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Mixed T‑domain and TF‑domain 
Magnitude and Phase 
representations for GAN‑based 
speech enhancement
Lin Xin *, Zhang Yang  & Wang Shiyuan 

Deep learning has made significant advancements in speech enhancement, which plays a crucial 
role in improving the quality of speech signals in noisy conditions. In this paper, we propose a new 
approach called M‑DGAN, which introduces a time (T)‑domain encoder‑decoder structure with rich 
channel representations into the time‑frequency (TF)‑domain generator framework, resulting in a new 
generator structure with mixed magnitude and phase representations in the T and TF‑domains. The 
proposed mixed T‑domain and TF‑domain generator, incorporating the cascaded reworked conformer 
(CRC) structure, exhibits improved modeling capability and adaptability. Test results on the Voice Bank 
+ DEMAND public dataset show that our method achieves the highest score with PSEQ = 3.52 and 
performs well on all the remaining metrics when compared to the current state‑of‑the‑art methods. 
In addition, tests on the NISQA_TEST_LIVETALK real dataset of the NISQA Corpus show the breadth 
and robustness of our model on speech enhancement tasks.

Speech enhancement is a fundamental research area within the field of speech signal processing. Its primary 
objective is to enhance the quality and intelligibility of speech signals, particularly in the presence of background 
noise or other adverse  conditions1. It is widely used in areas such as communication  systems2, hearing  aids3 and 
speech recognition  systems4. The rapid development of deep learning techniques has driven the evolution of 
speech enhancement methods from the three key directions: Time (T)  domain5–8, Frequency (F)  domain9,10, 
and Time-Frequency (TF)  domain11–13.

As a representative of traditional T-domain methods, Kalman  filtering14 reduces noise effects by directly 
manipulating the time-domain signal. However, it suffers from performance degeneration in the face of non-
stationary noise and transient signal  variations15. With the rise of deep learning, the neural network structures 
such as self-encoders16 and long-short-term memory network (LSTM)7 have become a hot spot in the research 
of T-domain methods. Among them, speech enhancement generative adversarial network (SEGAN)8, is an 
innovative T-domain speech enhancement method by introducing a generative adversarial network (GAN) for 
the first time. Through adversarial training, SEGAN is capable of processing raw audio rapidly in an end-to-end 
 manner8, without the need for manual feature extraction.

Although these deep learning methods improve the ability of T-domain models for modelling complex signal 
variations, they still suffer from insufficient robustness against noise in the presence of complex nonlinear noise. 
In addition, since T-domain methods focus more on T-domain variations, they cannot capture the spectral 
information comprehensively  enough12, potentially leading to information loss.

F-domain methods have shown the superiorities in noise reduction of speech signal, e.g., Wiener  filtering17. 
Especially excelling in the handling of complex  noise9, F-domain methods have achieved some success in the 
improvement of performance and robustness. However, F-domain methods face the issue of computational 
complexity when dealing with large-scale  data18. In addition, the frequency domain deep learning methods 
under complex conditions also have the issue of  robustness10.

In contrast to T-domain and F-domain methods, TF-domain methods focus on the analysis and optimization 
of speech signals and noise in the frequency domain. Traditional methods such as short-time Fourier transform 
(STFT) and spectral  subtraction19 suppress noise using the manipulation of spectral information. However, 
these methods cannot perform well in dealing with nonlinear noise and time-varying signals. Deep learning 
methods in the TF-domain are categorized into the magnitude-domain and complex-domain methods. The 
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magnitude-domain methods directly regress the magnitude spectrum of clean speech, reconstruct the phase 
of noisy speech and enhance the T-domain signal of the magnitude spectrum by inverse short-time Fourier 
transform (iSTFT)20. However, the magnitude-domain method does not consider the speech phase information. 
And it has been demonstrated that the phase information plays an important role in enhancing speech for better 
speech  quality21. Several studies point out that although the complex-domain method considers both amplitude 
and phase information, its structure implementation is still challenging due to problems such as the randomness 
of the phase  component22 and the difficulty in estimating the complex mask  value6.

With the advancement of attentional mechanisms, numerous  studies23,24 have skillfully integrated them into 
various tasks of speech processing. The incorporation of the Conformer model in TF-domain deep learning 
 methods24, has significantly contributed to the advancement of spectral information analysis and research. This 
model has further enhanced our understanding of spectral data by incorporating powerful techniques from deep 
learning. The Conformer model integrates a convolutional neural network (CNN) and self-attention  mechanism25 
to effectively capture long-range dependencies and spectral features in TF-domain speech enhancement  tasks24. 
This combination leads to significant performance improvements in analyzing and enhancing speech signals 
in the TF-domain. In addition,  MetricGAN26, as a generative adversarial network-based speech enhancement 
model in the TF-domain, introduces an innovative approach by incorporating evaluation metrics as supervi-
sion during the training process. This enables MetricGAN to optimize speech quality and intelligibility metrics 
more directly, leading to the generation of speech that is more compatible with human hearing. Although these 
deep learning methods in the TF-domain have strong modeling capabilities in the field of speech enhancement, 
they still suffer from problems such as loss of  information27 when compared to deep learning methods in the 
T-domain, especially when dealing with short-duration noise or transient signal changes. It is worth noting that 
Zezario et al.28 proposed a deep denoising autoencoder structure as a post-filter to compensate for the effects of 
already enhanced speech, and the method did further enhance speech. However, the Zezario et al. study did not 
show strong enhancement advantages over the many deep learning speech enhancement models.

