)

Table 4.  Models trained on ECG and art line, 12-h gap

Model Rank F1 score Recall Specificity AUROC

LUCCK

1 0.45 (0.08) 0.73 (0.14) 0.69 (0.14) 0.72 (0.08)

2 0.45 (0.07) 0.72 (0.13) 0.71 (0.11) 0.72 (0.07)

3 0.47 (0.07) 0.75 (0.11) 0.71 (0.10) 0.73 (0.07)

4 0.46 (0.08) 0.73 (0.13) 0.71 (0.11) 0.71 (0.08)

None 0.44 (0.06) 0.77 (0.12) 0.67 (0.10) 0.72 (0.06)

RF

1 0.42 (0.08) 0.70 (0.13) 0.68 (0.12) 0.68 (0.09)

2 0.44 (0.07) 0.71 (0.12) 0.69 (0.10) 0.70 (0.08)

3 0.47 (0.07) 0.74 (0.12) 0.72 (0.10) 0.72 (0.08)

4 0.48 (0.08) 0.75 (0.10) 0.72 (0.10) 0.74 (0.07)

None 0.44 (0.08) 0.76 (0.12) 0.67 (0.10) 0.72 (0.07)

SVM

1 0.32 (0.07) 0.57 (0.17) 0.61 (0.15) 0.49 (0.10)

2 0.32 (0.08) 0.57 (0.18) 0.62 (0.15) 0.51 (0.12)

3 0.33 (0.08) 0.57 (0.16) 0.61 (0.16) 0.51 (0.11)

4 0.33 (0.07) 0.54 (0.15) 0.61 (0.15) 0.51 (0.12)

None 0.36 (0.07) 0.65 (0.16) 0.61 (0.15) 0.56 (0.12)

Table 5.  Models trained on ECG, art line, and EHR data, 6-h gap.

Model Rank F1 score Recall Specificity AUROC

LUCCK

1 0.53 (0.06) 0.74 (0.11) 0.70 (0.09) 0.74 (0.07)

2 0.53 (0.06) 0.74 (0.10) 0.69 (0.09) 0.74 (0.07)

3 0.53 (0.07) 0.74 (0.10) 0.70 (0.09) 0.73 (0.07)

4 0.53 (0.07) 0.74 (0.11) 0.70 (0.08) 0.73 (0.07)

None 0.52 (0.06) 0.73 (0.10) 0.69 (0.08) 0.72 (0.07)

RF

1 0.57 (0.07) 0.76 (0.09) 0.73 (0.09) 0.76 (0.06)

2 0.57 (0.06) 0.77 (0.08) 0.72 (0.08) 0.77 (0.06)

3 0.58 (0.07) 0.77 (0.09) 0.74 (0.08) 0.77 (0.06)

4 0.58 (0.07) 0.78 (0.09) 0.73 (0.09) 0.77 (0.06)

None 0.53 (0.06) 0.76 (0.09) 0.69 (0.08) 0.74 (0.06)

SVM

1 0.49 (0.07) 0.70 (0.11) 0.67 (0.10) 0.67 (0.08)

2 0.45 (0.08) 0.66 (0.13) 0.63 (0.12) 0.62 (0.10)

3 0.44 (0.07) 0.65 (0.12) 0.63 (0.12) 0.60 (0.10)

4 0.43 (0.07) 0.63 (0.12) 0.63 (0.11) 0.58 (0.09)

None 0.52 (0.06) 0.74 (0.10) 0.69 (0.08) 0.72 (0.06)
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Discussion
After extracting features from the EHR and from physiological signals, RF, LUCCK, and SVM models were 
trained. The results from these models are presented in “Results” section as graphs and tables. RF and LUCCK 
models performed similarly across different experiments, both performing better than SVM when tensor 
reduction was applied to the dataset. RF’s strong performance across different levels of feature reduction could 
be due to its bagging and bootstrapping procedures, which work to prevent overfitting and ignore  noise39,46. In 
its introductory paper, LUCCK was shown to perform well even when trained with few samples of signal data, in 
part due to its similarity function, which allows for noise or large deviations in some features to not overwhelm 
the  model40. Although SVM is known to perform well when few training samples are  available47, there are also 
cases where if the data is feature-dense, linear SVM will perform as well as SVM trained with a nonlinear  kernel48, 
as a large number of features can make a dataset linearly  separable43. This may be why the non-tensor-reduced 
datasets tended to have stronger performance than datasets with tensor reduction for SVM.

