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Maternal heart rate variability 
at 3‑months postpartum 
is associated with maternal mental 
health and infant neurophysiology
Annie Brandes‑Aitken 1*, Amy Hume 1, Stephen Braren 1, Denise Werchan 2, Maggie Zhang 1 & 
Natalie H. Brito 1

Previous research has demonstrated a critical link between maternal mental health and infant 
development. However, there is limited understanding of the role of autonomic regulation in 
postpartum maternal mental health and infant outcomes. In the current study, we tested 76 
mother‑infant dyads from diverse socioeconomic backgrounds when infants were 3‑months of age. 
We recorded simultaneous ECG from dyads while baseline EEG was collected from the infant; ECG 
heart rate variability (HRV) and EEG theta‑beta ratio and alpha asymmetry were calculated. Dyadic 
physiological synchrony was also analyzed to better understand the role of autonomic co‑regulation. 
Results demonstrated that lower maternal HRV was associated with higher self‑reported maternal 
depression and anxiety. Additionally, mothers with lower HRV had infants with lower HRV. Maternal 
HRV was also associated with higher infant theta‑beta ratios, but not alpha asymmetry. Exploratory 
analyses suggested that for mother‑infant dyads with greater physiological synchrony, higher 
maternal HRV predicted increased infant theta‑beta ratio via infant HRV. These findings support 
a model in which maternal mental health may influence infant neurophysiology via alterations in 
autonomic stress regulation and dyadic physiological co‑regulation.

The prevalence of postpartum mental health concerns among new mothers is on a disconcerting  rise1. This is 
especially concerning as maternal mental health in the perinatal period is known to shape the infant-caregiver 
relationship and consequent child  development2–4. However, previous research in this domain have primarily 
used self-reported measures of psychological distress. Self-report measures are prone to bias, resulting in both 
over and underreporting of symptoms and offer limited mechanistic insight. While self-report measures of mater-
nal mental health are considered the gold-standard in research, there are notable drawbacks of this approach. 
Namely, widely used self-reported perinatal mental health measures demonstrate poor cross-cultural  validity5, 
which raises concerns about the accuracy of these measures for diverse sociocultural populations. Thus, research 
evaluating objective measures that could offer more accurate assessments of depression and anxiety among new 
mothers is warranted. To better understand the biological mechanisms underlying individual differences in 
maternal mental health, physiological indices of maternal emotion regulation can be evaluated. Specifically, by 
examining the maternal stress physiology system, we can gain insights into how maternal psychological distress 
can influence infant outcomes. Research in this domain is imperative for advancing our understanding of the 
interplay between maternal well-being and child development.

Heart rate variability (HRV), a measure of the intervals between heartbeats, is a candidate marker of physi-
ological stress regulation that could help elucidate the relation between maternal mental health and infant 
outcomes. Heart rate variability (HRV) is commonly used to characterize the fast-acting autonomic nervous 
system (ANS). The ANS comprises two branches: the sympathetic (SNS) and parasympathetic (PNS) branches, 
representing the “fight-flight-freeze” and “rest and restore” stress systems, respectively. Although the precise 
physiological mechanisms contributing to heart rate variability (HRV) are still being explored, literature sug-
gests that HRV reflects the balance between sympathetic and parasympathetic nervous system activity and can 
be used to index physiological stress regulation, more  broadly6–8.

Past research proposes that HRV approximates the capacity for adaptive regulation of autonomic response 
to perceived threats and exert top-down cognitive control across the  lifespan9,10. Specifically, higher HRV is 
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associated with greater adaptive autonomic regulation and lower HRV is associated with more maladaptive 
responses to stress. For example, individuals with lower HRV are shown to be less effective at regulating incoming 
negative emotional stimuli relative to individuals with higher  HRV11. Critically, HRV is not a fixed construct but 
demonstrates individual-level fluctuations, both improvements and  disruptions12. Neurobiologically, it has been 
proposed that HRV is linked with the functional activation of neuroanatomical structures responsible for the 
detection of threat and  safety12,13. Thus, individuals who demonstrate consistent maladaptive threat awareness 
may also show lower HRV, indicative of heightened reactivity and inadequate recovery of the stress response. 
Continually elevated states of perceived stress can result in wear and tear on both physical and psychological 
well-being, impacting overall health and  mood14,15.

Maternal heart rate variability (mHRV) has predominantly been evaluated during the prenatal  period16,17. 
Studies in this domain have underscored the importance of mHRV in characterizing cardiorespiratory features of 
maternal health, with findings suggesting its predictive value for conditions like preeclampsia and other prenatal 
 complications18–20. Notably, lower prenatal mHRV scores have been associated with increased prevalence of anxi-
ety disorders during late  pregnancy17. Despite these insights, a significant gap exists in the literature regarding 
the replication of these findings in the postnatal period. Existing studies measuring mHRV within stress-induced 
contexts, such as the Still-Face paradigm, have revealed associations between mHRV responsiveness and symp-
toms of depression and  anxiety21–23. However, there is a lack of research evaluating mHRV at baseline, without 
any experimental emotion induction. Such studies are necessary to characterize ANS function independent of 
external stressors, given the documented links between baseline mHRV and prenatal mental health outcomes. 
The postpartum period is marked by significant physiological and emotional fluctuations as mothers adapt to 
childbirth and child-rearing25–27. Thus, the postpartum period is a critical phase for characterizing biological 
markers of effective stress regulation systems during this critical phase.

