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Response of hypoxia to future 
climate change is sensitive 
to methodological assumptions
Kyle E. Hinson  1,5*, Marjorie A. M. Friedrichs  1*, Raymond G. Najjar  2, Zihao Bian  3, 
Maria Herrmann  2, Pierre St‑Laurent  1 & Hanqin Tian  4

Climate-induced changes in hypoxia are among the most serious threats facing estuaries, which 
are among the most productive ecosystems on Earth. Future projections of estuarine hypoxia 
typically involve long-term multi-decadal continuous simulations or more computationally efficient 
time slice and delta methods that are restricted to short historical and future periods. We make a 
first comparison of these three methods by applying a linked terrestrial–estuarine model to the 
Chesapeake Bay, a large coastal-plain estuary in the eastern United States. Results show that the 
time slice approach accurately captures the behavior of the continuous approach, indicating a minimal 
impact of model memory. However, increases in mean annual hypoxic volume by the mid-twenty-first 
century simulated by the delta approach (+ 19%) are approximately twice as large as the time slice and 
continuous experiments (+ 9% and + 11%, respectively), indicating an important impact of changes 
in climate variability. Our findings suggest that system memory and projected changes in climate 
variability, as well as simulation length and natural variability of system hypoxia, should be considered 
when deciding to apply the more computationally efficient delta and time slice methods.

Climate change is expected to reduce oxygen (O2) levels in the coastal zone, expanding existing hypoxic 
(O2 < 2 mg L−1) regions and creating new ones, causing substantial harm to coastal ecosystems1,2. Observed 
increases in coastal hypoxia globally are driven by increasing anthropogenic inputs of excess nutrients, decreased 
O2 solubility in a warmer world, and more rapid rates of microbial activity3. Accurate projections of estuarine O2 
concentrations are necessary for developing management strategies that reduce the negative impacts of increas-
ing hypoxia. However, Earth System Models (ESMs) used to simulate global future climate have limited spatial 
and temporal resolution, which cannot be improved without substantial computational costs. As a result, ESMs 
are currently unable to simulate the rapid and critical biogeochemical interactions within coastal environments4 
that regulate estuarine hypoxia. While ongoing efforts to improve ESM spatial resolution have demonstrated 
improved skill in some nearshore regions5,6, these efforts remain few in number, and have not been used to 
evaluate a full set of emission scenarios7.

The challenge of projecting climate impacts in the nearshore environment may be partially circumvented by 
forcing coastal ocean models and the watersheds that feed them with downscaled climate projections7. This may 
be done via the direct application of downscaled ESM forcings to a regional coastal ocean–watershed model over 
a multi-decadal period (a Continuous experiment) or, in order to reduce computational cost, in discrete intervals 
(a Time Slice experiment). The potential downside to the Time Slice approach is the assumption that the memory 
in the watershed and ocean models is much shorter than the time interval of the experiment. The addition of 
a “delta” that perturbs a historical simulation by the difference between future and historical ESM conditions, 
referred to here as a Delta experiment, has the advantage of comparing to a single historical simulation and hence 
has an additional computational advantage over a Time Slice experiment when multiple ESMs are considered. 
However, the Delta approach, typically implemented by modification of the mean annual cycle, suffers from 
the assumption that interannual and sub-monthly variability in the climate forcing remains unchanged. This 
assumption is of particular concern because greenhouse warming is leading to increased variability, especially 
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through increases in extreme precipitation events8. It is important to note that only a Continuous experiment 
can fully simulate the evolution of changes in model dynamics.

Comparisons of these techniques using statistically downscaled climate projections have been evaluated in 
multiple terrestrial ecosystems. For example9, showed differing impacts of time slice and delta methods based on 
the limited hindcast skill of downscaled general circulation models in multiple mountainous U.S. watersheds10. 
found that a delta approach increased extreme discharge events in the Rhine River watershed more than time 
slice forcings. In addition11, reported that their application of the delta method underestimated peak flows relative 
to a time slice approach. To our knowledge, no analysis of this sort has been done in coastal systems, and thus 
consequences for coastal water quality and marine biogeochemistry are largely unknown.