For RF and LUCCK, both F1 Score and AUROC tended to increase when moving from no tensor reduction 
to tensor reduction when using only ECG signal data. For example, for LUCCK in the 6-h dataset, mean F1 score 
increased from 0.43 to 0.48 with SD remaining similar (0.06 to 0.07, p < 0.01 ), while RF’s F1 score increased 
from 0.41 to 0.48 without a change in SD, p < 0.01 . Here, p-values were generated from t-tests. We observed a 
similar increase in mean AUROC for LUCCK (0.60 ± 0.07 to 0.65 ± 0.07, p < 0.001 ) and RF (0.57 ± 0.08 to 0.67 
± 0.06, p = 0.01 ) going from using no tensor reduction to using CP-ALS with rank 4. SVM does not follow this 
trend, however, and tends to increase in performance as more information is added to the model, with no tensor 
reduction performing the best. We see a similar trend in the 12-h dataset. While AUROC is not a justification 
in and of itself for these models to be used in clinical practice, AUROC offers a method of comparing the 
discriminatory ability of each of the models presented in this paper, with higher AUROCs indicating stronger 
ability to distinguish between the at-risk (positive) and not-at-risk (negative)  groups49.

For 6-h data, including the arterial line features improved both mean F1 Score and mean AUROC across 
different CP-ALS ranks, as can be seen comparing Figs. 4 and 6. For RF, including arterial line features improved 
performance compared to only using ECG signals without tensor reduction (AUROC 0.69 ± 0.07, p < 0.01 ), and 
also showed improvement in AUROC from tensor decomposition (AUROC 0.71 ± 0.07, p = 0.01 ). Adding EHR 
data features to a tensor-reduced signal model further improves performance (AUROC 0.77 ± 0.06, p < 0.01 ). 
For 12-h data, RF and LUCCK results are mixed across the different ranks, but including both Arterial Line and 
ECG data decreased SVM’s performance when no tensor reduction took place. When CP-ALS was used with 

Table 6.  Models trained on ECG, art line, and EHR data, 12-h gap.

Model Rank F1 score Recall Specificity AUROC

LUCCK

1 0.57 (0.09) 0.82 (0.09) 0.78 (0.09) 0.82 (0.06)

2 0.56 (0.09) 0.80 (0.09) 0.79 (0.08) 0.82 (0.06)

3 0.55 (0.09) 0.81 (0.08) 0.78 (0.08) 0.82 (0.06)

4 0.56 (0.09) 0.83 (0.09) 0.78 (0.08) 0.83 (0.06)

None 0.55 (0.08) 0.81 (0.10) 0.78 (0.08) 0.80 (0.06)

RF

1 0.58 (0.10) 0.82 (0.10) 0.79 (0.08) 0.84 (0.05)

2 0.57 (0.08) 0.80 (0.09) 0.80 (0.07) 0.84 (0.06)

3 0.56 (0.08) 0.83 (0.10) 0.78 (0.07) 0.84 (0.05)

4 0.57 (0.09) 0.83 (0.09) 0.78 (0.09) 0.84 (0.06)

None 0.57 (0.09) 0.85 (0.09) 0.78 (0.09) 0.83 (0.06)

SVM

1 0.43 (0.09) 0.71 (0.14) 0.68 (0.09) 0.67 (0.10)

2 0.39 (0.10) 0.67 (0.15) 0.65 (0.13) 0.61 (0.13)

3 0.37 (0.09) 0.64 (0.16) 0.64 (0.12) 0.58 (0.13)

4 0.35 (0.09) 0.60 (0.15) 0.63 (0.15) 0.53 (0.11)

None 0.53 (0.09) 0.80 (0.10) 0.75 (0.09) 0.79 (0.07)

Table 7.  Models trained on EHR data.

Model Time gap (h) F1 score Recall Specificity AUROC

LUCCK
6 0.53 (0.06) 0.73 (0.10) 0.70 (0.10) 0.73 (0.06)

12 0.57 (0.09) 0.80 (0.09) 0.79 (0.08) 0.82 (0.06)

RF
6 0.56 (0.06) 0.74 (0.09) 0.73 (0.08) 0.75 (0.06)

12 0.57 (0.08) 0.82 (0.09) 0.80 (0.07) 0.83 (0.06)

SVM
6 0.51 (0.07) 0.71 (0.11) 0.69 (0.09) 0.69 (0.07)

12 0.53 (0.09) 0.80 (0.11) 0.75 (0.09) 0.79 (0.07)
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ranks 1–3 to reduce the feature space for SVM, there is an increase in performance in the ECG + Arterial Line 
scenario; this suggests that SVM may not be a reliable model for these scenarios.

