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An empirical study of large‑scale 
data‑driven full waveform inversion
Peng Jin 1,2*, Yinan Feng 1, Shihang Feng 1, Hanchen Wang 1, Yinpeng Chen 3, 
Benjamin Consolvo 4, Zicheng Liu 5 & Youzuo Lin 6*

This paper investigates the impact of big data on deep learning models to help solve the full waveform 
inversion (FWI) problem. While it is well known that big data can boost the performance of deep 
learning models in many tasks, its effectiveness has not been validated for FWI. To address this gap, 
we present an empirical study that investigates how deep learning models in FWI behave when trained 
on openfwi, a collection of large-scale, multi-structural, synthetic datasets published recently. In 
particular, we train and evaluate the FWI models on a combination of 10 2D subsets in openfwi that 
contain 470 K pairs of seismic data and velocity maps in total. Our experiments demonstrate that 
training on the combined dataset yields an average improvement of 13.03% in MAE, 7.19% in MSE 
and 1.87% in SSIM compared to each split dataset, and an average improvement of 28.60%, 21.55% 
and 8.22% in the leave-one-out generalization test. We further demonstrate that model capacity 
needs to scale in accordance with data size for optimal improvement, where our largest model yields 
an average improvement of 20.06%, 13.39% and 0.72% compared to the smallest one.

The recent advancements of deep learning in natural language processing and computer vision have proven that 
big data is one of the key ingredients for obtaining good performance1–4. Similarly, in the context of science, 
deep learning models such as AlphaFold5 have achieved significant breakthroughs with the help of large-scale 
datasets. However, unlike these tasks, large-scale public datasets are not always available for many other scien-
tific problems due to issues such as high data acquisition costs, labeling costs, intellectual property concerns, or 
security concerns. Due to limited dataset sizes and variation, deep learning models in scientific applications are 
often limited in their ability to generalize well to out-of-sample datasets.

Full waveform inversion (FWI) is a technique used to image the subsurface that has the potential to benefit 
from deep learning and large training datasets. Specifically, FWI aims to reconstruct subsurface velocity maps v 
from seismic measurements p as depicted in Fig. 1. Conventional FWI methods6–20 leverage the forward opera-
tor f governed by a partial differential equation (PDE) and perform iterative optimization per sample, which 
is computationally expensive and yields poor scalability. To mitigate this issue, deep learning techniques have 
been recently introduced to FWI and achieved promising performance21–26. A good summary of deep learning 
techniques for solving FWI problems can be found in Lin et al.27. In this paper, we follow the previous studies27–29 
and refer network-based FWI methods as data-driven methods. Inspired by the image-to-image translation task 
in computer vision, these data-driven methods directly learn an inverse mapping f −1 from seismic data directly 
to velocity maps. Nevertheless, due to the issue of lacking large-scale public datasets, the models in prior works 
were all developed on relatively small datasets (i.e. 130 to 67K data pairs)28–30. Thus, the question remains open: 
does full waveform inversion benefit from big data? Thankfully, the recently published large-scale datasets open-
fwi31 provide us an opportunity to start to answer this question.

In this paper, we present an empirical study that attempts to answer the question of whether FWI benefits 
from large-scale and multi-structural training datasets from three perspectives: model performance, the rela-
tionship between the model size and data size, and model generalization. openfwi is a collection of large-scale, 
multi-structural datasets that cover different domain interests, including interfaces, geological faults, and field 
data. We employ 10 2D synthetic datasets from openfwi, and 408K/62K pairs of seismic data and velocity maps 
are used to train and evaluate the deep learning models, respectively. We adopt one of the openfwi benchmark 
models InversionNet28 to serve as the baseline, and we compare the inversion results of the baselines trained on 
relatively small-scale individual datasets and the models trained on large-scale datasets that are composed of 
multiple datasets. We name the latter models BigFWI. Our findings are summarized as follows:
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•	 Big data can boost the performance of deep learning models in FWI. BigFWI outperforms the baselines on 
almost every dataset in terms of all the evaluation metrics.

•	 Larger data requires larger models. When more training samples are introduced, larger model architectures 
are required in BigFWI to achieve further improvement compared to the baselines.

•	 Big data can improve the generalization of deep learning models in FWI. Given a dataset that is unseen during 
training, BigFWI yields better performance than any baselines trained on single datasets.