Inspired by the aforementioned studies, this paper proposes a cascaded reworked conformer (CRC) based 
GAN speech enhancement structure with magnitude and phase representations in mixed T-domain and TF-
domain, named M-DGAN. M-DGAN employs a generative adversarial network for speech enhancement, intro-
duces a T-domain encoder-decoder structure with rich channel representations into the TF-domain two-way 
speech enhancement structure, and generates enhanced speech by mixing the outputs of the two in both mag-
nitude and phase to further improve the modeling capability. This innovative generator structure is expected to 
restore the T-domain characteristics of the original signal more comprehensively and accurately by estimating 
the T-domain residuals of the speech signal accurately. Meanwhile, we also introduce the cascaded reworked 
conformer structure as an improved TF-domain generator component with more powerful modeling capabili-
ties and adaptability. We employ a metric discriminator that introduces evaluation metric into the loss function 
of the discriminator to help the generator produce speech that is more in line with human listener perception.

Specifically, there are four areas of research in this paper. First, the generator of M-DGAN adopts a T-domain 
encoder-decoder structure with rich channel representations, which is mainly used to estimate the residual noisy 
data that is ignored in the TF-domain, and a TF-domain two-way speech enhancement structure to realize speech 
enhancement by combining and reintegrating the two paths in amplitude and phase. Secondly, we introduce the 
CRC module with optimized parameter tuning into the two-way speech enhancement structure in the TF-domain 
to further complement the captured speech features in the TF-domain in both time and frequency dimensions, 
which further achieves the effect of speech enhancement. Then, we test the proposed M-DGAN in this paper on 
the Voice Bank + DEMAND public  dataset29. The results show that our model outperforms current T-domain 
and TF-domain SOTA methods. Finally, we also test the actual processing effect of the M-DGAN proposed in 
this paper on the  NISQA_TEST_LIVETALK30 dataset of the NISQA  Corpus30, and the test results show that 
our model still has good performance even in the complex and changeable real noise environment, which sug-
gests that our model can be applied to a wide range of real-life scenarios, for example, in the fields of call speech 
enhancement, hearing aids, and speech recognition.

Methods
Our M-DGAN is based on the GAN, where the generator and discriminator will be trained alternately during the 
training process. The generator is used to generate enhanced speech samples and update the model parameters 
of the generator through a series of loss functions to improve the quality of the generated enhanced speech. The 
discriminator tries to accurately distinguish between the enhanced speech samples generated by the generator 
and the clean speech samples, and uses the discriminator loss function to continuously optimize and improve the 
performance of the discriminator, in order to assist the generator in generating enhanced speech that is closer 
to clean speech. In the testing phase, the trained generator receives the input noisy speech samples to generate 
the enhanced speech samples, and the discriminator does not work. In this section, we introduce M-DGAN in 
detail. It includes the generator of amplitude and phase representation from mixed T and TF domains, the metric 
discriminator, and the loss function of the model.

Generator structure
The detailed generator structure of M-DGAN is shown in Fig. 1. The M-DGAN generator consists of TF-domain 
two-way speech enhancement structure and T-domain residual noise estimation encoder-decoder structure. 
The M-DGAN generator can enhance the input speech effectively by using the speech amplitude and phase 
representation mixed with T-domain and TF-domain.
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TF‑domain two‑way speech enhancement structure
As shown in Fig. 1, our TF-domain two-way speech enhancement structure consists of an encoder-decoder based 
on convolution block composition and a cascaded reworked conformer structure. Before the noisy speech signal 
X ∈ R

B×L×1 is input into the TF-domain two-way speech enhancement structure, it needs to be converted into 
a time-spectrogram X ′ ∈ R

B×T×F×2 by the short-time Fourier transform (STFT)31, where B denotes the batch 
size of the TF-domain two-way speech enhancement structure and the T-domain residual noise estimation 
encoder-decoder structure, L denotes the number of sample points of the input noisy speech, T stands for the 
time dimension, F stands for the frequency dimension, and 2 denotes the real component and the imaginary 
component of the complex value of X produced by the STFT. In our training, we take B = 5 and L = 32000 . 
Given that the power-law compression of the magnitude equalizes the importance of quieter sounds relative to 
loud ones, which is more in line with human perception of  sound32. Therefore, for X ′ ∈ R

B×T×F×2 , it is recom-
mended to undergo the power-law compression to obtain the compressed spectrogram Xo , i.e.,

where Xm , Xr , Xi , and ϕ represent the magnitude, the real component, the imaginary component Xi , and phase 
of the compressed spectrogram, respectively; k represents the compression index, and according to Braun et al.33, 
the commonly used value of the compression index k = 0.3 is set. Finally, the imaginary and real components 
Xi , Xr and the magnitude Xm are connected as input features X ′′ ∈ R

B×T×F×3 to the encoder.
The encoder of the TF-domain two-way speech enhancement structure consists of 2 convolution blocks and 

4 dilated convolution blocks. The convolution block consists of 2D down convolution, instance  normalization34, 
and a parameter rectified linear unit (PReLU)35. The dilated convolution block consists of dilated  convolution36, 
instance normalization, and PReLU. The dilation factors of the 4 dilated convolution blocks in the encoder and 
decoder are {1, 2, 4, 8} . In the encoder, the first 2D down convolution is used to extract deeper speech feature 
information. The middle 4 dilated convolution are used to expand the receptive field of the redspeech feature 
map. Their main purpose is to aggregate the features within the speech feature map output obtained from the 
first convolution block. The final convolution block reduces the frequency dimension to F ′ = F

2
 , which helps 

to reduce the overall complexity of the model. This reduction in frequency dimension can also lead to a smaller 
model size and faster inference speed.