From a psychobiological perspective, assessing caregivers’ physiological stress regulation is crucial as caregiv-
ers play an important role in shaping their child’s own stress regulation system  development25,28–30. Infants are 
born with immature stress response systems, and thus rely on caregivers for stress  regulation24. This co-regulation 
can occur through behavioral (e.g., soothing) or covert physiological means (e.g., heart-rate synchrony)31,32. 
When caregivers struggle to manage their own physiological stress, it can lead to atypical patterns of autonomic 
stress regulation in their  infants33–36. This is because the developing infant ANS and brain are highly receptive 
to cues from  caregivers26,33,37,38. Indeed, research has shown that mHRV changes can regulate infants’ HRV in 
real-time during maternal breathing  exercises39. Consequently, the varied stress cues provided by caregivers may 
induce changes in the infant’s physiology, including  variability (HRV and neural  activity29,40.

Two candidate neural markers of infant cognitive and emotion regulation measured using EEG are theta-beta 
ratio and frontal alpha asymmetry, respectively. Theta-beta ratio is a relative EEG power metric that indicates the 
abundance of lower frequency power relative to high frequency power. It is believed to reflect the maturation of 
cortical-subcortical networks that support emerging attentional control  processes41,42. Indeed, research has found 
that higher theta-beta ratios (indicating more relative theta power) at 10 months is predictive of differences in 
cognitive control over one year  later43. Additionally, relative EEG power metrics are sensitive to variations in 
environmental input. Studies have shown that infants of higher stressed mothers exhibit higher relative theta 
power compared to higher frequency  power44,45. Relatedly, infant frontal alpha asymmetry has been predictive of 
later emotion regulation abilities in  childhood46–48 and has been suggested as a potential mechanism explaining 
intergenerational transmission of  depression49–51.

The current study leverages unique triadic data collected through concurrent recordings of maternal and 
infant ECG and infant EEG (N = 76) at 3-months of age. Our study objectives were threefold. Firstly, we examined 
the associations between mHRV and self-reported experiences of depression, anxiety, and stress. Secondly, we 
investigated how individual differences in average mHRV levels correlated with infant stress physiology and 
neural function. Lastly, in an exploratory analysis we examined dyadic physiological synchrony between infant 
and maternal HRV as a moderator and mediator of associations between mHRV and infant neurophysiology. 
To incorporate and consolidate diversity in HRV calculations, we employed factor analysis to derive a com-
posite mHRV factor score, encompassing frequency, and non-linear quantifications of heart rate activity. We 
chose a factor analysis approach primarily due to our theoretical assumption that the latent factor of autonomic 
regulation underlies observed HRV variables. Similar approaches have been adopted in studies linking HRV to 
cognition and mood in healthy  adults52. This factor score incorporated high-frequency (HF) band power, low-
frequency (LF) to HF power ratio, and a non-linear HRV measure, namely DFA Alpha 1, to assess the complexity 
and irregularity of heart rate dynamics. We hypothesized that lower mHRV would be associated with higher 
maternal reports of depression, anxiety, and perceived stress. We also hypothesized that higher mHRV would 
be concurrently associated with higher infant HRV, lower infant theta-beta ratios, and lower infant frontal alpha 
asymmetry.

Results
Heart rate variability (HRV) factor score
Using confirmatory factor analysis (CFA), we computed a single latent factor score for heart rate variability 
(HRV) using high-frequency (HF) band power, low-frequency to HF power (LFHF) ratios, and DFA Alpha 1. 
The decision to estimate a single factor score was justified by the significant correlations observed among HRV 
variables across different domains, see Table 1. The primary purpose of the CFA was twofold: (1) to estimate a 
robust latent measure of maternal autonomic regulation and (2) to enhance the measurement specificity of a 
mHRV score by reducing measurement error.
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Maternal HRV (mHRV), anxiety, depression, and perceived stress
For our primary research question, we evaluated associations among mHRV and maternal depression, anxiety, 
and perceived stress (Table 2). Results demonstrated a significant negative association between mHRV scores 
with maternal depression and anxiety. There was a trend-level negative association between mHRV scores with 
maternal perceived stress (See Fig. 1). In other words, mothers with lower mHRV reported significantly higher 
rates of depression and anxiety. Maternal age, income-to-needs ratio, maternal education, and resting HR were 
included as covariates but did not show a significant effect. State anxiety was positively associated with all mental 
health outcomes.

Maternal HRV (mHRV), infant HRV (iHRV), and infant neural markers
Next, we evaluated associations between mHRV scores with infant physiological and neural outcomes. We 
included infant age, sex, and maternal self-reported mental health using a factor score of the previously evaluated 
anxiety, depression, and perceived stress (See Table 3). Results demonstrated a significant positive association of 

Table 1.  Correlations among variables. Pearson correlations of key variables. Significant correlations in the 
hypothesized direction between primary variables provided rationale for subsequent regression models.

