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Early predictive values of clinical 
assessments for ARDS mortality: 
a machine‑learning approach
Ning Ding 1,2,5, Tanmay Nath 3,5, Mahendra Damarla 4, Li Gao 1* & Paul M. Hassoun 4*

Acute respiratory distress syndrome (ARDS) is a devastating critical care syndrome with significant 
morbidity and mortality. The objective of this study was to evaluate the predictive values of dynamic 
clinical indices by developing machine-learning (ML) models for early and accurate clinical assessment 
of the disease prognosis of ARDS. We conducted a retrospective observational study by applying 
dynamic clinical data collected in the ARDSNet FACTT Trial (n = 1000) to ML-based algorithms for 
predicting mortality. In order to compare the significance of clinical features dynamically, we further 
applied the random forest (RF) model to nine selected clinical parameters acquired at baseline and 
day 3 independently. An RF model trained using clinical data collected at day 3 showed improved 
performance and prognostication efficacy (area under the curve [AUC]: 0.84, 95% CI: 0.78–0.89) 
compared to baseline with an AUC value of 0.72 (95% CI: 0.65–0.78). Mean airway pressure (MAP), 
bicarbonate, age, platelet count, albumin, heart rate, and glucose were the most significant clinical 
indicators associated with mortality at day 3. Thus, clinical features collected early (day 3) improved 
performance of integrative ML models with better prognostication for mortality. Among these, MAP 
represented the most important feature for ARDS patients’ early risk stratification.
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Acute respiratory distress syndrome (ARDS) is a devastating critical care syndrome affecting over 200,000 
patients in the U.S. each year, and an important cause of respiratory failure with significant morbidity and 
mortality1. At this time, identifying specific risk factors most associated with ARDS-related death are needed 
for early intervention in patients at risk.

In recent years, research has focused on identifying important clinical features and biomarkers, as well as 
their combined predictive capabilities for death in ARDS patients2. Among these, ventilation parameters such as 
positive end-expiratory pressure (PEEP) and plateau pressure demonstrated predictive importance for mortal-
ity in patients with ARDS3. Mean airway pressure (MAP) is a key component of the oxygenation index, which 
has also been associated with mortality in multiple studies of outcomes in both adult and pediatric respiratory 
failure4–6. Comparing to PEEP and plateau pressure, there is a paucity of research on MAP’s dynamic change 
and early prognostic importance in ARDS.

Unsupervised learning methods have been increasingly used in complex clinical syndromes such as ARDS 
to address the issue of clinical and biological heterogeneity7,8. In contrast, current supervised machine learning 
(ML) models allow analysis of a variety of collected variables and development of an ARDS-specific mortality 
prediction system. We hypothesize that ARDS is characterized by unique clinical features, and these crucial 
clinical features can be applied to ML algorithms for accurate prediction of worst outcomes. To investigate this 
hypothesis, we employed an integrative approach, which incorporates clinical data collected in the ARDSNet 
FACTT Trial9 and ML modeling for ARDS prognostication, followed by comparisons of the accuracy of different 
ML models and determining the importance of clinical features, especially the ventilation parameters. Based on 
the prognostic value of the best-performing ML model, we further determined the importance of crucial clini-
cal features in prioritizing patients for early intervene that can potentially reduce the mortality rate for ARDS.
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Methods
Patient population
We performed a ML predictive modeling using data obtained from patients enrolled in the ARDSNet FACTT 
randomized clinical trial. The design of the FACTT study has been described previously9,10. Briefly, FACTT trial 
enrolled 1,000 patients with ARDS between 2000 and 2005. The trial randomized subjects in a two-by-two facto-
rial design; one arm compared conservative versus liberal fluid management9, whereas the other arm compared 
monitoring patients with ARDS with a pulmonary artery versus central venous catheter10. Patients were followed 
for 60 days or until discharge home with unassisted breathing. The primary outcome was mortality at 60 days 
before discharge home9–11. This study was approved by the Johns Hopkins University Institutional Review Board 
and all patients gave informed consent at the time of enrollment. All procedures were followed in accordance 
with the ethical standards (details provided in Supplementary Methods).