The decoder consists of 2 decoder blocks including a magnitude mask estimation decoder block and a com-
plex estimation decoder block. The magnitude mask estimation decoder block consists of 4 dilated convolution 
blocks and 2 convolution blocks. The 4 dilated convolution blocks as well as the first convolution block are similar 
to the ones in the encoder, however the second convolution block consists of only 2D up convolution and PReLU. 
The magnitude mask estimation decoder block will output a multiplicative mask of the magnitude, which will 
be multiplied by the input magnitude of the encoder Xm to predict the enhanced speech magnitude Ẑ′

m in the 
TF-domain. The complex estimation decoder block has a similar structure to the magnitude mask estimation 
decoder block, but contains only a 2D up convolution in the second convolution block. The first convolution 
block of both decoder blocks performs up-sampling of the frequency dimension to restore it back to its original 
size of F. The complex estimation decoder block is used to predict the real and imaginary components, and its 
output is Ẑ′

r + jẐ′
i.

(1)Xo =
∣

∣X ′
∣

∣

k
ejϕ = Xme

jϕ = Xr + jXi

Figure 1.  Generator structure of M-DGAN. The M-DGAN generator consists of T-domain residual noise 
estimation encoder-decoder structure and TF-domain two-way speech enhancement structure. In the 
TF-domain two-way speech enhancement structure, a cascaded reworked conformer structure is introduced to 
enhance model performance.
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The final decoder outputs Ẑ′
m and Ẑ′

r + jẐ′
i will be fused with the output of the T-domain residual noise 

estimation encoder-decoder structure to obtain the final enhanced speech signal spectrogram.

Cascaded reworked conformer (CRC)
The standard  Conformer24 was designed by Gulati et al, based on Macaron-Net37 and contains two Feed Forward 
module (FFN) sandwiching the Multi-Headed Self-Attention module (MHSA) and the Convolution module, 
which is similar to the sandwich structure. The study conducted by Gulati et al.24 demonstrated that the standard 
Conformer model achieved excellent results in speech enhancement. By combining the strengths of Transformer 
and CNN networks, the standard Conformer effectively captures content-based global interactions while also 
leveraging local features of the input  information24. This hybrid approach enables the Conformer model to excel 
in various tasks by effectively modeling long-range dependencies and local patterns simultaneously. In this paper, 
we perform the following set of reworking to the standard Conformer in the expectation of further improving 
the speech enhancement performance of the structure.

• Modify layer normalization (LN) to basic normalization (BasicNorm)38 to address the issue of the mechanism 
of length removal by resistant LN.

• Change swish to  doubleswish38 to improve performance and reduce memory in training.
• Introduce  ActivationBalancer38 to adjust the activation value range to avoid the issue of abnormal activation 

value.

Finally we introduce learnable parameter scales in FFN, MHSA, and Convolution to form scaled_FFN, scaled_
MHSA, and scaled_Conv to weigh the contribution of modules.

After parameter tuning, the new reworked conformer structure used in this paper is formed. We then join 
the two reworked conformers together by shaping block to form cascaded reworked conformer (CRC). We use 
a total of four CRC in this paper M-DGAN, as shown in Fig. 2, which shows the detailed structure of the CRC.

Every CRC consists of a shaping block, a time convolutional enhancement (CRC-T), and a frequency con-
volutional enhancement (CRC-F), where both the CRC-T and CRC-F modules are composed of scaled_FFN, 
scaled_MHSA, and scaled_Conv. First, the feature map S ∈ R

B×T×F ′×H needs to be reshaped into S′ ∈ R
BF ′×T×H 

before it is input into CRC-T for extracting the time dependency, where H denotes the number of feature channels 
after the expansion of the TF-domain speech enhancement module encoder. Here, H = 64 is chosen. In CRC-T, 
input S′ ∈ R

BF ′×T×H is processed to output the feature map S′′ ∈ R
BT×F ′×H . S′′ ∈ R

BT×F ′×H will be passed into 
CRC-F for extracting the frequency dependence. S′′ ∈ R

BT×F ′×H is passed through CRC-F to achieve the final 
output Sfinal ∈ R

B×T×F ′×H.
In order to show the effectiveness for the improved CRC structure, we perform ablation experiments to verify 

it in the Results and Discussion of this paper. Based on the model M-DGAN proposed in this paper, we replace 
the CRC structure in the generator with a cascade structure composed of unimproved standard  conformer24 
structures, and name it SM-GAN. All other settings remain unchanged, and we compare the speech enhancement 
performances of SM-DGAN and M-DGAN. In addition, we performed ablation experiments on the CRC-T and 
CRC-F setups. And the experimental results results all indicate that that the CRC structure is effective.