Methods
In this section, we first present the preliminaries of full waveform inversion and then describe the network 
architecture of our BigFWI and the loss function for training.

Full waveform inversion
Figure 1 provides an illustration of 2D data-driven FWI and forward modeling. The governing equation of the 
acoustic wave forward modeling in an isotropic medium with a constant density can be described as follows:

where ∇2 is the Laplace operator, p(r, t) denotes the pressure wavefield at spatial location r and time t, v(r) repre-
sents the velocity map of wave propagation, and s(r, t) is the source term. As shown in Fig. 1, the goal of forward 
modeling is to simulate seismic data p̃ from a given velocity map v. For simplicity, we formulate this process as:

where f (·) represents the highly nonlinear forward operator. As mentioned above, data-driven FWI methods 
directly learn the inverse mapping as:

where v̂ is the estimated velocity map and gθ (·) is the approximated inverse operator of f (·) , which is usually 
implemented as neural networks parameterized by θ . BigFWI is developed to leverage large-scale datasets to 
obtain a more precise and universal approximation of the inverse operator.

Network architecture
We introduce three variants of BigFWI, including a “Base” model, a “Middle” one with additional layers, and a 
“Large” one that is both deeper and wider. We denote them as BigFWI-B, BigFWI-M and BigFWI-L. The num-
ber of the parameters of each model is summarized in Supplementary Table S1. All BigFWI models share an 
encoder–decoder architecture. The encoder E first extracts the spatial–temporal features from the seismic input 
p ∈ R

S×T×R and compresses them into a latent vector z = E(x) ∈ R
L×1×1 . Here, S equals the number of sources 

used in seismic surveys or simulation, T represents the number of samples recorded by each receiver, R denotes 
the number of receivers, and L is the length of the latent vector. The decoder D then transforms the latent vector 
z into spatial domain and generates the estimation of the velocity map v̂ = D(z) ∈ R

1×W×H , where W and H 
denote the horizontal (i.e. length) and vertical (i.e. depth) dimensions of the velocity map. Both the encoder E 
and the decoder D are fully based on 2D convolutional and deconvolution layers, and the details are presented 
as follows. The visualized network architecture of BigFWI is provided in Supplementary Fig. S1.

In the encoder E , since T = 1000 is much larger than R = 70 in the seismic data p of openfwi, we first reduce 
temporal dimension and extract temporal features by stacking seven convolutional layers with n× 1 kernels, 
where n = 7 in the first layer, and n = 3 in the following six layers. The stride along the temporal dimension is 
set to 2 for every other layer to reduce the temporal dimension until it is close to the spatial dimension. We then 

(1)∇2p(r, t)−
1

v(r)2
∂2p(r, t)

∂t2
= s(r, t),

(2)p̃ = f (v),

(3)v̂ = gθ (p) = f −1(p),

Figure 1.   Schematic illustration of data-driven FWI and forward modeling. The forward modeling process 
computes the simulated seismic data from velocity maps, governed by a partial differential equation. Neural 
networks are employed in data-driven FWI methods to reconstruct velocity maps from seismic measurements.
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stack six layers with 3× 3 kernels to extract spatial-temporal features at the same time. Stride 2 is now applied 
to both dimensions every other layer. In BigFWI-M, instead of stacking six layers, we stack nine layers where 
an additional 3× 3 layer with stride 1 is added after every two layers so as to increase model capacity without 
changing the dimensions of the original feature maps. In BigFWI-L, we stack eight layers where two additional 
3× 3 layer with 1024 features maps are appended at the end. In BigFWI-B and BigFWI-M, we use a layer with 
an 8× 9 kernel to flatten the feature maps of the last to a 512-length latent vector z. In BigFWI-L, a layer with 
4× 5 kernel is used, and the length of latent vector is 1024.

The decoder D includes five deconvolution layers for upsampling, and each of them is followed by one convo-
lutional layer with 3× 3 kernels in BigFWI-B and two convolutional layers in BigFWI-M. The first deconvolution 
layer with kernel size 5 transforms the latent vector z into a 512× 5× 5 tensor. The rest of the deconvolution 
layers with kernel size 4 and stride 2 upsample the feature maps by a factor of 2, resulting in an 80× 80× 32 
tensor. We then apply center cropping followed by a 3× 3 convolutional layer to output a single channel 70× 70 
velocity map. In BigFWI-L, the kernel size of the first deconvolution layer is 2, and there are six groups of decon-
volution and convolutional layers.