The Chesapeake Bay is a coastal ecosystem that has been intensively studied and monitored for decades, with 
robust scientific support for actions needed to increase dissolved oxygen concentrations and achieve water quality 
restoration goals12 in the face of climate change stressors. Better quantifying climate change impacts on dissolved 
oxygen is a high priority for Bay regulatory agencies13,14, and numerous previous studies have found that Bay 
hypoxia will primarily be worsened by increasing atmospheric temperatures15–17. However, large uncertainties 
associated with future hypoxia remain, as these projections are influenced by the choice of ESM, downscaling 
methodology, and watershed model18, as well as by diverging emission pathways later this century8. Additional 
methodological uncertainties also remain as most estuarine modeling studies in this region have applied a delta 
methodology15–18; until now, no continuous climate change simulations examining impacts on hypoxia over the 
twenty-first century have been published for the Chesapeake Bay.

In this study, the impact of climate forcing methodology (Fig. 1, Table 1) on mid-twenty-first century hypoxia 
projections under a business as usual emissions scenario8 is evaluated in a case study for the Chesapeake Bay 
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Figure 1.   Schematic illustrating the Delta, Continuous, and Time Slice experiments. The Delta experiment 
corresponds to a 10-year experiment that retains the climatological pattern of baseline conditions in the future, 
where a climate delta is computed from the difference in the average annual cycle of a baseline and future 
30-year period. The Continuous experiment is an uninterrupted simulation from 1980 to 2065. The Time Slice 
experiment represents a baseline and future simulation forced by the same conditions as in the Continuous 
experiment, but without any inclusion of years between these periods. The baseline conditions are the same for 
both the time slice and delta experiments.

Table 1.   Model experiments, initial conditions, and boundary conditions. a The continuous experiment is 
analyzed over 30-year and 10-year baseline (1981–2010 and 1991–2000) and future (2036–2065 and 2046–
2055) periods. Both sets of analyses described in the results are derived from the same Continuous experiment.

Experiment Terrestrial model—DLEM Estuarine model—ChesROMS-ECB

Continuousa (1980–2065)
Initial conditions: 1900–1980 spinup with observed forcing
Boundary conditions: Daily MACA ESM atmospheric temperature, 
precipitation, and net shortwave radiation

Initial conditions: 1980–1983 spinup with Daily MACA ESM forcing
Boundary conditions: daily MACA ESM atmospheric forcings
Monthly ocean boundary temperature, sea surface heights from ESM. 
New saturated oxygen concentrations calculated

Delta (1991–2000, 2046–2055)
Initial conditions: 1900–1990 spinup with observed forcing
Boundary conditions: monthly delta MACA ESM atmospheric 
temperature, net shortwave radiation, and precipitation applied to 
baseline

Initial conditions: 1991–1993 spinup with Daily MACA ESM forcing
Monthly delta MACA ESM atmospheric inputs applied to daily 
baseline conditions
Boundary conditions: delta monthly changes applied to daily ocean 
temperatures and sea surface heights. New saturated oxygen concen-
trations calculated

Time Slice (1991–2000, 2046–2055) Same as continuous experiment, with starting conditions set equal to 
baseline boundary conditions in delta experiment

Same as continuous experiment, with starting conditions set equal to 
baseline conditions in delta experiment
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(Fig. 2). Specifically, a Continuous climate change scenario is compared to two other scenarios, using the Time 
Slice and Delta methods. Here, the Time Slice experiment is forced by the same atmospheric, oceanic, and 
terrestrial inputs as the Continuous experiment, but differs from the Continuous experiment in that the years 
between the two time slices are not simulated. An added perturbation to the baseline climatology is used for 
the future Delta experiment, meaning that the seasonality and interannual variability of a future scenario is 
limited by what occurred in the baseline period. Both the Time Slice and Delta experiments therefore require 
far fewer computational resources to simulate their respective future scenarios, but neither experiment retains 
effects from the ecosystem memory of intervening years. A comparison of the Continuous and Time Slice 
experiments will test the assumption of the Time Slice approach, specifically that terrestrial and estuarine model 
memory has a modest impact on estuarine hypoxia. A comparison of the Continuous and Delta experiments 

Figure 2.   ChesROMS-ECB model grid and bathymetry with river input locations from the terrestrial model 
(DLEM). The dashed white line corresponds to a transect of the estuary’s main deep channel.
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will test the assumption that changes in interannual and submonthly climatic variability have a modest impact 
on future estuarine hypoxia. Additional Watershed Bypass and Estuary Bypass experiments are also conducted, 
wherein either the watershed model or the estuarine model is spun up and initialized from future forcings on 
baseline conditions, rather than using Continuous experiment results at the start of a future period. These Bypass 
experiments will evaluate whether the watershed or estuarine model memory, respectively, contributes most to 
differences between the Continuous and Time Slice experiments. The results of these experiments will inform 
environmental managers and practitioners about the limitations and benefits of using particular techniques for 
climate impact studies for coastal systems globally.