T‑domain residual noise estimation encoder‑decoder structure
Although the processing of the TF-domain speech enhancement structure has been able to predict cleaner 
enhanced speech from noisy speech. However, considering the limitations of the TF domain speech enhancement 
structure, such as inaccurate estimation of the complex-valued  masks6, there is still some noise in the generated 
enhanced speech, which is difficult to eliminate completely. Therefore, as shown in Fig. 1, we propose a T-domain 
residual noise estimation encoder-decoder structure with rich channel representations for processing the residual 
noise of the TF-domain speech enhancement module, which is used to further optimize the quality of the gener-
ated speech and enhance the speech enhancement performance of the model. And the T-domain structure has 
the advantages of low training complexity and simpler structure compared to the TF-domain. Furthermore, we 
note that  ResConv6 block can efficiently represent multiscale features at a finer level and has fewer parameters. 

Figure 2.  Cascaded reworked Conformer architecture. Every CRC consists of a shaping block, a time 
convolutional enhancement (CRC-T), and a frequency convolutional enhancement (CRC-F). Both the CRC-T 
and CRC-F modules are composed of scaled_FFN, scaled_MHSA, and scaled_Conv.
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Therefore, to further enhance the effectiveness of T-domain residual noise estimation encoder-decoder structure, 
we add ResConv block to the structure.

As shown in Fig. 1, the T-domain residual noise estimation encoder-decoder structure consists of two 1D 
convolution blocks, an encoder and decoder connected by a linear transformation, a mask  gate6, and the output 
of the encoder layer is residually connected to the input of the corresponding decoder layer. Both encoder and 
decoder contain 4 encoder and decoder layers, respectively. Both the encoder and decoder layer consist of a 
convolutional layer, a batch normalization (BN)39 and a  ResConv6 block. In the M-DGAN of this paper, the 
kernel size of the convolutional layer in T-domain residual noise estimation encoder or decoder layers is set to 
8 and the stride is set to 4.

In the T-domain residual noise estimation encoder-decoder structure, the noise-laden speech X ∈ R
B×L×1 

needs to be downsampled first by a 1D convolution block to obtain X ′′′ ∈ R
B×L×N , where N represents the num-

ber of channels. In M-DGAN, we set N = 60 . Then it goes into the encoder to extract the deep residual noise 
features that are not removed by the TF-domain speech enhancement module and goes through the decoder to 
recover these features. Finally the T-domain mask is output by the mask gate. The predicted output V ∈ R

B×L×N 
is obtained by multiplying the T-domain mask with the output of the first 1D convolution block by element-
wise multiplication. V ∈ R

B×L×N is upsampled by the second 1D convolution block to obtain the residual noise 
data Vo ∈ R

B×L×1 , and Vo ∈ R
B×L×1 is therefore passed through the STFT to obtain the number of complexes 

V̂r + jV̂i and the residual noise amplitude of V̂m.
Then, as shown in equations (2) and (3), we subtract the TF-domain amplitude decoder output Ẑ′

m from 
the T-domain residual noise amplitude V̂m and combine it with the original noisy speech phase ϕ to obtain an 
amplitude-enhanced complex speech spectrum (Zr ,Zi) , i.e,

Finally as shown in equations (5) and (6), (Zr ,Zi) are summed with the output of the complex estimation decoder 
in the TF-domain Ẑ′

r + jẐ′
i , and the unit complex (cos(θ), sin(θ)) of the residual noise in the T-domain is sub-

tracted to compensate for the phases that cannot be compensated in the TF-domain, yielding the final complex 
speech spectrogram Z ∈ R

B×T×F×2 , where 2 denotes the two components of complex values (Ẑr , Ẑi) , i.e.,

where θ denotes the residual noise phase. The inverse power-law compression is then performed on the final 
spectrogram Z ∈ R

B×T×F×2 and the inverse short-time Fourier transform (iSTFT) is applied to obtain the 
T-domain signal z.

In order to prove the effectiveness of our proposed T-domain residual noise estimation structure, we perform 
ablation experiments to validate it in the Results and Discussion of this paper. The results of tests fully prove the 
effectiveness of the proposed T-domain residual noise estimation structure.

Metric discriminator
In GAN-based speech enhancement  tasks8, the objective function is not linked to the evaluation metrics, which 
leads to low evaluation scores even if this function is well optimized. However, some commonly used evaluation 
metrics, such as the perceptual evaluation of speech quality (PESQ)40 and the short-time objective intelligibility 
(STOI)41, are usually non-trivial and cannot be directly used as loss functions. A method for associating the 
discriminator with the evaluation metric PESQ is proposed in  MetricGAN26, where the evaluation metric is used 
as part of the loss function to optimize the generator. In this paper, we take the same approach as MetricGAN 
and use normalized PESQ scores as labels for training.

As shown in Fig. 3, our metric discriminator consists of 4 convolution blocks, global average pooling, 2 linear 
layers, and a sigmoid activation. Among them, each of the four convolution blocks has a different number of 
channels. In our experiments, we set the number of channels of the convolution block to {16, 32, 64, 128} . Each 
convolution block consists of a convolutional layer, instance normalization, and a PReLU activation. In training 
the discriminator, training is performed for two magnitude spectrum inputs from the same clean speech, and 
for inputs consisting of a clean magnitude spectrum and an enhanced magnitude spectrum. For the inputs of the 
same clean speech magnitude spectrum, the discriminator is trained so that its enhanced PESQ score is close to 
the labeled value 1. For the inputs of clean and enhanced magnitude spectra, the metric discriminator is trained 
so that its estimated PESQ score is constantly close to the actual one. Thus in constant training, the augmented 
speech generated by the generator can be constantly close to the clean speech, and the PESQ predicted by the 
metric discriminator can be constantly close to 1.