Clinical data
When evaluating clinical conditions of ARDS, clinical data from the baseline and early stages of the disease 
(such as days 3) were frequently utilized12–14. Fewer studies, nevertheless, assessed the prognostic significance of 
information gathered beyond baseline to identify at risk patients early on for worse outcomes. In this study, we 
assessed baseline clinical characteristics and data gathered early on day 3. Clinical predictors of 60-day mortality 
were chosen from 29 parameters collected in the FACTT trial using a backward stepwise selection scheme (see 
Supplementary Methods); we also considered the importance of selected parameters as indicated by published 
studies2,11. Backward elimination approach is a well-documented logistic regression method for variable selection 
and previously has been employed for evaluating risk factors associated with prognosis of ARDS15. The 29 clinical 
parameters were in 5 major categories including (1) baseline characteristics; (2) vital signs and circulatory; (3) 
respiratory and ventilatory; (4) blood and coagulation; and (5) metabolism and renal. We also excluded the fol-
lowing clinical parameters: (1) parameters closely related to fluid strategy; and (2) parameters with data missing 
rate greater than 30% (tidal volume, bilirubin). Finally, nine predictors (age, sex, pneumonia as cause of ARDS, 
heart rate, mean airway pressure, glucose, albumin, platelet count, bicarbonate) were selected and utilized for 
the development of ML models.

Prediction model building and evaluation
The primary aim of our study was to establish a ML model for predicting 60-day mortality. As summarized in 
Fig. 1, five steps were performed including variables selection, applying analysis strategy, building ML models and 
model comparison as well as model application. First, we employed non-imputed datasets by dropping observa-
tions with missing data. We also imputed missing data using an iterative multivariate imputation technique16 
for two datasets (day 0 and day 3). Second, the entire dataset was randomly divided into 70% training and 30% 
testing for all ML classifiers. The training set was used to build the ensemble model, while the testing set was 
used to evaluate the predictive performance of the model. Third, we employed six typically used supervised ML 
classification algorithms (Random Forest [RF], XGBoost, Support vector machine [SVM], Logistic regression 
[LR], Multi-layer perceptron [MLP], and Stacking Classifier [SC] models) for classifying survivors and non-
survivors. Next, we performed a fivefold cross validation on the training dataset on each model to evaluate their 
cross-validation performance. Finally, the different models were evaluated and compared using area under the 
receiver operating characteristic (ROC) curve (AUC) and confusion matrix (Supplementary figure S1), which 
can be summarized using precision, sensitivity and F1 score (which is a weighted average of precision and sen-
sitivity). We plotted the calibration curve of the models for predicting survival utilizing the sigmoid regressor 
based on Platt’s logistic model. See the Supplementary Methods for further details.

Our analysis was conducted in python version 3.6 (https://​www.​python.​org) using the library Scikit Learn17.

Statistical analyses
Continuous variables were expressed as mean ± SE or median (interquartile range), as appropriate, while cat-
egorical variables were presented as numbers (percentage). Qualitative and quantitative differences between 
subgroups were analyzed by chi-square test for categorical parameters and Student’s t test or Mann–Whitney’s 
test for continuous parameters, as appropriate. Missing values were imputed using multivariate imputation. A 
general linear model with repeated measures was utilized to evaluate the trend over time of MAP at baseline, 
days 1 through 3. The group-by-time interaction term was tested first. If significant, between-group (survivor 
and non-survivor) differences at each time point were examined. Then within-group changes over time (trend) 
were tested in both survivor and non-survivor groups independently, with Bonferroni correction applied. Two-
tailed P values less than 0.05 were considered statistically significant. Statistical analyses were performed with 
SPSS statistical software (version 22, IBM® SPSS Inc., Chicago, IL, USA).

Ethics approval
This study was approved by the Johns Hopkins University Institutional Review Board (approval number: 
NA_00034898) and all procedures were followed in accordance with the ethical standards.

Results
Baseline patient characteristics comparison
Table 1 shows baseline patient characteristics between survivors and non-survivors at day 60. After excluding 
observations with missing data, there were 700 patients (survivors = 505, non-survivors = 195) at day 0 and 593 
patients (survivors = 453, non-survivors = 140) at day 3 for non-imputed datasets. The non-survivors were older 
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and had high percentage of pneumonia and sepsis but lower percentage of trauma compared to survivors. The 
non-survivors had significantly higher respiratory rate, FiO2, serum potassium, BUN and creatinine, lower body 
temperature, mean arterial pressure, serum albumin, bicarbonate and arterial pH at either day 0 or day 3. At day 
3, the non-survivors had higher PEEP, peak pressure, plateau pressure, MAP, chloride and blood glucose but 
lower sodium, hemoglobin and platelet count compared to survivors.