All the convolutional and deconvolution layers are followed by batch normalization and LeakyReLU as the 
activation function, except for the last output layer, which uses Tanh to generate the velocity map between [−1, 1].

Loss function
The original InversionNet model was trained with pixel-wise ℓ1 loss or ℓ2 loss between the ground truth of 
velocity maps v and the predictions v̂ . In this paper, we trained the baseline InversionNet and BigFWI using a 
combination of two loss functions to leverage the advantages from both sides according to the previous study29. 
The loss function can be written as:

where W and H denote the number of grids in horizontal length and depth directions, and vij and v̂ij represent 
the ground truth velocity and the prediction at the grid (i, j).

Results
In this section, we first describe the openfwi dataset and then present the evaluation metrics and training details, 
followed by the experimental results.

OpenFWI datasets
We here briefly describe the openfwi datasets which are used in all the experiments. Unlike many existing syn-
thetic datasets for FWI, openfwi is publicly available and offers a rich collection of large-scale multi-structural 
benchmark datasets. The datasets in openfwi are divided into four groups: “Vel Family”, “Fault Family”, “Style 
Family” and “Kimberlina Family”. We exclude the “Kimberlina Family” in our experiments because the dimensions 
of both velocity maps and seismic data in “Kimberlina Family” are different from the other three families. This 
allows us to combine the data samples from different datasets to train BigFWI models. In terms of the complexity 
of subsurface structures, each of the three families consists of an easy version (-A) and a hard version (-B). In 
addition, the datasets in “Vel Family” and “Fault Family” are further divided into a flat version (Flat-) and a curved 
version (Curve-) in accordance with the shape of rock layers. The 10 datasets employed in our experiments are: 
FlatVel-A/B, CurveVel-A/B, FlatFault-A/B, CurveFault-A/B, and Style-A/B. We use dataset abbreviations such as 
FVA for FlatVel-A in the rest of the paper to simplify plots.

Each dataset in “Vel Family”, “Fault Family”, “Style Family” is split into 24 K/6 K, 48 K/6 K, and 60 K/7 K 
pairs of seismic data and velocity maps for training and testing, respectively. We follow this splitting through our 
experiments. Figure 1 shows an example of a velocity map and seismic data pair. Each velocity map has dimen-
sions of 70× 70 (depth × length in grids) with a grid spacing of 10 m in both directions. The dimensions of the 
seismic data are 5× 1000× 70 (# of sources × # of timesteps × # of receivers). Five sources are evenly distributed 
on the top surface, each of which is a Ricker wavelet with a central frequency of 15 Hz. The interval between 
timesteps is 1 ms, and the receivers are also placed with an interval of 10 m. For more details about the forward 
model algorithm and simulation, please refer to the original paper of openfwi.

Evaluation metrics
We follow the benchmarking guidelines in openfwi and compute three metrics between the ground truth and 
the prediction of velocity maps to evaluate the performance of a model: mean absolute error (MAE), root mean 
squared error (RMSE), and structural similarity (SSIM)32. Both MAE and RMSE are commonly used to measure 
pixel-wise errors, while SSIM aligns better with human vision and measures the perceptual similarity that is 
more related to structural information. When calculating MAE and RMSE, we keep the velocity maps in the 
normalized scale [−1, 1] . During the calculation of SSIM, we rescale the velocity maps to [0, 1] as required by the 
algorithm. We additionally compute the average quadratic Wasserstein Distance33,34 for both velocity maps and 
seismic data as side evaluation metrics. The details are provided in Supplementary Wasserstein Distance Section.