Loss function in the entire model
The generator’s loss function contains 4 parts, shown as follows.

(2)Zr = (Ẑ′
m − V̂m) cos(ϕ)

(3)Zi = (Ẑ′
m − V̂m) sin(ϕ)

(4)V̂me
jθ = V̂r + jV̂i

(5)Ẑr = Zr + Ẑ′
r − cos(θ)

(6)Ẑi = Zi + Ẑ′
i − sin(θ)
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where α1 , α2 , α3 , and α4 represent the weighting coefficients of the four losses respectively. Here, we take α1 as 
0.4, α2 as 0.6, α3 as 0.9, and α4 as 0.07. lossmag represents the magnitude loss; lossRI represents the compound loss; 
lossGAN represents the antagonistic loss, i.e.,

where D denotes the discriminator. The loss of the discriminator is denoted as:

where QPESQ denotes the normalized PESQ score located in the interval of [0, 1] . It has been shown that the extra 
time loss of lossTime improves speech enhancement quality, we introduced this loss as:

Experimental settings
Dataset and evaluation metrics
In order to compare the proposed model M-DGAN with other speech enhancement model, we first test our 
module on the Voice Bank + DEMAND public  dataset29. The training set consists of 28 speakers with 11,572 
utterance from 14 men and 14 women mixed with 10 noise data with 4 signal-to-noise ratios (SNRs) of 0dB, 5dB, 
10dB, and 15dB. The test set consists of 824 male and female speeches and two speakers mixed with five types of 
noise at four SNRs of 17.5dB, 12.5dB, 7.5dB, and 2.5dB. Since the  PESQ40 ranging form -0.5 to 4.5 is a commonly 
used index to evaluate enhanced speech, in this paper, we take PESQ score as the most important performance 
evaluation index, and also use the segmental signal-to-noise ratio (SSNR) values ranging from 0 to infinity, the 
short-time objective intelligibility (STOI)41 values ranging from 0-1, mean opinion score (MOS) prediction of 
speech distortion (CSIG)42 values ranging from 0-1, MOS prediction of the intrusiveness of background noise 
(CBAK)42 values ranging from 0-1, and MOS prediction of overall effect (COVL)42 values ranging from 0-1 to 
comprehensively evaluate the performance of the model. For these six indexes, the higher the value, the better 
the model performance, vice versa. All data are resamped from 48kHz to 16kHz for the experiment.

In addition, to further validate the effectiveness and extensiveness of M-DGAN, we test M-DGAN without 
prior training on the  NISQA_TEST_LIVETALK30 dataset of the NISQA  Corpus30. The NISQA Corpus includes 
more than 14,000 speech samples with simulated (e.g. codec, packet-loss, background noise) and live (e.g. mobile 
phone, Zoom, Skype, WhatsApp) conditions. Each file is labeled with subjective ratings for overall quality and 
quality dimensions noise, coloration, discontinuity, and loudness. NISQA_TEST_LIVETALK is a key test set for 
the NISQA Corpus, which contains recordings of real phone calls and VoIP calls. The NISQA  model30 is a deep 
learning model for speech quality prediction, and it can be used to predict the quality of the voice samples sent 
over the communication system, such as a phone call or a video call. The output of the NISQA model is the  nisq30 
metric, which has five dimensions that are used together to evaluate speech quality. Among them, Dimension 1: 
 mos_pred30: speech quality indicator, higher means better sound quality. Dimension 2:  ngi_pred30: noise level 

(7)lossG = α1lossmag + α2lossRI + α3lossGAN + α4lossTime
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Figure 3.  Metric discrimination architecture. The metric discriminator uses the PESQ score of the input signal 
as a label to learn alternative functions for the PESQ metric, then guides updates to the generator.
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metric, higher means less noise. Dimension 3:  dis_pred30: speech coherence indicator, the higher the better the 
speech coherence. Dimension 4:  col_pred30: timbre indicator, the higher the better the sound. Dimension 5: 
 loud_pred30: loudness indicator, higher means louder volume. The  nisq30 mertic will be an important reference 
for us to evaluate the model’s effectiveness in real-world testing.