Variable selection
Multivariate binary logistic regression (backward elimination) was applied to explore the risk factors for 60-day 
mortality. Twenty-nine variables were entered into the analysis. Supplementary table S1 showed nine predictors 
(age, sex, pneumonia, heart rate, MAP, glucose, albumin, platelet and bicarbonate) were independently associated 
with 60-day mortality, which were then included in the development of ML models. Of note, we randomly split 
the non-imputed datasets from day 0 and day 3 into training and testing groups and compared patient character-
istics, there were no significant differences for all nine parameters (Supplementary table S2). The other two well 
established logistic regression methods for variable selection (Enter and Forward selection) yielded comparable 
results; however, the backward elimination method included albumin, for which there was previously research 
indicating a possible link to ARDS mortality. Similar to findings reported in prior research18–21, we found that 
patients with ARDS were more likely to die due to increased heart rate, blood glucose, and reduced platelet 
counts and albumin. Moreover, we observed that acid–base balance was a significant predictor of death, which 

Figure 1.   Overview of the analysis plan.
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Table 1.   Patient characteristics at baseline (day 0) and day 3 comparing survivors to non-survivors at 
day 60. Independent-Samples T test was used for continuous variables normally distributed (presented as 
mean ± standard error), and Mann–Whitney test was used for non-normally distributed data (presented 
as median (interquartile range)). Chi-square test was used for categorical variables (presented as n (%)). 
Significant P values (P < 0.05) were italicized. ARDS acute respiratory distress syndrome, APACHE Acute 
Physiologic Assessment and Chronic Health Evaluation, PaO2 partial pressure of oxygen, PaCO2 partial 
pressure of carbon dioxide, P/F PaO2/FiO2, SpO2 pulse oxygen saturation, PEEP positive end expiratory 
pressure, peak peak inspiratory pressure, BUN blood urea nitrogen. §  Parameters selected for machine learning.

Clinical parameters

Day 0 (n = 700) Day 3 (n = 593)

Survivor (n = 505) Non-survivor (n = 195) P value Survivor (n = 453) Non-survivor (n = 140) P value

Age (yr) § 47.51 ± 0.66 55.86 ± 1.28  < 0.001 47.41 ± 0.7 55.8 ± 1.55  < 0.001

Sex: Male, n (%) § 256 (50.7) 111 (56.9) 0.139 229 (50.6) 78 (55.7) 0.285

Cause of ARDS, n (%)

 Pneumonia § 317 (62.8) 141 (72.3) 0.017 284 (62.7) 103 (73.6) 0.018

 Sepsis 200 (39.6) 99 (50.8) 0.007 178 (39.3) 69 (49.3) 0.036

 Aspiration 106 (21) 38 (19.5) 0.659 98 (21.6) 30 (21.4) 0.959

 Trauma 47 (9.3) 7 (3.6) 0.011 44 (9.7) 5 (3.6) 0.022

 Multiple transfusion 13 (2.6) 7 (3.6) 0.470 13 (2.9) 6 (4.3) 0.406

 Other 48 (9.5) 12 (6.2) 0.156 41 (9.1) 9 (6.4) 0.329

Fluid strategy, n (%) 0.561 0.487

 Liberal 244 (48.3) 99 (50.8) 221 (48.8) 73 (52.1)

 Conservative 261 (51.7) 96 (49.2) 232 (51.2) 67 (47.9)

Vital signs and circulatory

 Respiratory rate (bpm) 24.72 ± 0.34 27.34 ± 0.59  < 0.001 26.58 ± 0.39 29.8 ± 0.65  < 0.001

 Heart rate (bpm) § 100.44 ± 0.93 104.63 ± 1.57 0.019 94.25 ± 0.94 97.34 ± 1.82 0.116

 Body temperature (℃) 37.58 ± 0.04 37.3 ± 0.09 0.002 37.41 ± 0.04 37.22 ± 0.08 0.028

 Mean arterial pressure (mm 
Hg) 77.45 ± 0.62 74.14 ± 0.97 0.005 83.88 ± 0.72 78.08 ± 1.2  < 0.001

Respiratory

 FiO2 0.63 ± 0.01 0.67 ± 0.02 0.013 0.49 ± 0.01 0.59 ± 0.02  < 0.001

 PaO2 (mm Hg) 89.86 ± 1.88 89.83 ± 3.19 0.093 82.86 ± 1.61 82.88 ± 2.53 0.995

 PaCO2 (mm Hg) 40.31 ± 0.44 39.46 ± 0.85 0.338 44.47 ± 0.62 44.38 ± 1.04 0.942

 P/F ratio (mm Hg) 153.34 ± 3.15 148.06 ± 5.73 0.397 183.24 ± 4.38 162.98 ± 8.59 0.024

 SpO2 94.65 ± 0.24 94.1 ± 0.34 0.225 94.53 ± 0.18 93.58 ± 0.52 0.091

Mechanical ventilation

 PEEP (cm H2O) 9.38 ± 0.18 9.86 ± 0.3 0.163 7.56 ± 0.17 9.95 ± 0.37  < 0.001

 Peak (cm H2O) 32.17 ± 0.41 33.06 ± 0.74 0.272 29.94 ± 0.51 32.66 ± 0.89 0.006

 Plateau pressure (cm H2O) 25.9 ± 0.37 26.77 ± 0.66 0.236 23.31 ± 0.37 26.65 ± 0.86  < 0.001