Results
Future changes in precipitation, discharge and nutrient loading
Although total future increases in precipitation were equivalent among all experiments, the intensity distribution 
of this additional volume varied substantially (Fig. 3a). In the 30-year Continuous experiment, for example, pre-
cipitation volume decreased by ~ 2–5% for the bottom 10–30% of daily events (P10-P30) and increased by ~ 4–8% 
in the highest (P80–P100) events. Time Slice experiment results were similar to those of the 30-year Continuous 
experiment, differing slightly because of unequal simulation length. The Delta experiment showed a markedly 
different pattern, with consistently increasing precipitation among all percentile ranges relative to its baseline.

The distribution of future changes in freshwater discharge (Fig. 3b) was quite different from that of precipita-
tion, particularly for the Delta experiment. Specifically, the Delta experiment decreased future discharge in lower 
intensity events (< P60) despite consistent increases in precipitation during low precipitation events (Fig. 3a). 
The changes in the distributions of discharge in the Continous and Time Slice experiments were very similar 
when evaluated over the same 10-year periods, indicating minimal effect of watershed memory on discharge. 
All three experiments indicated an increase in future precipitation (~ 5–6%; Fig. 3a) and a decrease in future 
discharge (3–5%; Fig. 3b), indicating that warming-induced increases in evapotranspiration exceeded precipita-
tion increases, similar to what was found for large ensemble of simulations in the same system19.

Future nutrient loadings were influenced by these patterns in future precipitation and discharge. Changes to 
average nitrate loadings varied substantially, decreasing in the 30-year and 10-year Continuous experiments by 
3.8% and 1.8%, respectively, and increasing by 5.7% and 3.5% in the Delta and Time Slice experiments, respec-
tively (Fig. 4). This difference in sign of average nitrate loadings was largely due to the substantial difference in 
flow-weighted nitrate concentrations, which increased by 2.0%, 4.6%, 9.3%, and 9.1% in the 30-year Continu-
ous, 10-year Continuous, Delta, and Time Slice experiments, respectively. That the Continuous and Time Slice 
results differ when evaluated over the same 10-year periods indicates an impact of watershed memory on nitrate 
loading, in contrast to the finding for discharge.

Future estuarine changes
Future changes to estuarine physical variables based on changes to estuarine, oceanic and atmospheric forcing 
(see supplementary Table S1) were similar among all experiments (Fig. 5). Individual years in the future Time 
Slice experiment (2046–2055) for temperature, salinity, and oxygen are essentially identical to those of the Con-
tinuous experiment, indicating a minimal impact of model memory. Average surface and bottom temperatures 
were nearly identical among all experiments; the average increase in surface and bottom temperatures for all 
experiments were 2.1 °C and 2.0 °C, respectively (Fig. 5a,b). Absolute values of baseline and future salinities were 
also highly similar for all experiments, resulting in increases of 1.1 units for the 30-year Continuous and Delta 
experiments, and 1.3 to 1.4 units for the 10-year Continuous and Time Slice experiments (Fig. 5c,d). Addition-
ally, all experiments showed similar decreases in average surface (− 0.35 to − 0.41 mg L−1) and bottom (− 0.44 to 
− 0.50 mg L−1) O2 levels (Fig. 5e,f). In order to assess watershed and estuarine model memory individually, two 
additional Time Slice experiments were performed that individually accounted for the ecosystem memory of 
the terrestrial model and estuarine model, respectively. Simulated changes to temperature, salinity, and oxygen 
in the additional Bypass experiments were highly similar to the Time Slice experiment, consistent with a mini-
mal impact of model memory, although the Annual Hypoxic Volume (AHV) computed for the Estuary Bypass 
experiment (AHV = 1339 km3 d) more closely matched the 10-year Continuous experiment (AHV = 1336 km3 
d; Table 2) than did the Watershed Bypass experiment (AHV = 1328 km3 d).