Implementation details
In the training process on the Voice Bank + DEMAND public dataset, we cut the discourse into 2 seconds each, 
with a batch size of B = 5 , but in the test set, no slicing operation is performed and the length remains variable. 
When operating in the TF domain, the Hamming window function is used for analysis, and the spectrogram 
is obtained by using 400 STFT for a total of 25ms on each frame, with an overlap of 18.75ms (75.0%). In the 
TF-domain voice enhancement module of the generator, there are 4 CRC blocks, and the number of channels 
is H = 64 . The dilation factors of the 4 dilated convolution blocks in the encoder and decoder are {1, 2, 4, 8} . 
In the T-domain residual noise estimation structure, the kernel size of the convolutional layer in encoder or 
decoder layers is set to 8 and the stride is set to 4. In the metric discriminator, the number of channels for the 
convolutional block is set to {16, 32, 64, 128} . Besides, the generator and discriminator are optimized using the 
adaptive moment estimation with decoupled weight decay (AdamW) optimizer and reduce learning rate on 
plateau (ReduceLROnPlateau) scheduler. The learning rate of the generator is set to 5× 10−4 , and the learning 
rate of the discriminator is set to 1× 10−3 . The decay factor of the generator’s scheduler is set to 0.5, and the 
cumulative number of times patience is set to 2. The decay factor of the discriminator’s scheduler is set to 0.45, 
and the cumulative number of time patience is set to 2. We train a total of 120 epochs.

Note that our real-world testing of M-DGAN on the  NISQA_TEST_LIVETALK30 dataset is done without 
any prior training on the NISQA_TEST_LIVETALK dataset. Instead, the test is conducted directly with the 
M-DGAN trained on the Voice Bank +  DEMAND29 dataset in order to use this experiment to demonstrate the 
robustness of our model.

Results and discussion
Comparison of different models
We compare the M-DGAN proposed in this paper with other state-of-the-art (SOTA) methods of different 
time periods, which include both T-domain and TF-domain methods. As shown in Table 1, the test results of 
our model M-DGAN on the public dataset Voice Bank + DEMAND are compared with five T-domain speech 
enhancement methods including standard  SEGAN8 and six TF-domain speech enhancement methods includ-
ing  MetricGAN26. Among them,  SEGAN8 is the first end-to-end GAN framework speech enhancement model. 
 DEMUCS43 is based on an encoder-decoder architecture with skip-connections.  Phasen13 contains a two-stream 
network, where amplitude stream and phase stream are dedicated to amplitude and phase prediction. And 
SN-Net44 models speech and noise simultaneously in a two-branch convolutional neural network. SEGAN, 
 SerGAN45,  MetricGAN26, MetricGAN+46,  MAMGAN5,  CMGAN12, and CGA-MGAN11 are speech enhancement 
models based on the GAN framework. And  MANNER6 , MAMGAN, CMGAN, and CGA-MGAN are speech 
enhancement models that introduce the attention mechanism.

It can be seen that our proposed model M-DGAN performs optimally on six evaluation metrics, including 
PESQ, SSNR, STOI, CSIG, CBAK, and COVL, when compared to SOTA in recent years. Among them, our 
model M-DGAN achieves a score of 3.52 on PESQ, which is an improvement of 1.36 compared to the standard 
SEGAN and 0.66 compared to MetricGAN. Compared to the optimal model CGA-MGAN11 that participates in 
the comparison, our method M-DGAN has a higher PESQ score by 0.05, and the scores on SSNR, STOI, CSIG, 
CBAK, and COVL are 0.93, 0.24, 0.12, 0.19, and 0.15 higher than CGA-MGAN on the five metrics, respectively.

Table 1.  Performance comparison on the Voice Bank + DEMAND dataset. “–” indicates not provided in the 
original article. Bolded fonts represent optimal results, and all data are retained to two decimal places. “Par.” 
indicates the number of trainable parameters.

Methods Year Domain Par. (Million) PESQ SSNR STOI(%) CSIG CBAK COVL

Noisy – – – 1.97 1.68 91.00 3.35 2.44 2.63

SEGAN8 2017 T 97.47 2.16 7.73 92.50 3.48 2.94 2.80

SerGAN45 2019 T – 2.62 – 94.00 – – –

MetricGAN26 2019 TF – 2.86 – – 3.99 3.18 3.42

PHASEN13 2020 TF – 2.99 10.08 – 4.21 3.55 3.62

DEMUCS43 2021 T 18.90 3.07 – 95.00 4.31 3.40 3.63

SN-Net44 2021 TF – 3.12 9.83 – 4.39 3.60 3.77

MetricGAN+46 2021 TF – 3.15 – 95.00 4.14 3.16 3.64

MANNER6 2022 T 24.10 3.21 – 95.00 4.53 3.65 3.91

MAMGAN5 2022 T 17.29 3.30 – 95.04 4.53 3.64 3.95

CMGAN12 2022 TF 1.83 3.41 11.10 96.00 4.63 3.94 4.12

CGA-MGAN11 2023 TF 1.14 3.47 11.09 96.00 4.56 3.86 4.06

M-DGAN 2023 TF 1.40 3.52 12.02 96.24 4.68 4.05 4.21
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In addition, although our model adopts the strategy of combining TF and T domains, the number of param-
eters of our method is only 1.40M compared to T-domain SOTA methods, which is much lower than that of 
various T-domain SOTA methods, which shows that the M-DGAN method combining T and TF domains not 
only reduces the number of parameters of the model but also improves the performance of the model compared 
to the T-domain-only method. Compared to the TF-domain SOTA methods, our method is optimal in terms of 
PESQ and other scores with relatively fewer parameters.

Effectiveness of the M‑DGAN design
As in Table 2, we perform the following ablation experiments to demonstrate the validity of each component 
selection in our design.