 Mean airway pressure (cm 
H2O) § 15.23 ± 0.26 16.62 ± 0.48 0.007 13.21 ± 0.26 17.08 ± 0.84  < 0.001

Blood and coagulation

 Potassium (mmol/L) 3.96 ± 0.03 4.13 ± 0.05 0.005 3.81 ± 0.03 3.97 ± 0.05 0.006

 Sodium (mmol/L) 138.91 ± 0.23 138.81 ± 0.43 0.828 141.86 ± 0.27 140.45 ± 0.6 0.032

 Chlorine (mmol/L) 107.65 ± 0.3 108.12 ± 0.52 0.408 105.94 ± 0.36 107.8 ± 0.67 0.012

 Blood glucose (mg/dl) § 136.09 ± 2.47 145.95 ± 7.27 0.200 136.91 ± 2.45 157.42 ± 6.19 0.002

 Hemoglobin (g/L) 10.49 ± 0.09 10.21 ± 0.13 0.082 10.07 ± 0.08 9.75 ± 0.13 0.041

 Platelet count (109/L) § 198.83 ± 5.31 228.75 ± 46.89 0.527 208.4 ± 6.32 145.17 ± 10.67  < 0.001

 Total protein 5.04 ± 0.05 4.9 ± 0.08 0.138 5.26 ± 0.05 4.77 ± 0.08  < 0.001

 Albumin (g/dl) § 2.24 ± 0.03 2.07 ± 0.05 0.003 2.19 ± 0.03 1.91 ± 0.05  < 0.001

Metabolism and renal

 Bicarbonate (mmol/L) § 22.52 ± 0.22 20.82 ± 0.37  < 0.001 27.58 ± 0.28 23.62 ± 0.53  < 0.001

 Arterial pH 7.36 ± 0.004 7.34 ± 0.008 0.004 7.41 ± 0.004 7.34 ± 0.009  < 0.001

 BUN (mg/dl) 20.73 ± 0.74 30.8 ± 1.45  < 0.001 25.79 ± 0.89 36.03 ± 2  < 0.001

 Creatinine (mg/dl) 1.18 ± 0.04 1.58 ± 0.07  < 0.001 1.22 ± 0.05 1.77 ± 0.11  < 0.001
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is consistent with findings from previous studies22. MAP was widely used for the ventilatory management in 
critical illness, including ARDS23. Given its emerging significance in ARDS prognostication, in the following sec-
tion, we further evaluated the association between elevated MAP and organ dysfunction among non-survivors.

Elevated MAP was associated with ARDS mortality
We compared the repeated assessments of MAP between survivors and non-survivors throughout the first three 
days following the onset of ARDS (Supplementary Results and figure S2). The interaction term between groups 
(survivors and non-survivors) and time indicated significant interaction effects: (F = 11.67, P < 0.001), thus we 
further examined the effects of group status and time separately. For between-group differences at each time 
point, there was no significant difference between survivors and non-survivors at day 0 (P = 0.597). But from 
day 1 to day 3, survivors’ MAP was much lower than non-survivors (day 1: P < 0.01, days 2 and 3: P < 0.001). 
Furthermore, we assessed changes of MAP over time. Over the course of the three-day follow-up, the trend of 
MAP among survivors decreased progressively, with day 3 seeing the lowest values (P < 0.001). In contrast, the 
trend of MAP in non-survivors did not change over time (P = 0.926). We further dichotomized ARDS patients 
into MAPhigh (n = 357) and MAPlow (n = 353) subgroups based on their MAP levels using a median split (Sup-
plementary table S3). At day 3, patients in the MAPhigh group showed worse respiratory (P/F ratio) and renal 
function metrics (higher BUN and creatinine, P < 0.001) as well as raised ventilation parameters. In contrast, we 
did not observe worse renal function in the MAPhigh group at baseline. Furthermore, comparing 235 survivors 
and 122 non-survivors in the MAPhigh subgroup at day 3, we found that the bicarbonate and arterial pH levels in 
the non-survivor group were significantly lower (below normal ranges) than in the survivors group (22.50 ± 0.58 
vs. 27.53 ± 0.39, 7.31 ± 0.009 vs. 7.39 ± 0.005, P < 0.001), indicating metabolic acidosis. On the other hand, at 
baseline, no discernible difference was found. Consequently, at day 3, ARDS patients with higher MAP levels 
were more likely to experience metabolic dysfunction and organ damage, which may have contributed to the 
high death rate (38.1% vs. 19.2%, P < 0.001).