Variable M SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1. HF 
HRV 32.78 16.2

2. LFHF 
ratio 3.19 3.07 − 0.76**

3. DFA 
alpha 1.19 0.24 − 0.89** 0.74**

4. mHRV 
Factor 
Score 

0 0.98 0.98** − 0.81** − 0.96**

5. 
Maternal 
depres-
sion

5.6 4.4 − 0.24* 0.27* 0.16 − 0.24*

6. 
Maternal 
anxiety

33.24 10.5 − 0.2 0.22 0.1 − 0.19 0.75**

7. 
Maternal 
perceived 
stress

13.06 6.15 − 0.15 0.13 0.05 − 0.13 0.75** 0.77**

8. Mater-
nal rest-
ing HR

77.22 11.3 − 0.41** 0.49** 0.50** − 0.47** − 0.01 − 0.04 − 0.01

9. State 
anxiety 30.76 9.4 − 0.1 0.14 0.01 − 0.08 0.68** 0.86** 0.74** − 0.02

10. 
Income-
to-needs

5.31 5.51 − 0.17 0.04 0 − 0.11 − 0.06 0.01 − 0.12 − 0.26* − 0.04

11. 
Maternal 
age

32.86 5.45 0.07 − 0.08 − 0.08 0.11 − 0.01 − 0.03 0.01 − 0.27* − 0.05 0.30**

12. Infant 
HRV Fac-
tor Score

0 0.99 0.27* − 0.19 − 0.15 0.25* − 0.14 − 0.17 − 0.15 0.05 − 0.14 − 0.21 − 0.01

13. Infant 
theta-beta 
ratio

5.62 1.45 − 0.30* 0.38** 0.22 − 0.30* 0 − 0.03 − 0.08 0.16 0 0.1 − 0.17 − 0.34**

14. Infant 
frontal 
alpha 
asym-
metry

0.03 0.15 − 0.01 0.15 0.07 − 0.06 0.19 0.07 0.19 0.1 0.05 − 0.21 0.09 − 0.02 0.02

14. 
Dyadic 
physi-
ological 
syn-
chrony

0.04 0.29 − 0.04 0.03 0.07 − 0.05 0.13 0.26* 0.22 0.19 0.21 0 0.02 0.27* − 0.14 0.04

15. Infant 
age 
(months)

3.47 0.39 − 0.04 0.17 − 0.04 − 0.04 0.04 0.06 0.09 0.17 0.12 − 0.16 0.11 − 0.03 0.18 0.12 − 0.06

16. Gesta-
tional age 
(weeks)

39.21 1.23 0.07 − 0.17 − 0.09 0.08 − 0.16 − 0.12 0.04 − 0.02 0 − 0.11 − 0.08 − 0.08 − 0.26* − 0.02 0.05 − 0.27**
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mHRV with infant HRV (iHRV) and a significant negative association with infant theta-beta ratio values (See 
Fig. 2). In other words, for mothers with lower HRV, their infants also showed lower HRV and greater theta 
power relative to beta power. There were no significant associations with frontal alpha asymmetry. There were 
also no significant effects of the included covariates in our regression models.

Exploratory dyadic physiological synchrony analysis
We conducted an exploratory analysis to investigate if the coordination of mother-infant HRV may moderate 
the relationship between mHRV and infant neurophysiology. To calculate physiological synchrony, we applied 
0-lag cross-correlations within each dyad between 30-s HF HRV epochs, to estimate synchrony in respiratory 
sinus arrythmia (RSA)29,53. We then replicated the infant outcome regressions above but included a main effect 
term of physiological synchrony and an interaction term of physiological synchrony X mHRV (See full table of 
results in SI). With iHRV modeled as the dependent variable, there was a main effect of physiological synchrony 
(β = 0.26, p = 0.02) and an interaction effect of physiological synchrony X mHRV on iHRV (β = 0.25, p = 0.02). 
Analysis of simple slopes indicated that the positive association between average mHRV and iHRV was amplified 
among individuals with greater physiological synchrony (mean + 1 SD: β = 0.51, p = 0.001) relative to those with 
little to no physiological synchrony (mean − 1 SD: β = 0.01, p > 0.05; See Fig. 3a). Further, when the interaction 

Table 2.  Maternal mental health outcomes. FDR-Adjusted p-values ^ ≤ 0.10; * ≤ 0.05; ** ≤ 0.01; *** ≤ 0.001.

Depression Anxiety Perceived stress

Std. Beta (se) Std. Beta (se) Std. Beta (se)

mHRV − 0.30 (0.09)** − 0.16 (0.07)* − 0.15 (0.09)^

Income-to-needs − 0.06 (0.09) 0.04 (0.06) − 0.05 (0.08)

Maternal Education − 0.15 (0.09) − 0.12 (0.07) − 0.20 (0.08)

Maternal age 0.03 (0.11) 0.06 (0.08) 0.11 (0.09)

Maternal HR − 0.20 (0.1) − 0.07 (0.07) − 0.06 (0.09)

Maternal state anxiety 0.63 (0.06)** 0.84 (0.03)** 0.72 (0.05)**

R2 0.53 0.76 0.60

Figure 1.  Scatterplots with line of best fit reflecting associations of mHRV to maternal mental health outcomes.

Table 3.  Infant physiological and neural outcomes. FDR-Adjusted p-values ^ ≤ 0.10; * ≤ 0.05; ** ≤ 0.01; 
*** ≤ 0.001.