First we verify the validity of the CRC structure. According to the Methods section of this paper, CRC is 
able to focus on the time and frequency dimensions of the input features. Therefore, we change the CRC-T and 
CRC-F of the CRC module from sequential connection to parallel connection, and all other settings remain 
unchanged. We named the model PM-DGAN, and we compared M-DGAN with PM-DGAN. The results show 
that PM-DGAN with parallel CRC is not as good as M-DGAN for speech enhancement, and the PESQ score is 
0.08 worse compared to M-DGAN’s, and the remaining five metrics are also worse than the M-DGAN. This is 
due to the fact that parallel CRC leads to possible learning redundancy when learning features of feature blocks 
without the synergy of directly connected CRC. Then we flip the CRC-T and CRC-F positions and named the 
flipped overall model as EM-DGAN, then we train and test it. The results are shown in Table 2. It can be seen that 
the scores of EM-DGAN and M-DGAN are almost similar. In order to show the effectiveness of our CRC struc-
ture, we compare the performance of SM-DGAN, a model based on a cascaded standard  conformer24 structure, 
with M-DGAN. From Table 2, it can be seen that in terms of the scores on the six assessment metrics including 
PESQ, the SM-DGAN scores are all lower than those of the M-DGAN. The PESQ score of M-DGAN is 3.52, 
while the PESQ score of SM-DGAN is only 3.43, with a difference of 0.09. The scores of the evaluation metrics 
regarding the models also further indicate that the model utilizing the CRC structure has a better performance 
in speech enhancement than the model utilizing the standard Conformer structure. As shown in Figs. 4 and 5, 
We plot the training of the two models on the Voice Bank + DEMAND dataset and compare the results for the 
first 77 epochs in order to compare the two more clearly.

It can be seen that in the pre-training period, the generator of M-DGAN converges faster compared to the 
generator of SM-DGAN. As the number of training epochs increases, the generator loss curve of M-DGAN is 
more stable and converges to a lower value compared to SM-DGAN. As can be seen from the discriminator loss 
curve, the discriminator of M-DGAN performs more robustly in general during the training process.

It is worth noting that, the use of a single Conformer to attend over frequency and time dimension informa-
tion is theoretically possible, but it leads to an exponential growth in  complexity47. Therefore, in this paper we 
do not consider ablation experiments with a single Conformer structure.

In the second part, we validate the T-domain residual noise estimation structure. As shown in Table 2, we 
compare the results of the effectiveness of this module on the Voice Bank + DEMAND dataset. The complete 
M-DGAN is included, of which both amplitude and phase are combined with the output of the T-domain 
residual noise estimation encoder-decoder structure. TFGAN: removing the T-domain residual noise estima-
tion encoder-decoder structure. M-TFGAN: optimizing only the magnitude using the T-domain residual noise 
estimation encoder-decoder structure without considering the phase. P-TFGAN: optimizes only the phase using 
the T-domain residual noise estimation encoder-decoder structure without considering the magnitude. We also 
explored the T-domain residual noise estimation encoder-decoder structure without the  ResConv6 block to 
estimate the residual noise, and we name the model DRM-DGAN.

As shown in Table 2, the method TFGAN with the removal of the T-domain residual noise estimation 
encoder-decoder structure has a difference of 0.45 in PESQ and all other scores are lower compared to 
M-DGAN with the CRC module. In addition, we also validate the ablation together with the model that uti-
lizes the T-domain residual noise estimation encoder-decoder structure with only amplitude optimization. For 

Table 2.  Performance comparison on the Voice Bank + DEMAND dataset. M-DGAN scores are bolded, and 
all data are retained in two decimal places.

Methods PESQ SSNR STOI(%) CSIG CBAK COVL

M-DGAN 3.52 12.02 96.24 4.68 4.05 4.21

PM-DGAN 3.44 11.56 96.22 4.52 4.03 4.15

EM-DGAN 3.49 12.01 96.23 4.65 4.04 4.18

SM-DGAN 3.43 11.95 96.16 4.65 4.01 4.14

TFGAN 3.07 10.84 95.51 4.38 3.76 3.80

M-TFGAN 3.23 11.13 95.49 4.49 3.85 3.95

P-TFGAN 3.08 10.97 95.64 4.27 3.46 3.72

DRM-DGAN 3.50 11.99 96.23 4.64 4.03 4.17

RCM-DGAN 3.32 9.65 96.04 4.55 3.87 4.05

RMM-DGAN 3.25 9.58 95.89 4.46 3.84 4.02

RTM-DGAN 3.54 9.63 96.25 4.56 3.97 4.18
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M-TFGAN, it can be seen that there is an improvement of 0.16 in PESQ for the magnitude-only optimization 
compared to TFGAN with the removal of the T-domain residual noise estimation encoder-decoder structure, but 
there is still a difference of 0.29 in PESQ when compared to M-DGAN, which is optimized for both magnitude 
and phase. For P-TFGAN, the test results do not have a significant advantage over TFGAN. However, the PESQ 
is 0.15 worse compared to M-TFGAN, and other metrics also show the limitations of P-TFGAN. It shows that 
it is not enough to consider only the speech-compensated phase for the enhanced output of the TF domain. For 
DRM-DGAN, it can be seen that the scores of DRM-DGAN are very similar to those of M-DGAN, but there is 
a certain gap in speech enhancement compared to that of M-DGAN with the introduction of ResConv block, 
and there is still a drop in each score.