Assessment of AUC values of six prediction models in the testing set
The performance of each predictive model was assessed in the testing sets based on its receiver operating char-
acteristic (ROC) curve, judged by its area under the ROC curve (AUC), and the 95% confidence interval (CI) 
for each AUC value.

Imputed data
First, we applied six ML classification algorithms (RF, XGBoost, LR, SVM, MLP and SC) to the imputed testing 
sets. Then, we obtained the average AUC and 95% CI for each model to evaluate the performance (Fig. 2). At 
baseline (n = 300, panel A), the AUC values and 95% CI were 0.64 (0.56–0.72), 0.64 (0.56–0.72), 0.72 (0.65–0.78), 
0.57 (0.49–0.65), 0.7 (0.63–0.77) and 0.64 (0.57–0.72), respectively. Only the LR classifier obtained a satisfactory 
AUC value of 0.72 (above 0.70). At day 3 (n = 289, panel B), all 6 classifiers achieved satisfactory AUC values 
above 0.70. The AUC values were 0.84 (0.78–0.89), 0.82 (0.77–0.88), 0.80 (0.74–0.86), 0.77 (0.7–0.83), 0.79 
(0.73–0.85) and 0.84 (0.78–0.89), respectively. Overall, we observed enhanced performance for all 6 models at 
day 3 with the RF and SC classifiers having the highest AUC value (0.84), followed by XGBoost (0.82).

Non‑imputed data
At baseline (n = 210, panel C), the AUC values were 0.68, 0.65, 0.69, 0.55, 0.62 and 0.67, respectively. The LR 
classifier obtained the highest AUC value of 0.69 (95% CI: 0.61–0.78). At day 3 (n = 178, panel D), all 6 classifiers 
achieved satisfactory AUC values above 0.70. The AUC values and 95% CI were 0.82 (0.75–0.89), 0.79 (0.71–0.88), 
0.79 (0.71–0.87), 0.80 (0.73–0.87), 0.83 (0.77–0.9) and 0.83 (0.76–0. 9), respectively. Similar to the imputed data, 
non-imputed data at day 3 exhibited enhanced performance for all 6 models, with the MLP and SC classifiers 
having the highest AUC value (0.83), followed by RF (0.82). Intriguingly, the accuracy of the prediction values 
(ROC-AUCs) appears to increase from approximately 0.7 at day 0 to above 0.8 at day 3 in the prediction models.

Comparing the performance of six prediction models
ML classifiers demonstrated high accuracy as indicated by their prediction values (ROC-AUCs) utilizing data 
from the FACTT trial. To further demonstrate good discrimination of prediction models, we compared the 
comprehensive performance of 6 classifiers (Supplementary figure S3) utilizing imputed data at day 0 (panel A) 
and day 3 (panel B) in the testing sets by computing a confusion matrix for each classifier. As shown in Table 2 
and Supplementary table S4B, the six models presented varying performances as indicated by the efficacy metrics 
generated from confusion matrix: precision, sensitivity and F1 score. The RF and LR classifiers achieved the best 
F1 score of 0.86 for predicting survivors at baseline. In contrast, the MLP classifier achieved the best F1 score of 
0.45 for predicting non-survivors. At day 3, both the RF and SC classifiers achieved the best F1 scores of 0.88 for 
predicting survivors whereas the scores for non-survivors were 0.51 and 0.53, respectively. Additionally, the effi-
cacy of the six classifiers in the training sets are shown in Table 2 and Supplementary table S4A. The RF classifier, 
at day 3, also demonstrated the highest F1 scores of 0.94 and 0.77 for survivors and non-survivors, respectively. 
These results indicated that RF classifier consistently exhibited better prognostic values for classifying survivors 
and non-survivors at either day 0 or day 3.

To test the calibration of the model, we ultimately drew the calibration curves of the models at baseline and 
3 days after ARDS onset. At day 3, most of the models under-predicted the true probabilities with the predic-
tion/observation points distributed above the 45° (dashed accuracy-equals-confidence) line (Supplementary 
figure S4B). In contrast, at baseline models were over-confident until about 0.6 and then under-predicted around 
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0.8 (Supplementary figure S4A). In addition, the results showed that the RF model performed relatively better 
in each dataset.