The progression of average monthly changes to O2 and apparent oxygen utilization (AOU, which is affected 
by biogeochemical processes only) along the Bay’s mainstem showed an increasingly accelerated seasonal cycle 
of hypoxia (Fig. 6). 30-year Continuous experiment results showed that O2 decreases were large in January and 
February (Fig. 6a). Given the small changes in AOU during these months (Fig. 6b), these large O2 decreases must 
reflect large decreases in solubility, which is most sensitive to temperature during the winter. In this experiment, 
a larger spring bloom was initiated earlier from March to May. This resulted in greater production that slightly 
increased surface O2 and greater remineralization that decreased O2 throughout the majority of the rest of the 
water column. In May, decreasing O2 levels reached the hypoxia threshold (magenta line) and main stem hypoxic 
volume expanded relative to average baseline conditions (black dotted line) both upwards in the water column 
by ~ 1.5 m and further south by ~ 7 km (Fig. 6a). From June to August, average O2 concentrations continued to 
decrease in the upper 10 m in the upper half of the Bay, but the latitudinal extent of hypoxia retreated north-
wards slightly (Fig. 6a). In August, there was a substantial deficit in nutrients available for primary production, 
particularly in the southern half of the Bay, leading to large increases in AOU in the upper 5–10 m throughout 
the majority of the Bay (Fig. 6b). Throughout the summer, biological oxygen demand at the bottom was also sub-
stantially reduced (Fig. 6b), increasing O2 in bottom and mid-depth waters throughout the mid-Bay. This region 
of improving O2 largely dissipates by September and October, and Bay O2 decreases throughout the remainder of 
the year (Fig. 6a), affected to a smaller extent by changes in production and remineralization (Fig. 6b). The spatial 
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Figure 3.   Mid-twenty-first century percent changes to average volume for levels of daily (a) precipitation and (b) 
freshwater discharge, expressed as percentile ranges, where P10 encapsulates the bottom 10% of each experiment’s 
respective baseline volumes, P20 the lower 10–20% of all daily amounts, etc. The Total set of bars corresponds to the 
average change among all precipitation (a) and discharge (b) daily levels. Percent change is calculated by computing the 
difference between a mid-twenty-first century future period and late twentieth century baseline period. The baseline 
and future periods for the 30-year Continuous experiment correspond to 1981–2010 and 2036–2065, respectively. The 
baseline and future periods for all other experiments correspond to 1991–2000 and 2046–2055, respectively (Table 1). 
Changes to precipitation model forcings for the Continuous experiment over 10 years are identical to the Time Slice 
experiment in (a).
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patterns of monthly changes to O2 and AOU were largely similar for the Delta and Time Slice experiments (see 
supplementary Figs. S1 and S2). Since the future atmospheric and oceanic forcings to the estuary were similar 
between these experiments, the differences in the magnitude of O2 changes presumably were dependent on the 
timing and amount of future watershed loadings.

Substantial differences in O2 concentrations among the experiments also affected projected levels of future 
hypoxic volume (Fig. 7). This effect was particularly notable for average AHV; the Continuous experiment 
increased AHV over the 30-year and 10-year periods by 11 ± 6% and 9 ± 9%, respectively (average ± standard 
error), while the Delta and Time Slice experiments, which used a 10-year averaging period, increased average 
AHV by 19 ± 9% and 9 ± 9%, respectively (Table 2; Fig. 7a). Increases in daily levels of hypoxic volume that 
exceeded 10 km3 (equal to ~ 12% of the entire estuary) for all experiments primarily occurred in early summer 
(Fig. 7b–e), when remineralization of organic matter produced by the spring bloom peaked. The Delta experiment 
also lengthened the average hypoxia season by 20 ± 6 days, while the 30-year Continuous, 10-year Continuous, 
and Time Slice experiments only increased the duration by 5 ± 4 days, 6 ± 5 days, and 8 ± 7 days, respectively 
(Table 2; Fig. 7b–e). In all experiments, the lengthening of Bay hypoxia was primarily due to an earlier start to 
low-oxygen conditions, with similar timings for hypoxia termination.

The similarity between hypoxia metrics computed over the 10- and 30-year time periods in the Continuous 
experiment indicates that the two 10-year averages essentially capture long-term change as well as the difference 
in the two 30-year averages. The nearly identical results for the 10-year Continuous experiment and Time Slice 
experiment again reflect the minimal impact of model memory. The Delta experiment stands out as having the 
largest change in hypoxia metrics. This result, combined with the finding that model memory has a minimal 
impact on simulated hypoxia, does not support the assumption inherent in the delta approach that changes in 
sub-monthly and interannual variability in climate forcing have minimal impact on estuarine biogeochemistry.