As shown in Fig. 6, to visualize the T-domain residual estimation noise validity, we randomly select a piece 
of test data on the Voice Bank + DEMAND test set and plot the spectrogram of the processing of this test data 
on M-DGAN.

Significant background noise exists in the entire spectral range of Fig. 6b. Figure 6c embodies the speech 
signal after the initial enhancement performed in the TF domain, and although the main frequency components 
of the speech become clearer, there is still incompletely eliminated noise in the high-frequency region and some 
of the low-frequency regions, especially in the red boxed region. Figure 6d shows the spectral characteristics of 
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this residual noise, especially in the red box-selected region. These noises are the parts that are not completely 
eliminated in Fig. 6c, and these residual noise components can be efficiently identified by the T-domain residual 
noise estimation structure. Eventually, as can be seen from Fig. 6e, the speech enhancement result after combin-
ing the information from Fig. 6c,d shows a significant reduction of high-frequency noise in Fig. 6e compared to 
Fig. 6c, and the speech signal is purer and clearer. This indicates that by eliminating the residual noise in Fig. 6d, 
our model is able to further enhance speech and achieve superior speech enhancement results.

Third, we validate the design of the TF-domain two-way speech enhancement structure. We train and test 
RCM-DGAN with the complex decoder ignored and RMM-DGAN with the magnitude mask decoder ignored, 
respectively. As shown in Table 2, both RCM-DGAN and RMM-DGAN, have a gap with the speech enhance-
ment performance of M-DGAN. And the PESQ of RCM-DGAN is reduced by 0.07 compared to RMM-DGAN. 
This suggests that phase information plays an important role in improving the quality of speech enhancement.

Fourth, we performed ablation experiments on the the extra time loss of the generator. We denote the model 
with the Time loss removed by RTM-DGAN, and we compare M-DGAN with RTM-DGAN. From the test 
results, we can see that the pesq of RTM-DGAN with Time loss removed increases 0.02 compared to M-DGAN, 
but there is some decrease in SSNR, which may be due to the fact that Time loss balances the performance of 
SSNR and PESQ.

Practical test experiments of M‑DGAN
In this section, we compare the performance of the enhanced speech with the original speech in five dimensions 
to verify the effectiveness and robustness of M-DGAN in real data. The specific results are shown by Fig. 7.

As shown in Fig. 7a, from the point of view of subjective perception, the MOS_PRED of the enhanced speech 
is significantly higher than that of the original speech, and the mean value is improved from 2.75304 to 3.10173, 
which indicates that the speech quality is significantly improved by our modeling process. As can be seen in 
Fig. 7b, the noise suppression effect is also verified. The mean value of NOI_PRED is improved from 3.48091 to 
4.08601, showing a significant reduction in the noise level, and the enhanced speech is clearer and purer. The 
enhancement of speech coherence is demonstrated in Fig. 7c, where the DIS_PRED shows a significant increase 
in the coherence of the enhanced speech, with the mean value increasing from 3.77448 to 3.92182, indicating 
that the model improves the coherence of the speech along with the enhancement. In addition, as can be seen in 
Fig. 7d, the COL_PRED shows an improvement in timbre after enhancement, with a mean increase of 0.26032. 
Figure 7e shows that the average value of LOUD_PRED improves from 2.84835 to 2.97704, which indicates that 
M-DGAN enhances speech while maintaining an appropriate loudness level. These results validate the superior 
performance of our model in speech enhancement reality tasks.

As in Fig. 8, we also randomly selected a copy of speech data from the test set and plotted its spectrum.

Figure 6.  Comparison of one randomly selected piece of speech data from the M-DGAN test set. (a) denotes 
clean speech, (b) denotes noisy speech, (c) denotes the output of the TF-domain two-way speech enhancement 
structure, (d) denotes the output of the T-domain residual noise estimation structure, and (e) denotes the final 
enhanced speech generated by mixing (c,d).

Figure 7.  Box plot of the distribution of nisq  metric30 for the real speech set before and after M-DGAN 
processing. The graph shows five dimensions from left to right, including MOS_PRED, NOI_PRED, DIS_PRED, 
COL_PRED, and LOUD_PRED.
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Comparing Fig. 8a,d, it can be seen that the model effectively reduces the noise components in the spectro-
gram, making the signal clearer. While reducing the noise, the model retains the key frequency components of 
the speech signal to ensure the intelligibility and clarity of the speech.

Conclusion
In this paper, we propose a speech-enhanced GAN structure (M-DGAN) based on a cascaded reworked con-
former structure with magnitude and phase representations in mixed T and TF domains. In our method, we 
innovatively introduce a generator structure that mixes the magnitude and phase representations of the T and 
TF domains to maximize the possibility of avoiding the drawbacks of a single T or TF domain. In addition, the 
cascaded reworked conformer structure of our method can effectively capture the long-term dependency of 
information as well as the consistency of local features in both time and frequency dimensions. Experiments show 
that our method outperforms current SOTA methods in tests on the public dataset Voice Bank + DEMAND. 
And the test results on the real NISQA dataset again show the robustness and effectiveness of our M-DGAN.

Data availibility
In order to promote open collaboration and enable fellow researchers to access, reproduce, and build upon our 
work, we have uploaded the reproducible code to GitHub. The link is provided here: https:// github. com/ 1ling 
yin/M- DGAN.
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