Feature importance of the RF classifier in the testing set
We determined the importance of quantitative clinical features according to the estimated probability of 60-day 
mortality from the RF classifier, which was the best-performing model in the testing sets at day 3 with the high-
est AUC value of 0.84 when applied to imputed data. Feature importance is the average of reduction in impurity 
index over all trees when a particular feature is used at split point17; we measured feature rankings by using the 
‘gini impurity or mean decrease in impurity’ metric in RF (see Supplementary Methods). Figure 3 illustrated the 
outcomes of relative feature importance for each single attribute. The relative ranked top seven features (from 
high to low) in the RF predictor at baseline (panel A) were age, platelet count, bicarbonate, MAP, heart rate, 
glucose, and pneumonia. The relative ranked top features were changed at day 3 (panel B) as the following: MAP, 
bicarbonate, age, platelet count, albumin, heart rate and glucose. Of note, MAP, one of the ventilator-related 
features, ranked as the most important mortality risk predictor at day 3, possibly reflecting ARDS progression. 
We observed similar trends in data without imputation. Age, bicarbonate and MAP were among the top three 

Figure 2.   ROC curves of six ML classifiers for predicting 60-day mortality in ARDS patients. Panel (A): data 
collected from Day 0 in the testing dataset (n = 300 with imputation); Panel (B): data collected from Day 3 in the 
testing dataset (n = 289 with imputation). Definition of abbreviations: ROC = receiver operating characteristics, 
AUC = area under the curve.
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important features demonstrating improved predictive performance for risk of mortality at day 3 (Supplementary 
figure S5). As a result, ML modeling offered more proof that MAP is crucial for early ARDS prognostication.

Table 2.   The efficacy (precision, sensitivity and F1 score) of top three machine-learning classifiers in the 
training (A) and testing (B) sets (using imputed data). Missing data was imputed using an iterative multivariate 
imputation technique. RF random forest, LR logistic regression, SVM support vector machine, MLP multi-
layer perceptron, SC stacking classifier. 95% CI = 95% confidence interval.

Datasets Models

Predictive values for survivors (Day 0 = 498, Day 3 = 516) Predictive values for non-survivors (Day 0 = 202, Day 3 = 158)

Precision (95% CI) Sensitivity (95% CI) F1 score (95% CI) Precision (95% CI) Sensitivity (95% CI) F1 score (95% CI)

A. In the training set

Day 0 (n = 700)

RF 0.85 (0.83, 0.88) 0.98 (0.98, 1.0) 0.91 (0.91, 0.93) 0.96 (0.93, 0.99) 0.59 (0.54, 0.66) 0.73 (0.69, 0.78)

XGBoost 0.87 (0.86, 0.9) 0.98 (0.98, 0.99) 0.92 (0.92, 0.94) 0.95 (0.92, 0.98) 0.66 (0.61, 0.72) 0.78 (0.74, 0.82)

SVM 0.94 (0.93, 0.97) 0.98 (0.98, 1.0) 0.96 (0.96, 0.98) 0.97 (0.95, 0.99) 0.87 (0.83, 0.91) 0.91 (0.89, 0.94)

Day 3 (n = 674)

RF 0.90 (0.88, 0.92) 0.99 (0.98, 1.0) 0.94 (0.93, 0.96) 0.95 (0.92, 0.98) 0.65 (0.6, 0.72) 0.77 (0.73, 0.82)

SVM 0.89 (0.87, 0.92) 0.97 (0.97, 0.99) 0.93 (0.92, 0.95) 0.89 (0.84, 0.94) 0.62 (0.57, 0.69) 0.73 (0.69, 0.78)

SC 0.89 (0.87, 0.92) 0.98 (0.98, 1.0) 0.93 (0.93, 0.95) 0.94 (0.9, 0.98) 0.62 (0.56, 0.68) (0.7, 0.8)

Datasets Models

Predictive values for survivors (n, Day 0 = 233, Day 3 = 215) Predictive values for non-survivors (n, Day 0 = 67, Day 3 = 74)

Precision (95% CI) Sensitivity (95% CI) F1 score (95% CI) Precision (95% CI) Sensitivity (95% CI) F1 score (95% CI)

B. In the testing set

Day 0 (n = 300)

RF 0.81 (0.78, 0.85) 0.91 (0.88, 0.94) 0.86 (0.83, 0.89) 0.47 (0.34, 0.61) 0.28 (0.19, 0.38) 0.35 (0.25, 0.45)

LR 0.80 (0.77, 0.85) 0.93 (0.9, 0.95) 0.86 (0.84, 0.89) 0.48 (0.34, 0.63) 0.23 (0.16, 0.33) 0.32 (0.22, 0.42)

MLP 0.84 (0.81, 0.89) 0.8 (0.76, 0.85) 0.82 (0.79, 0.85) 0.41 (0.33, 0.51) 0.49 (0.39, 0.59) 0.45 (0.36, 0.53)

Day 3 (n = 289)