Infant HRV Theta/beta ratio Frontal alpha asymmetry

Std. Beta (se) Std. Beta (se) Std. Beta (se)

mHRV 0.37 (0.12)* − 0.31 (0.13)* 0 (0.15)

Infant age − 0.07 (0.1) 0.15 (0.11) 0.11 (0.12)

Gestational age − 0.13 (0.11) − 0.21 (0.11)^ 0.03 (0.12)

Maternal Mental health FS − 0.11 (0.11) − 0.11 (0.11) 0.16 (0.12)

Maternal HR 0.23 (0.12) − 0.02 (0.13) 0.09 (0.15)

R2 0.15 0.18 0.05
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term was added to the model, the R-squared increased from 0.15 to 0.28, suggesting that an additional 13% of the 
variance in infant HRV was explained by the physiological synchrony main effect and interaction terms. There 
were no main or interaction effects of physiological synchrony on infant EEG outcomes.

In a secondary exploratory analysis, our aim was to evaluate a theoretical pathway in which physiological 
synchrony regulates iHRV, consequently influencing infant neural activity. Specifically, we tested moderated 
mediation to evaluate if iHRV (conditional upon physiological synchrony) mediated the relationship between 
mHRV and theta-beta ratio. Our analysis revealed that the interactive effects between iHRV and physiologi-
cal synchrony played a mediating role in the association between mHRV and the theta-beta ratio (β = − 0.06, 
CI [− 0.26, − 0.003]; see Fig. 3b). Notably, the mediating role of iHRV was heightened among dyads exhibiting 
greater positive physiological synchrony (mean + 1 SD: β = − 0.13, CI [− 0.52, − 0.01]), compared to those with 
lower synchrony (mean − 1 SD: β = − 0.050, CI [− 0.003, − 0.00]).

Discussion
There is a pressing need to comprehensively understand the physiological underpinnings of maternal mental 
health during the perinatal period and its impact on infant development. In this study, we investigated maternal 
heart rate variability (mHRV) in relation to maternal mental health and evaluated associations between mHRV 
and infant neurophysiological outcomes at 3 months of age using concurrently recorded dyadic HRV and infant 
EEG. We present novel evidence of an association between an mHRV factor score and maternal self-reports 
of depression and anxiety symptoms. Additionally, we established an association between mHRV and infant 
neurophysiology. Finally, we found that dyadic physiological synchrony may amplify the link between mHRV 
and infant neural function through infant HRV. These findings reinforce mounting evidence highlighting the 
crucial role of caregiver well-being in infant  development35,45,54–56 and provide empirical support for a pathway 
by which caregivers may influence their infant through physiological co-regulation.

The first aim of this study was to evaluate whether a factor score of mHRV, which accounted for shared vari-
ance across multiple measures of HRV, was associated with maternal mental health. Controlling for socioeco-
nomic factors and situational anxiety, we found that higher mHRV was correlated with lower levels of depression 
and anxiety, but not perceived stress. Given that HRV is thought to reflect adaptive autonomic nervous system 
regulation, caregivers who are physiologically equipped to manage stress in their environment may be less likely 

Figure 2.  Scatterplots with line of best fit reflecting associations of mHRV to infant physiological and neural 
outcomes.

Figure 3.  A) Simple slopes plot representing the association of mHRV with iHRV at high (+ 1 SD above the 
mean) and low (− 1 SD above the mean) levels of physiological synchrony. B) Path model relating mHRV to 
iHRV, moderated by physiological synchrony, predicting theta-beta ratio.
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to experience psychological  distress12,57. Specifically, it has been posited that stronger ANS regulation may buffer 
an individual’s likelihood of developing mental health conditions such as depression and  anxiety58,59. Further, the 
null association between mHRV and perceived stress is consistent with previous research that has demonstrated 
a disconnect between physiological stress and perceived  stress60. In general, this finding adds to a growing body 
of literature linking physiological stress with mental  health20,57,61,62. These findings are aligned with research by 
Kimmel and colleagues demonstrating that lower prenatal HRV scores were associated with increased prevalence 
of anxiety disorders during late  pregancy17. Similarly, these findings also support past research demonstrating 
differences between HRV reactivity and regulation during caregiver-infant interactions based on symptoms 
of anxiety and  depression21,29. Our findings expand upon the existing literature by linking maternal HRV with 
normative variation in postpartum mental health experiences within a community sample of mothers.

Prior research has established that maternal psychological distress can interfere with the caregiver-infant rela-
tionship and subsequent child development 36,63–65. However, relatively little research has looked at the caregiver’s 
physiological states as a predictor of infant neural and physiological  function45,66,67. We found a positive relation 
between mHRV and infant HRV (iHRV), such that mothers with lower group average mHRV were more likely 
to have infants with lower group average iHRV. Given that infant and caregiver ECG was recorded simultane-
ously, we explored the possibility that the between-person associations in HRV were modulated by real-time 
physiological linkage occurring while the infant was seated on the caregiver’s lap. We found that physiological 
synchrony within dyads moderated the association between mHRV and iHRV across dyads. In other words, 
mothers with low mHRV were more likely to have infants with correspondingly low HRV if they exhibited high 
physiological synchrony, and vice versa for high mHRV. These findings suggest that physiological co-regulation 
may underlie the positive correlation observed between average mHRV levels and average iHRV levels across 
individuals, aligning with prior dyadic physiological synchrony  literature29,39,68–72. This finding is particularly 
notable considering that infants were positioned on their mothers’ laps during concurrent recording of dyadic 
ECG, suggesting evidence of real-time physiological co-regulation potentially facilitated by physical  touch73,74. 
These findings are aligned with prior dyadic synchrony literature demonstrating that experimental manipulation 
of maternal HRV shows moment-to-moment regulation effects of infant HRV during physical  touch39. Moreover, 
we found evidence of a main effect of physiological synchrony on iHRV, suggesting that greater synchrony is 
predictive of higher iHRV. This finding may be explained by research suggesting that physiological synchrony 
captures a critical aspect of the caregiver-infant dynamic, which may drive infant physiological regulation in 
and of  itself29,75.