Training details
We use identical hyperparameters to train all the models in our experiments. Specifically, we employ AdamW 
optimizers with momentum parameters β1 = 0.9 , β2 = 0.999 , and a weight decay of 1× 10−4 to update the 

(4)L(v, v̂) =
1

W ·H

W
∑

i=1

H
∑

j=1

|vij − v̂ij| +
1

W · H

W
∑

i=1

H
∑

j=1

√

(vij − v̂ij)2,
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parameters of each model. The base learning rate is set to 8× 10−4 , and the models are trained for 170 epochs. 
In the first five warm-up epochs, we linearly increase the learning rate from 1× 10−4 , and we decay the learn-
ing rate by a factor of 10 at epoch 150 and epoch 160, respectively. The batch size is set to 256. All the models 
are implemented in PyTorch and trained on 4 NVIDIA Tesla V100 GPUs. We employ the natural logarithmic 
transformation to make the intensity of seismic data more balanced and normalize the data to range [−1, 1] 
before they are fed into the network. The velocity maps are also normalized to the same scale before we compute 
the loss. To accelerate the training process, we improve the data loading pipeline. The details are provided in 
Supplementary Optimized Memory-Efficient Data Loading Pipeline Section.

Big data benefits FWI
We first design an experiment to explore if the performance of the data-driven FWI models can be improved 
by enlarging the training set. Specifically, we train a BigFWI-B on a combination of the datasets in openfwi 
and compare performance with the baseline InversionNet models trained on each split dataset. For brevity, we 
refer to BigFWI-B as BigFWI in this section. Both the BigFWI and InversionNet models share the same training 
hyperparameters and network architecture. Instead of using all the training samples in openfwi, we randomly 
select 12 K samples from each of the four datasets in Vel Family, 24K from each of the four in the Fault Family, 
and 30 K from each of the two in the Style Family. The rest of the samples in the training sets are reserved for the 
experiment in the next section, where we further enlarge the datasets. The combined large-scale training set con-
sists of 204K samples in total, and we name it OpenFWI-204K. The test sets are directly adopted from openfwi.

We plot the performance improvement of BigFWI compared to the InversionNet on each dataset in Fig. 2. 
The quantitative results are provided in Supplementary Tables S3 and S4. We observe that BigFWI shows a clear 
improvement for all the datasets except for datasets FVA and FVB, which are comprised of flat layers only. One 
potential reason for the model’s degraded performance on FVA and FVB is that the network focuses more on 
curved layers which exist in most of the other datasets, and thus has a negative impact on the prediction of flat 
layers. We also observe that BigFWI exhibits significant improvement in MAE and RMSE for A datasets com-
pared to B datasets across all families. However, the comparison of SSIM demonstrates the opposite trend, with 
the B datasets exhibiting better SSIM improvements compared to the A datasets in the same family. This variation 
in performance could be attributed to the greater complexity of the B datasets. The discrepancies in the baseline 
structures may not impact statistical misfits such as MAE and RMSE, but they may influence the SSIM. The 
simpler A datasets tend to benefit slightly more from the larger data volume than the more intricate B datasets.

Figure 3 shows a comparison of velocities maps between ground truth, InversionNet, and BigFWI. We observe 
that InversionNet predicts the velocity maps with various errors, such as extra bottom layer anomalies (FVA), 
inaccurate layer values (CVA, CVB), and inaccurate structures (FVB, FFB, CFA, CFB). BigFWI models generally 
yield better performance in predicting the structure and values of the velocity maps than InversionNet. We see 
that the improved results of BigFWI are due to the knowledge learned from the large-scale training dataset that 
consists of a variety of velocity map distributions. Here, we define the velocity map distributions as the different 
geological subsurface structures in OpenFWI: i.e., flat layers vs. curved layers, faults vs. non-fault, and smooth 
vs. sharp. However, in addition to benefits, the variety of the velocity map distributions may also bring some 
negative effects such as inaccurate layer boundaries. For instance, we observe non-flat interfaces in the predic-
tions of FVA/FVB, which are obviously affected by other velocity map distributions.

Additionally, we conduct an experiment by simply enlarging each split dataset, and this also leads to per-
formance improvement. Results are provided in Supplementary Tables S5 and S6, followed by a discussion in 
Supplementary Single Enlarged Dataset Section.

Big data in FWI requires larger models
To explore the relationship between the size of the training set and the size of the data-driven FWI models, we 
conduct an experiment that is similar to the previous one but employs the full training set provided by openfwi. 
Hence, the training set now contains 408K samples, and we name it OpenFWI-408K for brevity. We keep the 
baselines which are InversionNet trained on OpenFWI-204K, and we additionally train the InversionNet on 
each split datasets of OpenFWI-408K for comparison. We also train BigFWI-B, BigFWI-M and BigFWI-L on 
OpenFWI-408K.