RF 0.82 (0.78, 0.86) 0.95 (0.93, 0.98) 0.88 (0.86, 0.91) 0.76 (0.65, 0.88) 0.39 (0.3, 0.49) 0.51 (0.42, 0.61)

XGBoost 0.82 (0.78, 0.86) 0.93 (0.91, 0.97) 0.87 (0.85, 0.9) 0.69 (0.58, 0.82) 0.40 (0.31, 0.5) 0.51 (0.42, 0.6)

SC 0.82 (0.78, 0.86) 0.95 (0.93, 0.98) 0.88 (0.86, 0.91) 0.76 (0.65, 0.88) 0.40 (0.31, 0.5) 0.53 (0.43, 0.62)

Figure 3.   Importance of clinical features in the training dataset according to the estimated probability of 60-day 
mortality in Random Forest models. Normalized values for each single attribute (in a range of 0–100, the most 
important predictor variable was assigned with the value of 100) were illustrated as relative ranked features 
(from high to low). The training datasets from day 0 (n = 700, Panel (A)) and day 3 (n = 674, Panel (B)) with 
imputation were applied.
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Discussion
ARDS is an inflammatory syndrome characterized by acute respiratory failure due to non-cardiogenic pulmo-
nary edema and hypoxemia, and is associated with significant morbidity and mortality1. Despite advances in the 
understanding of the pathophysiology of ARDS, mortality rates remain high – ranging between 16.1% and 45.4% 
in recent reports24. There are no known effective pharmacological interventions for ARDS, proven interventions 
are limited to supportive care. Leveraging cutting-edge analytical workflows (e.g., ML and artificial intelligence 
approaches) in the analysis of large datasets from the inpatient setting is likely to identify critical risk factors 
most associated with poor outcomes of ARDS and facilitate the development of strategies for early intervention 
in patients at the highest risk. In the current study, we have applied a mathematical modelling approach based 
on state-of-the-art ML algorithms to identify the most discriminative clinical features of ARDS-associated mor-
tality. We compared efficacy of mortality prediction models derived from the ARDSNet FACTT trial datasets 
(day 0 vs. day 3), and the ML approach revealed key clinical features representing multi-organ dysfunction for 
ARDS mortality prediction.

There is an increasing trend of utilizing modern ML algorithms to develop and evaluate highly accurate 
classifier models for both early diagnosis and mortality prediction in ARDS 25,26. However, most of the stud-
ies only examined data collected at baseline despite the fact that predictive values tend to be improved at early 
days beyond ARDS onset (e.g., at day 3). We applied six commonly adopted ML classifiers to data collected at 
two early time points – day 0 and day 3, for predicting ARDS mortality. The area under the receiver operating 
characteristic curve, confusion matrix, precision, sensitivity and F1 score (which is the harmonic mean of the 
precision and sensitivity) were used to evaluate and compare the comprehensive performance of model types. As 
expected, the accuracy of the prediction values (e.g., AUC values) increased from approximately 0.7 at day 0 to 
above 0.8 at day 3 in the prediction models. The RF classifier consistently demonstrated outstanding performance 
at both days, and obtained the highest AUC value of 0.84 at day 3 (Fig. 2B). The SC classifier which also displayed 
outstanding performance at day 3, is an ensemble ML algorithm that learns how to best combine the predictions 
from multiple well-performing ML models to obtain better predictive performance27. With regard to RF, it is a 
powerful ensemble-based ML classifier made up of multiple decision trees28, and it demonstrated high predictive 
ability for prognostication in the data from the FACTT trial. During the training process, it randomly samples 
the training dataset with replacement (also known as bootstrapping) to build a decision tree. Additionally, it 
considers random subsets of features to split the nodes. The final predictions of the RF are made by averaging the 
predictions of each individual tree. Additionally, we analyzed the importance of clinical features in predicting 
60-day mortality within the RF model. Our results suggested seven clinical parameters (MAP, bicarbonate, age, 
platelet count, albumin, heart rate and glucose) were the most important features at day 3 for ARDS mortality 
risk in the FACTT trial. The illustration of clinical feature importance (Fig. 3) may give physicians an intuitive 
understanding of the key features within the RF model, which provided the highest precision and sensitivity.