Our results also demonstrate that higher mHRV scores were correlated with lower infant theta-beta ratios. 
Mothers who showed greater ANS regulation tended to have infants with increased high-frequency oscillations 
and lower low-frequency oscillations. Lower theta-beta ratios are neural signatures associated with increased 
top-down regulation and have been linked to increased attentional  control43. Thus, these findings would sug-
gest that children of caregivers with a more regulated physiological stress profile tend to showcase a pattern of 
neural function associated with greater cognitive control or regulation. Interestingly our regression models 
linking mHRV to iHRV and theta-beta ratio remained significant after controlling for a host of potentially 
confounding covariates including maternal mental health. This would suggest that above and beyond perceived 
psychological experiences, there is utility in measuring caregiver physiological functioning to better understand 
how caregivers regulate their infant in ways that could affect early trajectories of  development16,17. There were no 
significant associations between mHRV and infant frontal alpha asymmetry. This could possibly be explained by 
the ontogenetic development of brain specialization that underpins observed differences in alpha  asymmetry76. 
Infant brain hemispheres remains relatively unspecialized for the first months of life, particularly in the frontal 
cortex as this region of the brain follows as more protracted developmental  course77. Indeed, clearer evidence of 
cortical specialization emerges around 6-months of age, which may lead to more distinct individual differences 
in alpha asymmetry emerging at this  time50,78.

Interestingly, results did not demonstrate any significant interaction effects between mHRV and physiological 
synchrony on either infant neural outcome, suggesting that mHRV may not be regulating infant EEG directly via 
synchrony. This finding led us to conduct an exploratory path analysis evaluating indirect effects of mHRV on 
theta-beta ratio via the interaction of iHRV and dyadic physiological synchrony. Tests of indirect effects revealed 
that the association between mHRV and infant theta-beta ratio was mediated by iHRV, conditional upon level of 
physiological synchrony. To elaborate, for mother-infant dyads with high physiological synchrony, iHRV signifi-
cantly mediated the relation between mHRV to infant neural function. This could suggest that mothers regulate 
infant HRV via physiological synchrony, and in turn, infant HRV modulates neural  function22,79. Taken together, 
these findings provide preliminary evidence for a pathway through which maternal autonomic regulation may 
influence infant neural activity via co-regulation of infant’s autonomic nervous system.

Several limitations warrant careful consideration in the context of this study. First, our sample size is relatively 
modest. To strengthen the robustness of our findings, particularly the more complex moderated mediation 
analysis, future research should aim to replicate these results with a larger dataset. Furthermore, due to the cross-
sectional and observational nature of this investigation, it is crucial to acknowledge that causal directionality 
cannot be inferred. To address these limitations, future research should also measure contingent associations to 
explore the interplay between changes in concurrent mHRV and dynamic shifts in maternal mood and emotion. 
This line of inquiry could provide deeper insights into the intricate relationship between autonomic balance and 
maternal experiences and behaviors. Additional research is also needed to explore the potential mediating role 
of infant autonomic function in regulating neural activity. While these questions were not within the scope of 
present study, future endeavors are warranted to gain a deeper understanding of the interplay between maternal 
and infant neurophysiology. Lastly, future studies should aim to utilize longitudinal data to advance the field’s 
understanding of how individual differences in maternal autonomic regulation may have enduring impacts on 
infant development.
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The current study sought to investigate maternal autonomic functioning at three months postpartum, an 
important phase characterized by rapid biopsychosocial changes within caregiver-infant dyads. Our findings 
provide novel evidence in support of resting maternal heart rate variability as a robust indicator of caregiver 
mental health. Results also showed that higher maternal heart rate variability corresponded to infant neural EEG 
profiles associated with heightened attentional control. Moreover, analyses of dyadic physiological synchrony 
offer evidence for a pathway by which maternal autonomic regulation could impact infant neurophysiology 
activity through the co-regulation of the infant’s autonomic nervous system function. Together, our findings 
emphasize the importance of assessing the biological underpinnings of caregiver stress during the postnatal 
period. This knowledge could facilitate the early identification of caregivers in need of additional support due to 
mental health concerns, highlighting the potential significance of this research in clinical practice.

Methods
Participants
Infants and their mothers were recruited through diverse channels, including community events, family services, 
healthcare providers, and flyers distributed at local businesses in the New York metropolitan area. These partici-
pants were originally enrolled in a larger longitudinal study conducted between May 2018 and December 2019. 
To be eligible for the present study, participants were excluded if their child was born before 36 weeks gestation, 
if they had multiple births, or if the child had a developmental disorder. We recruited 104 participants into the 
study, however, data loss occurred at various stages of the data collection and processing, resulting in a usable 
sample size of N = 76 (See Table 4).

Detailed demographic information for the participants can be found in Table 5. The study was conducted 
in accordance with the principles outlined in the Declaration of Helsinki, and written informed consent was 
obtained from a parent or legal guardian before any assessments or data collection occurred. All research pro-
cedures were approved by the New York University Institutional Review Board (IRB).