Figure 2.   Performance improvement of BigFWI trained on OpenFWI-204K over InversionNet in terms of 
MAE, RMSE and SSIM. BigFWI trained on a large-scale dataset (OpenFWI-204K) yields better performance on 
almost every dataset, compared to InversionNet28, which was trained on relatively small-scale datasets.
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In Fig. 4, we show the statistical performance improvement of BigFWI over InversionNet (trained on the split 
components of OpenFWI-204K). More detailed quantitative results are provided in Supplementary Tables S7 
and S8. Overall, all the models trained on OpenFWI-408K yield better performance compared to InversionNet 
trained on OpenFWI-204K, and the BigFWI models (coral, blue and orange bars) outperform InversionNet 
(green) for almost every dataset, which again verifies that larger training set brings better performance. We fur-
ther observe that among three BigFWI variants, larger models yield better performance in general. In particular, 
BigFWI-L (coral) and BigFWI-M (blue) outperform BigFWI-B (orange) by a large amount in all three metrics for 
relatively simple datasets such as FVA, FVB, FFA and CFA. For relatively complicated datasets such as CFB and 
SA, the gap is narrower. For dataset SB, BigFWI-B even outperforms BigFWI-L. This infers that larger models 
are preferred for most big data scenarios, but additional efforts such as more advanced network architectures 
are still required for some complicated cases.

Figure 5 shows the ground truth and predictions of velocity maps InversionNet, BigFWI-B, BigFWI-M, and 
BigFWI-L. Though the performance of InversionNet has improved statistically when trained on larger datasets, 
errors in prediction such as extra bottom layer anomalies (FVA), inaccurate layer values (CVA, CVB), and inac-
curate structures (FVB, FFB, CFA, CFB) still exist. In contrast, BigFWI generally offers enhanced accuracy in 

Figure 3.   Comparison of ground truth (top) and predicted velocity maps generated by InversionNet (middle) 
and BigFWI (bottom). In general, BigFWI yields clearer layer boundaries, more accurate fault locations, and 
fewer artifacts compared to InversionNet as highlighted in squares.

Figure 4.   Comparison of the performance improvement of different methods trained on the further enlarged 
dataset (i.e. OpenFWI-408K) in terms of MAE, RMSE, and SSIM. Note that the improvement percentages are 
computed based on the InversionNet trained on OpenFWI-204K. For most of the datasets, the BigFWI-L, which 
has the largest model size, yields the best performance.
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layer location and velocity values. Comparing the performance of the BigFWI models, BigFWI-L and BigFWI-
M outperforms BigFWI-B in many aspects. For instance, the flat interfaces in FVA and FVB are more flat and 
sharp in the results of BigFWI-L and BigFWI-M than the ones of BigFWI-B. BigFWI-M also predicts more 
accurate fault slopes in FFA and FFB. A similar observation can be obtained from the Style Family results, in 
which BigFWI-L and BigFWI-M predict more accurate kinematic information than InversionNet and BigFWI-
B. Though InversionNet predicts more high-frequency components, the scatters are inaccurate in shape, which 
introduces even larger data misfit.

Big data leads to better generalization
Leave‑one‑out generalization test
To verify whether large-scale training data also leads to better generalization, we design the experiment where 
the BigFWI models are trained under leave-one-out settings. Specifically, given a target dataset for testing (e.g., 
FVA), we train the BigFWI model on the combination of the training samples from all the other datasets in 
openfwi (e.g., FVB, CVA/B, FFA/B, CFA/B, and SA/B). We then compare the performance of this BigFWI 
model on the test samples of the target dataset (e.g., FVA) with InversionNet, which are trained on split datasets 
other than the target one.

In Fig. 6, we present the statistical performance improvement in the percentage of the best generalization 
performance of InversionNet models. BigFWI shows superior performance across all the datasets, especially 
in terms of MAE and RMSE. This yields that big data leads to better generalization. Notably, utilizing datasets 
A as the target set results in greater improvements in terms of MAE and RMSE, while datasets B show greater 

Figure 5.   Comparison of ground truth (first row) and predicted velocity maps generated by InversionNet 
(second row) and BigFWIs (from third row to fifth row). BigFWI-L yields the most accurate results, especially in 
deep regions, compared to other BigFWI models and the baselines as highlighted in squares.