Discussion
Methodological impacts on coastal hypoxia projections
The three methods used to simulate the impact of climate change on Chesapeake Bay hypoxia revealed differences 
and similarities. All methods produced similar temperature, salinity, and sea surface height changes (Fig. 5 and 
Supplementary Table S1). The Continuous and Time Slice experiments also showed highly similar results, when 
compared using the 10-year periods common to both, indicating very little impact of model memory on the 
biogeochemical results. Differences in watershed discharge and nitrate loadings, however, were clearly evident 
among experiments (Fig. 4), with direct consequences for future hypoxic conditions and implications for net 
ecosystem metabolism and coastal carbon export. The Delta experiment showed a smaller decrease in discharge 
compared to the other experiments, driven by the distribution of precipitation volumes that fundamentally dif-
fered from those of the other experiments for the lower 50% of precipitation events (Fig. 3a). This increase in 
smaller precipitation events for the Delta experiment likely affected the soil water content and runoff coefficient 
within the terrestrial model DLEM20.
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Figure 4.   Mid-twenty-first century percent changes for freshwater discharge, nitrate loadings, and flow-
weighted nitrate concentrations. Percent change is calculated by computing the difference between a mid-
twenty-first century future period and late twentieth century baseline period. The baseline and future periods 
for the 30-year Continuous experiment correspond to 1981–2010 and 2036–2065, respectively. The baseline 
and future periods for all other experiments correspond to 1991–2000 and 2046–2055, respectively. Error bars 
correspond to the standard error of the temporal differences between baseline and future periods. Nutrient 
inputs to the watershed are held constant throughout all simulations.
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The relatively simple application of equal increases in precipitation volume among all events as applied here is 
unlikely to match the projected future precipitation distribution of downscaled ESMs or an ensemble of ESMs21, 
which is already subject to a great deal of uncertainty due to downscaling methodology and other factors18,22. This 
mismatch in the daily distribution of precipitation volume is also likely evident in simpler sensitivity studies that 
increase or decrease total precipitation by a single percentage amount, and is embedded within the change-factor 
methodology used in the Delta experiment. A more robust way of distributing future precipitation increases when 
applying the delta approach is likely required to better match continuous projections, but is more complicated 
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Figure 5.   Projections of temperature (a,b), salinity (c,d), and oxygen concentrations (e,f) averaged over the 
entire Chesapeake Bay, and averaged over the surface (a,c,e) and bottom (b,d,f) depth levels. Although the spin 
up for the Continuous simulation was 10 years (starting in 1980) whereas the spin up for the time slice and delta 
simulations were only 3 years, the baseline simulations used in all experiments are nearly identical.
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and cannot be used to evaluate historical model performance23. Applying future downscaled projections directly, 
as in the Time Slice and Continuous experiments reported here, provides a more robust way to simulate changes 
in daily discharge distributions.

Complex interactions among different atmospheric and terrestrial factors including precipitation, humid-
ity, soil moisture, evapotranspiration, and vegetation growth actively influence nitrogen uptake, nitrification, 
denitrification, and soil leaching in the terrestrial model20. These combined factors are critical to understanding 
the long-term concentrations of bioavailable nutrients exported to coastal regions (Fig. 8). Despite nearly equal 
increases in annual precipitation, the temporal distribution of the additional rainfall substantially modifies soil 
moisture and nitrogen cycling in the watershed and consequently affects nitrogen export to the estuary. Because 
temperature inputs were functionally equivalent among all experiments, greater nitrate inputs to the estuary 
in the Delta experiment are a direct consequence of increased soil moisture that affects rates of terrestrial bio-
geochemical cycling. Since all experiments applied the same constant levels of nutrient inputs to the watershed, 
differences in nitrate concentrations also demonstrate the impacts of continued nitrate uptake over decadal time 
scales in the Continuous experiment (Fig. 4), highlighting the potential importance of long-term ecosystem 
memory within terrestrial models.