Protocol
Families visited the lab when their infant was approximately 3 months of age. During the visit, ECG was recorded 
from mother and infant while EEG was simultaneously recorded from the infant. Mothers also completed 
responses to socio-demographic and mental health questionnaires.

Measures
Family and household characteristics
Questionnaires collected information on demographic factors such as maternal and infant age, race, and ethnic-
ity. Additionally, caregivers provided details regarding their highest level of education completed and the annual 
household income. To assess the socioeconomic status of the families, the income-to-needs ratio (ITN) was 
calculated by dividing the total household income by the federal poverty line that corresponds to the number 
of adults and children in the household.

Maternal mental health
We collected surveys of maternal depression, anxiety, and stress to capture mothers perceived mental health 
states. Maternal depression was measured using the Edinburgh Postnatal Depression  Scale108 and maternal anxi-
ety was measured using the State-Trait Anxiety  Inventory109. The Edinburgh Postnatal Depression Scale (EPDS) 
consists of ten items that capture various aspects of mood and emotional well-being. Each item is scored on a 
four-point Likert scale with higher scores indicating a higher level of depressive symptoms (Cronbach’s alpha 
range between 0.73 and 0.87). The State-Trait Anxiety Inventory (STAI) assesses two aspects of anxiety: state anxi-
ety and trait anxiety. The state anxiety domain measures in-the-moment experiences of temporary anxiety while 
the trait anxiety domain measures chronic trait-like experiences of anxiety. Item responses are scored on a four-
point Likert scale with higher scores indicating greater anxiety (Cronbach’s alpha range between 0.86–0.95). For 
the current analysis we used the STAI trait anxiety total score as a primary outcome. State anxiety was included 
as a covariate to control for any contextual experiences of temporarily heighted anxiety during experimental 
testing. Maternal perceived stress was measured using the Perceived Stress Scale (PSS; Cohen et al.110). The PSS is 
a 14-item questionnaire that asks the respondent to report on their levels of experienced stress in situations dur-
ing the past month. The perceived stress score was the summed score across all items (Cronbach’s alpha > 0.70).

Confirmatory factor analysis (CFA) was used to derive a composite factor score of maternal mental health 
for use in all infant outcome models. The factor analysis used the total score from the EPDS, STAI trait, and PSS. 
All variables significantly loaded (p < 0.001) on the fully saturated CFA model, indicating strong associations. Fit 

Table 4.  Data attrition.

Data loss due to

Recruited Parent declined or infant fussiness Technical issues Excessive noise within data Usable data

Mom ECG 104 8 9 11 76

Infant ECG 104 8 8 4 84

Infant EEG 104 9 6 11 78
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indices suggest excellent fit. (CFI = 1.0, TLI = 1.0, Chi-square = 172.21 p = 0.00, RMSEA = 0.00 [90% CI 0.00–0.00], 
SRMR = 0.00).

EEG data acquisition & processing
Resting EEG data were acquired while infants watched a video of engaging, non-social stimuli (e.g., bubbles, 
spinning wheel) while seated on their caregivers’ laps. The recording room was dimly lit and an experimenter was 
nearby to soothe the infant with bubbles or a toy if the infant became too fussy. Infants provided between 42 and 
600 s (M = 406, SD = 142) of baseline data. EEG was recorded using a 64-channel HydroCel Geodesic Sensory Net 
(Electrical Geodesic, Inc., Eugene, OR) and amplifier (Electrical Geodesic, Inc., Eugene, OR; EB NEURO S.p.A., 
Firenze, Italy). Electrode impedances were kept below 100 KΩ and the sampling rate was recorded at 1000 Hz.

All EEG files were processed in batch using an electroencephalography automated processing platform 
(BEAPP) software to ensure standardization in data processing and cleaning across all files (See Fig. 5)80. Con-
tinuous resting EEG files were converted from NetStation format to Matlab format. Data preprocessing was car-
ried out using the Harvard Automated Processing Pipeline for EEG (HAPPE V.1), an automated preprocessing 
pipeline designed for infant EEG  data81. First, a 1 Hz high-pass and 100 Hz low-pass filter was applied to each 
EEG recording. Second, the data, which was originally sampled at 1000 Hz was resampled with interpolation 
to 250 Hz, following guidelines for further HAPPE processing. The third step involved artifact removal and 
included CleanLine’s multitaper approach to removing 60 Hz electrical noise, bad channel rejection, and wavelet-
enhanced ICA for artifact rejection with automated component rejection through the Multiple Artifact Rejec-
tion  Algorithm82 in EEGLAB. A subset of spatially distributed electrodes was selected for analysis with MARA: 
E2, E3, E5, E9, E10, E11, E12, E13, E14, E18, E20, E24, E25, E28, E30, E31, E35, E39, E40, E42, E44, E48, E50, 
E52, E57, E58, E59, E60 (NetStation Geodesic 64- Channel Net). Bad channels that were initially rejected were 
repopulated using spherical interpolation to reduce bias in re-referencing and the signal was mean detrended. 
Finally, each EEG file underwent segmentation into 2-s windows, with each segment subsequently evaluated 
for residual artifacts. On average, 24 segments were rejected per file (SD = 10, range = 0–48). Segment rejection 
thresholds were determined according to HAPPE’s automated rejection  criteria81, which uses amplitude thresh-
olding and assessment of segment likelihood using joint probability calculations. EEG power decomposition 
was accomplished using Fast Fourier transformation using a multitaper windowing (3 windows) to decompose 
power into 2-s segments for each channel.