Figure 6.   Generalization improvement of BigFWI models trained using leave-one-out settings in terms of 
MAE, RMSE and SSIM. For each target dataset, our BigFWI yields better generalization performance than all 
the InversionNet trained on the split datasets other than the target one.
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improvements in terms of SSIM. The detailed quantitative results are provided in Supplementary Tables S9 and 
S10.

Figure 7 compares the generalization results of different methods to the ground truth. We observe that 
InversionNet produces inaccurate layer structures for out-of-distribution (OOD) data. In FFA, FFB, CVA, FFA, 
and SA, InversionNet’s generalization outputs have errors of blurred borders, wrong layer positions, and inac-
curate velocity values, especially in deeper parts. Moreover, the results clearly have incorrect patterns from other 
datasets in more complex datasets (i.e., CVB, FFB, CFA and CFB). Meanwhile, these explain why we could find 
higher SSIM improvement in these four datasets in Fig. 6. Conversely, our BigFWI benefits from its large-scale 
cross-domain training set and can effectively capture more essential features of different datasets. Thus, BigFWI 
has more accurate predictions on OOD data than InversionNet.

Generalization test on Marmousi and Overthrust
We further conduct generalization experiments on two more challenging standard test synthetic datasets 
Marmousi35,36 and Overthrust37,38. Both velocity maps contain more practical subsurface structures and have 
been widely adopted for the evaluation of full waveform inversion methods31,39–41. Furthermore, the Marmousi 
velocity map was used as the style image to generate the Style Family in OpenFWI, which was specifically created 
for the simulation of real-world velocity maps.

In this experiment, we resize the original Marmousi and Overthrust velocity maps to match our sizes and 
generate the seismic data using the same configuration as in OpenFWI. Since the dataset SA is a smoothed ver-
sion of SB in OpenFWI, we are also interested in the generalization performance of BigFWI on the smoothed 
versions of Marmousi and Overthrust. To this end, we follow the previous work39 and apply Gaussian filters 
with a standard deviation 2 to the velocity maps to obtain the smoothed ones. For comparison, we compare the 
BigFWIs trained on OpenFWI-408K with the InversionNet models trained on SA and SB separately.

The generalization ability of our models to Marmousi and Overthrust are depicted in Fig. 8. We also provide 
the results of Reverse Time Migration (RTM) and the differences of RTM compared to the ground truth in 
Supplement Figs. S2 and S3, respectively. Generally, BigFWI yield more accurate inversion results compared to 
InversionNet. For the smoothed version of Marmousi, the results of BigFWI match the ground truth better in 
the shallow region. The BigFWI-M even generates some layered structures in the top-right corner. In the deep 
region, the results of the InversionNet models contain either too many false high-velocity predictions or a hori-
zontal layer with relatively low velocity. In contrast, though the velocity in the results of BigFWI is lower than 
the ground truth, they capture the locations of high-velocity regions. For the original version of Marmousi, it is 
obvious that the performance of BigFWI is better than InversionNet. We observe the layered structures given 
by BigFWI, and we think this is learned from CVA and CVB.

For the Overthrust velocity maps, BigFWI consistently generates flat layers with geological faults in the deep 
region, which are more visually plausible than the results of InversionNet. We see that the behavior of BigFWI is 
greatly affected by FVB, which demonstrates the advantages of training models on large-scale multi-structural 
datasets. However, we also observe that BigFWI tends to follow one specific learned pattern per prediction; for 
example, in the predictions of the smoothed Overthrust, BigFWI still generates structures with sharp boundaries 
that exist in FVB. This indicates that there may be still much space for the improvement of BigFWI in terms of 
both the model architecture and the training data.