To account for the dynamic process of disease progression, efforts have been made previously to compare the 
performance of mortality risk factors utilizing data collected after ARDS onset. Bone et al.29 analyzed the dynamic 
change of PaO2/ FiO2 ratio during the first 7 days of ARDS onset and found survivors had a significantly higher 
PaO2/ FiO2 ratio at day 1–7 than non-survivors, even though the two group of patients had a similar PaO2/ FiO2 
ratio at day 0. Lai et al.30 found that using clinical data from 1-day after ARDS onset could predict outcomes 
better than using data collected at baseline. Go et al.12 examined the change of oxygenation index (OI) over the 
first seven days of ARDS and found that failure to improve OI at day 7 was associated with higher mortality. In 
this study, we also found evidence that variables measured after ARDS onset (e.g., day 3) have better predictive 
performance than those at baseline. In the field of critical care medicine, increased accuracy in predicting mor-
tality may have a major impact on various aspects of patient care, i.e. improved prognostication to allow more 
accurate patient stratification for clinical trials and help inform family discussions. Thus, utilizing clinical indices 
collected early after ARDS onset may improve the performance of mortality prediction in ARDS.

In this study, we found that MAP was the most significant clinical characteristic for predicting 60-day death, 
along with other crucial clinical features. Previous studies have reported the value of PEEP, plateau pressure or 
tidal volume in predicting mortality in ARDS patients31. In contrast, fewer studies have evaluated the predic-
tive value of MAP. Recently, Sahetya SK et al6 reported the prognostic value of MAP at baseline (within 24 h of 
mechanical ventilation). However, they did not assess whether dynamic data may provide enhanced predictive 
value. In this study (Supplementary figure S2), despite the fact that there was no significant difference in MAP 
between survivors and non-survivors at baseline, non-survivors showed a tendency toward significantly higher 
MAP than survivors by days one to three (P < 0.001), suggesting that MAP represents the most important predic-
tor for ARDS mortality. While driving pressure and plateau pressure reflect lung stress, MAP provides a more 
complete estimation of lung disease severity, respiratory compliance, and need for respiratory support than driv-
ing pressure or plateau pressure alone. MAP will increase if airway resistance increases, compliance of the lung 
or chest wall decreases, or dead space and work of breathing increase23. Plateau pressure represents the stiffness 
in the respiratory system, which predicts mortality in patients with ARDS3. MAP correlates directly with plateau 
pressure but also varies with minute ventilation, which could reflect dead space or acidosis. Furthermore, MAP 
took part in the entire respiratory cycle, contained more information of mechanical ventilation. In our study, we 
confirmed: (1) ARDS patients in the MAPhigh subgroup had increased risk of metabolic dysfunction and organ 
injuries associated with high mortality rate (P < 0.001, Supplementary table S3); and (2) utilizing mechanical 
ventilation parameters such as MAP collected at day 3 after treatment could provide better prognostic value for 
ARDS mortality.

The strengths of our study include utilizing robust clinical parameters collected in a large multi-center 
study – the FACTT trial, and implementing the state-of-the art ML workflows. However, our study has some 
limitations. First, we generated the ML models from secondary analyses of previously conducted randomized 
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controlled trial; these models must be evaluated in observational cohorts prospectively before they can be gen-
eralized to the ARDS population and used in the clinical setting. Second, given that the proposed ML method 
is data-driven, repeating the whole procedure in data collected from early days beyond day 3 (e.g., day 7) may 
reveal various performances. Third, a combination of clinical predictors and biomarkers may enhance the per-
formance of mortality predicting models in ARDS2,32. Biological markers of cell-specific injury, acute inflamma-
tion, and altered coagulation were correlate with mortality in multicenter clinical trials in ARDS33–36. Further, 
novel biomarkers discovered by a systems biology multi- “omics” approach may hold the promise to establish 
predictive or prognostic stratification methods and ultimately helps to develop more tailored therapeutics for 
ARDS patients37,38.

Of note, we have considered an internal validation strategy in our study design. We utilized a common 
approach that is to split the single FACTT dataset into two parts: a training cohort, and a separate testing/vali-
dation cohort that is not used in developing the model itself. The superior performance of ML classifiers in the 
training sets was confirmed in the testing sets. The decision rules developed within the RF model at day 3 can 
predict the mortality rates of patients in advance with more than 80% accuracy. Given the novelty of our find-
ings and its potential for translation into practice, the model was further developed into a web ARDS mortality 
‘calculator’ (https://​morta​lity-​predi​ctor.​strea​mlit.​app/). This exploratory online tool uses the RF classifier, which 
is already trained on data from day 3 of the FACTT trial to compute the prediction and returns a numerical value 
for ARDS mortality (Supplementary figure S6).

In conclusion, utilizing a large ARDS dataset, we developed ML-based models for risk stratification in criti-
cally ill ARDS patients and identified MAP as the most important clinical predictor for mortality. Future pro-
spective research is warranted to validate the proposed models and to translate the advantages of ML models 
into improved patient outcomes through early intervene.

Data availability
The datasets used and/or analyzed during the current study are available from http://​www.​ardsn​et.​org/.
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