We calculated power in low and high discrete frequency bands, specifically spectral power was computed for 
Theta (4–6 Hz), Alpha (6–9 Hz), and Beta (13–20 Hz). Relative power at each channel was computed by sum-
ming the power within each frequency band, averaging across all segments, and then dividing by the total power 

Table 5.  Demographics.

Mean (SD); N (%)

Caregiver age 33 (5)

Caregiver_Ethinicity_Cat

 Hispanic/Latino 37 (50%)

 Not Hispanic/Latino 37 (50%)

 Unknown 2

Caregiver Race

 American Indian/Alaskan native 2 (2.7%)

 Asian 7 (9.5%)

 Black/African–American 10 (14%)

 Two or more races 29 (39%)

 White 26 (35%)

 Unknown 2

Relationship status

 Divorced 2 (2.7%)

 Living together 11 (15%)

 Married 50 (67%)

 Single-never married 12 (16%)

 Unknown 1

 Income-to-needs 5.5 (5.6)

 Education (years) 15.7 (3.8)

 Gestation 39.25 (1.18)

 Infant age (months) 3.48 (0.39)

Infant sex

 Female 26 (34%)

 Male 50 (66%)
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spectrum (2–50 Hz). Two measures of infant neural activity were calculated. First, we computed the theta-beta 
ratio using whole brain electrodes (See Fig. 4A) to obtain a neural measure indicating the higher abundance of 
EEG frequencies compared to lower frequencies by dividing relative beta by relative theta. An increased propor-
tion of slow wave (theta) oscillations relative to fast wave oscillations (beta) has shown associations with reduced 
attentional control during infancy 83–85. Furthermore, higher theta-beta ratios during infancy are predictive of 
lower cognitive control later in  childhood43,86,87. We also calculated frontal alpha asymmetry to derive a neural 
marker of emotion regulation by subtracting log-transformed right frontal hemisphere power values from left 
frontal hemisphere power values (See Fig. 4B)50,88. Alpha asymmetry during infancy has been correlated with 
emotion regulation  development56.

ECG data acquisition & processing
Dyadic ECG data was collected while infants were seated on their mother’s laps during infant EEG acquisition 
using a Physio16 (EGI) device (See Fig. 5). Mothers and infants provided an average of 200 + /- 72 s of resting 
ECG data (min = 23 s, max = 385 s). Data were edited and processed using the software  QRSTool89 to remove 
artifacts and identify heartbeats. R-R intervals were extracted from the processed ECG data. We calculated 3 dif-
ferent indices of heart rate variability that have been associated with autonomic nervous system (ANS)  activity6,90. 

Figure 4.  Schematic illustration of the processing pipelines used for ECG and EEG analysis.
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All HRV features were calculated with  pyHRV91, a reliable Python signal processing toolbox. Seconds of provided 
ECG data were not significantly correlated with any of the HRV variables (p’s > 0.21).

Within the frequency domain of the ECG signal, we calculated high-frequency power (HF) and the ratio of 
low-frequency to high-frequency power (LF/HF) to evaluate the degree to which heart rate is distributed across 
 frequencies92,93. To calculate frequency domain metrics, the RR signal is transformed using fast Fourier trans-
formation to estimate the signal’s power spectral density (PSD) using Welch’s method. Absolute (sum of power) 
and log-transformed power was estimated within LF (0.04–0.15 Hz) and HF (0.15–0.40 Hz) discrete frequency 
bands for mothers and LF (0.04–0.24 Hz) and HF (0.24–1.04 Hz) for  infants39,92,94,95. HF power was normalized 
to the entire power spectrum to correct for skew in the distribution. The LF/HF ratio is calculated by dividing 
the total absolute power of the LF band by the total absolute power of the HF band and multiplying by 100.

Finally, non-linear quantitative approaches were used to capture the aperiodic dynamics of HRV  activity96. 
DFA alpha 1, a scaling exponent, was computed through the following steps:

(1) Integration of the total time series signal; (2) Division of the integrated signal into segments of equal 
length; (3) Subtraction of a linear least square regression line within each segment to detrend the data; (4) Appli-
cation of Root-Mean-Square fluctuation analysis to each detrended segment; (5) Repetition of the analysis using 
varying segment sizes to capture the relationship between fluctuation and time scale For DFA alpha 1, segments 
ranging from 4 to 16 heartbeats were analyzed (see Fig. 6); (6) Generation of a logarithmic plot to examine this 
relationship; (7) Fitting a linear regression line to the log–log plot to obtain DFA alpha 1, where the slope repre-
sents the scaling exponent. DFA alpha 1 allows us to extract correlations between successive RR intervals over 
different time scales, offering insights into the underlying physiological mechanisms and regulatory dynamics 
of the cardiovascular system. Short-term DFA correlations reflect the activity of the baroreceptor  reflex97. The 

Figure 5.  Illustration of a log–log plot depicting the scaling exponent used to calculate DFA alpha 1 from a 
participant.

Figure 6.  CFA of maternal HRV and infant HRV with factor loadings.
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baroreceptor reflex is a physiological mechanism that helps regulate blood pressure. In response to changes in 
blood pressure, the baroreceptor reflex mediates a coordinated response through the ANS. Activation of the 
baroreceptor reflex leads to inhibition of the sympathetic nervous system and activation of the parasympathetic 
nervous system.