Adding EHR data to the signal features, presented in Figs. 8 and 9, further improves performance for both 
the 6- and 12-h datasets, across all three model types. For example in RF with tensor reduction rank 4, AUROC 
increased to 0.77 ± 0.06, ( p < 0.01 ) in the 6-hour prediction range.

We included results from models trained on EHR data only as a comparison in Table 7, which shows that 
EHR data on its own is very informative. RF, SVM, and LUCCK models had an average AUROC of greater than 
0.6 across all models. The purpose of this study, however, is to observe the performance of models informed by 
physiological signals.

While the results of models trained on tensor-reduced signal features show consistent mean AUROC ≥ 0.65 
for both LUCCK and RF, it is noted that these experiments were trained on data from only one hospital, the 
availability of signals led to a small sample pool, and the datasets used do not feature strong racial and ethnic 
diversity. To ensure the reproducibility and generalizability of these results, it will be necessary to perform similar 
experiments on a larger and more diverse dataset in future iterations.

Conclusion
In this study, predictions of increase in qSOFA score were created using tensor-reduced signal features and EHR 
data. It is possible to make a prediction of increase in qSOFA score using ECG data alone (for RF, AUROC 0.67 
± 0.06; for LUCCK, 0.65 ± 0.07), and results can be improved if tensor-reduced arterial line features are added 
(for RF, AUROC 0.71 ± 0.07; for LUCCK, 0.71 ± 0.07), but results are mixed when signal features are directly 
added without tensor reduction (for RF, AUROC 0.69 ± 0.07; for LUCCK, 0.69 ± 0.07). This may be because 
the models are overwhelmed with information, whereas tensor reduction improves performance because only 
pertinent information is given and noise is removed.

The previous experiments simulate the scenario when EHR data are completely unavailable. When EHR data 
are available and CP-ALS is used to reduce the feature space of the signal data, results can be further improved 
(for RF, AUROC 0.77 ± 0.06; for LUCCK, 0.73 ± 0.07). This indicates that ECG signal features, Arterial Line 
signal features, and EHR data features can all contribute to sepsis prognosis.

That said, we wish to draw attention to the first scenario, with signals information alone used for model 
training. The advantage of a signal features-based model is that predictions can be made in the ICU on a 
continuous basis in real-time; this model would not be limited by the wait times or availability of EHR data 
variables. From a clinical standpoint, further developing an ECG-only model would be advantageous as, (1) 
it is minimally invasive compared to an arterial line, and (2) it is possible to monitor ECG remotely outside 
the hospital. Devices such as Holter monitors and Zio patches could be used so that a patient with initially low 
qSOFA could be monitored at home, with a 6-h window to predict an increased risk for poor outcomes. Six hours 
would be adequate time for warning and arrival to the emergency department to seek appropriate treatment. 
Although at-home monitoring is more likely to be affected by movement than an in-hospital setting, Holter 
monitors are the current gold standard compared to other wearable technologies, which are more susceptible 
to motion  artifacts50,51.

We stress that, while it may not achieve F1 or AUROC scores as high as the model including EHR data, our 
signal features-only model offers an advantage in that it is not prone to issues such as availability or inaccuracies 
of EHR data. Furthermore, it is continuously collected allowing for real-time evaluation and assessment. For 
future work, we recommend (1) the combination of EHR, tensor-reduced ECG, and tensor-reduced arterial line 
for use in the hospital or ICU and (2) tensor-reduced ECG only for use in home monitoring. Additionally, we can 
further study the use of interpretable deep learning  models52, which can be coupled with tensor decomposition 
for feature reduction.

Data availability
Data from the electronic health records and physiological signals belong to the University of Michigan, and 
cannot be publicly distributed due to reasons of patient privacy. Data are located in controlled access storage 
at the University of Michigan. Access to patient-level data requires an agreement with University of Michigan. 
Any requests regarding data for this study can be sent to Drew Bennett (andbenne@umich.edu) of University 
of Michigan Innovation Partnerships and the corresponding author.

Code availability
The underlying code for this study is available on GitHub and can be accessed via this link: https:// github. com/ 
kayva nlabs/ public- tensor- bigda ta- qsofa. Our repository does not provide libraries created by others as to not 
violate their licenses. Additionally, the source code of LUCCK and Taut String methods cannot be shared due to 
proprietary reasons, but standalone Matlab executables are made available in the repository.
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