Figure 7.   Comparison of ground truth (first row) and generalization results of different methods. From the first 
to last row: the InversionNet trained on the target datasets, the InversionNet trained on the datasets other than 
the target one, and the BigFWIs trained using leave-one-out settings. Our BigFWIs yield relatively reasonable 
velocity maps that are closer to the ones generated by the InversionNet trained on the target datasets.
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The quantitative results are provided in Supplementary Tables S11, S12 and S3, which generally align with our 
observations in the visualization results. From the quantitative results, we further notice that the performance 
improvement of BigFWI compared to InversionNet on the original velocity maps is smaller than the one on the 
smoothed version. This is consistent with our previous observations where the improvement of BigFWI models 
on SB is always smaller than the one of SA. It points out a future direction where instead of simply combining all 
the datasets, we may bias towards SB dataset during training by generating more samples or training more steps 
on SB so that the model can yield better performance on the realistic cases with high-wavenumber components. 
In addition, we observe that InversionNet trained on SA achieves smaller RTM differences for the smoothed ver-
sion of Overthrust. The discrepancy in this case may be attributed to a velocity misfit, causing RTM image inter-
faces to be half-cycle shifted in depth, resulting in larger RMS and L2-norm values. However, the performance of 
the four models on the Overthrust-smooth is relatively comparable. Moreover, it is worth noting that although 
BigFWI achieves better results compared to InversionNet for both Marmousi and Overthrust, the performance 
is still insufficient for real-world applications, which indicates much space for improvement.

Discussion
This study is a preliminary investigation into the influence of big data on deep learning FWI methods, and there 
still exist some limitations and promising future directions. First, our study is entirely based on openfwi, which 
brings us not only convenience but also several inherent limitations. Although the Style Family in openfwi has 
made an effort to simulate the real-world velocity maps, there is still a gap between the synthetic data and field 
data. Our experiments are thus limited to simulations. It is an ongoing challenge for the whole FWI community 
to bridge this gap by either providing more public field data or improving the fidelity of the simulation. Second, 
in the present study, we only made minimal modifications to the network architecture of BigFWI. As a potential 
direction of future work, we may develop different network architectures to further improve performance. For 
instance, we observed during the qualitative analysis that the cross-domain training could lead to interference 
between datasets and inaccurate layer boundaries. Such issues could potentially be addressed by implementing 
an adaptive network architecture. Another challenge we plan to take into consideration when developing the 

Figure 8.   Comparison of ground truth (first column) and generalization results of different methods on 
Marmousi and Overthrust. For all velocity maps, Our BigFWIs yield more accurate results, especially in the 
shallow region of each velocity map as highlighted in squares.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20034  | https://doi.org/10.1038/s41598-024-68573-7

www.nature.com/scientificreports/

network architecture is how models can be generalized to various survey settings. Examples can be the size of 
the target velocity map, the type of source and the placement of source-receiver arrays. An existing method we 
can employ is Fourier-DeepONet42, which considers the generalization of frequencies and locations of sources. 
Another potential solution is to adapt Transformer43 or Vision Transformer44 with embeddings that encode the 
additional information. If this challenge is well-addressed, we will be able to include more diverse data during 
training, and the model will be more easily generalized to practical field applications. Third, throughout the 
experiments, we observe that the evaluation of inversion results is very complicated, and sometimes the dif-
ferences in visualization results cannot be reflected in the current quantitative metrics. Hence, new evaluation 
metrics should also be developed in future to better reflect inversion quality.

This study offers valuable insights into the inverse problem, which can contribute to the advancement of this 
concept in other domains, including medical imaging, climate modeling, and astronomy. The knowledge gained 
from this investigation can be leveraged to support the application of AI in scientific research and enhance its 
capabilities in these fields.

Conclusion
We presented an empirical study to determine the extent to which big data can benefit the deep learning models 
in FWI from three perspectives: model performance, the relationship between model size and data size, and 
model generalization. To accomplish this, we utilized the large-scale, publicly available datasets openfwi and 
designed the experiments to compare the performance of baseline InversionNet trained on relatively small-scale 
individual datasets with that of BigFWIs, which are trained on combined, large-scale datasets. Through both 
quantitative and qualitative analysis, our study has demonstrated that big data can significantly enhance the 
performance of deep learning models in FWI on both in-distribution and out-of-distribution data. Moreover, we 
have shown that model architectures need to be scaled with data size to achieve further improvement. We trust 
that our findings can provide valuable guidance for the future development of deep-learning-based FWI methods.

Data availability
OpenFWI data set can be downloaded from the website (https://​openf​wi-​lanl.​github.​io/).

Code availability
InversionNet codes are released and can be downloaded from the website (https://​github.​com/​lanl/​OpenF​WI/). 
The codes with the optimized memory-efficient data loading pipeline can be downloaded from the website 
(https://​github.​com/​PengJ​in95/​BigFWI)
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