Using confirmatory factor analysis (CFA), we computed a single latent factor score for heart rate variability 
(HRV) using the four indices. To assess the goodness of fit of the CFA model, we employed several fit indices, 
namely the Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), Standardized 
Root Mean Square Residual (SRMR), and Tucker-Lewis Index (TLI). These indices provided valuable information 
about the adequacy of the model in representing the observed data. All CFA analyses were performed using the 
Lavaan package in  R98. Findings indicated that all indicator variables loaded significantly on the HRV factor score 
(p < 0.001), providing support for the validity of the factor structure. The model fit statistics indicated good fit to 
the data (CFI = 1.00, TLI = 1.00, Chi-square = 186.00 p = 0.00, RMSEA = 0.000 [90% CI: 0.00–0.00]; SRMR = 0.000). 
These results confirm that the four HRV indices were meaningfully associated with the latent HRV factor score. 
The excellent fit of the model and the significant factor loadings suggest that the HRV factor score provides a 
comprehensive representation of maternal HRV, encompassing different domains of measurement. We replicated 
the CFA model using infant HRV indices and found a similar outcome. All indices loaded significantly on the 
latent HRV factor score and the model fit statistics indicated excellent fit to the data (CFI = 1.00, TLI = 1.00, Chi-
square = 230.38 p = 0.00, RMSEA = 0.000 [90% CI: 0.00–0.00]; SRMR = 0.000).

Dyadic physiological synchrony analysis
To compute a metric for dyadic physiological synchrony, we calculated HF HRV on 30-s epochs of mother-
infant IBI data using the same established pipeline and parameters utilized for the HRV factor score. We chose 
to calculate HF HRV for the synchrony analysis as HF HRV is associated with Respiratory Sinus Arrhythmia 
(RSA), which is commonly studied in the context of dyadic physiological synchrony in existing  literature68,69,99,100. 
Physiological synchrony between maternal and infant HRV was assessed for each dyad by computing 0-lag 
cross-correlations on linearly detrended IBI  epochs101 to investigate concurrent changes in parent-infant ANS 
activity. Only dyads with at least 2 min of usable ECG data were included in the synchrony analysis (5 dyads 
were removed for having less than 2 min of ECG). Cross-correlations were computed using the tseries package 
in  R102. The cross-correlation coefficient for each dyad was subsequently utilized as an independent variable in 
subsequent analysis. Thus, positive cross-correlation coefficients reflect synchrony, whereas coefficients that 
are 0 or negative reflect a lack of synchrony. Moreover, we refer to higher and lower synchrony values relative 
to sample averages, where high is + 1 SD above the sample average and low is − 1 SD below the sample average 
(Supplementary Table 1).

Data analysis
The overall aim of our analysis is to evaluate the relationship between maternal heart rate variability (HRV) with 
maternal mental health and infant neurophysiological activity. Our analysis involved several statistical techniques 
to explore these associations and address our research questions. First, we conducted Pearson correlations to 
explore the relations between all numeric maternal HRV variables and both maternal and infant outcomes. This 
analysis allowed us to assess the strength and direction of the correlations between the variables of interest. Next, 
we constructed multiple regression models to address our primary research questions regarding the relationship 
between maternal HRV with mental health and infant neurophysiological function at 3 months of age. In the 
first set of regression models, we included maternal depression, trait anxiety, and perceived stress as dependent 
variables, while maternal HRV was included as the independent variable. Additionally, we included income-to-
needs, maternal age, and maternal resting heart rate (HR), and situational state anxiety as covariates to account 
for their potential influence. Situational state anxiety was included as a covariate in our first set of models to 
account for potential short-term experiences of heightened anxiety resulting from testing within an unfamiliar 
laboratory environment, which could influence HRV  readings103. In the second set of regression models, we 
examined the association between maternal HRV factor score with infant HRV factor score and two infant 
neural outcomes: theta-beta ratio and alpha asymmetry. In the exploratory physiological synchrony analysis, we 
employed tests of statistical moderation using grand-mean centered mHRV and synchrony scores to compute 
the interaction term. Significant interactions were probed at one standard deviation below (lower physiological 
synchrony) and above (higher physiological synchrony) the  mean104. Maternal reported mental health factor 
scores, maternal resting HR, infant age, and gestational age were included as covariates in all models. Maternal 
resting HR was included as a covariate in our regression models given the high covariance between HRV and 
resting  HR16. Statistical mediation tests employed bootstrapping with 5000 samples to generate bias-corrected 
confidence intervals for indirect  effects105. To increase model parsimony and reduce overfitting, non-significant 
covariates were removed from the final path analysis.

We screened all regression models for influential outlier data points by examining studentized residuals 
using the outlierTest function from the car package in  R106. Outliers were identified using a threshold of 3, and 
the Bonferroni correction method was applied to adjust for multiple comparisons. Only one outlier was identi-
fied when maternal anxiety was modeled. This individual was removed from the final model. Full information 
maximum likelihood (FIML) was used to account for missing data in all analyses, as FIML produces unbiased 
parameter estimates. All mHRV p-values reported were adjusted for multiple comparisons (3 p-values per fam-
ily of test) using Benjamini–Hochberg procedure for false discovery rate (FDR)  correction107. All models were 
run in the R environment.
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