Because of greater nitrate loadings, the Delta experiment produced more hypoxia in the mid twenty-first 
century than the Continuous and Time Slice experiments. Nitrate loadings are a good but incomplete predictor 
of annual hypoxic volume; observational analyses show that up to half the variability in AHV can be accounted 
for by nitrate loading24–26 and the same is true in ChesROMS-ECB (see Supplementary Fig. S3). Hence, other 
factors, such as the timing of nutrient delivery, winds, and temperature must play a role. Both the Continuous 
and Time Slice experiments increase average annual hypoxia by approximately 9% (Table 2; Fig. 7a), and their 
differences are relatively minor compared to the more than doubled increase found in the Delta experiment. 
Although increases in average flow-weighted nitrate concentrations were similar for the Delta and Time Slice 
experiments (Fig. 4), increases in nitrate concentrations in the Delta experiment were concentrated in the spring 
as opposed to the latter half of the year in the Time Slice experiment, and were likely responsible for the doubled 
impact of Delta watershed inputs on annual hypoxic volumes. The modest differences that do exist between the 
Continuous and Time Slice experiments can primarily be attributed to the ecosystem memory present within 
the watershed model, which primarily affects nitrate concentrations. Annual nitrate loadings in the Time Slice 
experiment were approximately 7% greater than Continuous experiment inputs (Fig. 4), despite directly apply-
ing the same future climate forcings. This change in nitrate loadings slightly increases future annual hypoxic 
volume (AHV) if the additional nitrate loadings are concentrated in the spring, which is not always true for 
the Time Slice experiment. Differences in the timing of nitrate export between the Continuous and Time Slice 
experiments may explain similar estimates of increased AHV (Table 2), despite significantly different responses 
of nitrate concentrations (Fig. 4). These seasonality impacts also affected hypoxia initiation; the Delta experiment 
begins the hypoxic season approximately 1.5–2 weeks earlier than the Continuous and Time Slice experiments 
(Table 2; Fig. 7b–e). While changes in the timing and severity of hypoxic conditions are also likely to affect bio-
geochemical feedbacks, including sediment diagenesis and secondary production, uncertainties introduced by 
the methodological approaches here are still likely to be less than the changes in water quality realized through 
the successful implementation of management actions15,18.

The individual and combined effects of watershed and estuarine model memory showed only minor differ-
ences between the Bypass and Time Slice experiments (see supplementary Fig. S4), but were likely affected by 
a number of model assumptions. Extremely similar results between the Time Slice and Estuary Bypass experi-
ments show the limited ecosystem memory present within ChesROMS-ECB, and emphasize the larger (but still 
relatively small) contribution of watershed model memory from DLEM that decreases long-term soil nitrate 
export. However, this phenomenon may not hold true for other watershed models; differences in the represen-
tation of terrestrial processes have previously been shown to influence future Chesapeake Bay hypoxia18. The 
depletion of accumulated soil nitrogen is an important component of these findings that may increasingly tie 
measures of estuarine water quality to the interannual variability of watershed discharge and undercut antici-
pated biogeochemical stationarity, or the legacy accumulation of watershed nutrients due to anthropogenic 
actions27. The lack of estuarine model memory in the Chesapeake Bay is largely consistent with previous research 
demonstrating relatively short residence times28, linkages between water trends and the interannual variability 
of watershed discharge and total nitrogen loadings29,30, and high rates of estuarine sediment-nutrient recycling 
throughout the year31.

Table 2.   Average annual hypoxia metrics (differences include ± standard errors) for the baseline, Continuous, 
Delta, and Time Slice experiments.

Hypoxia metric
30 year baseline 
(1981–2010)

30 year Continuous 
(2036–2065)

10 year baseline 
(1991–2000)

10 year Continuous 
(2046–2055) Delta (2046–2055) Time Slice (2046–2055)

AHV, km3 d 1124 ± 41 1247 ± 58 1221 ± 79 1336 ± 79 1456 ± 73 1325 ± 83

Δ AHV, km3 d – 124 ± 71 – 115 ± 111 235 ± 108 103 ± 115

Δ AHV, % – 11 ± 6 – 9 ± 9 19 ± 9 9 ± 9

Start date (Julian day) 121 116 121 115 110 114

Length of hypoxic 
season, d 178 ± 4 183 ± 6 179 ± 4 187 ± 5 199 ± 5 187 ± 5
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This assumption of limited estuarine model memory may not hold in similar marine ecosystems also influ-
enced by elevated nutrient loadings, presenting additional sources of uncertainty. Long-term accumulations of 
phosphorus in bottom sediments in coastal areas like the Baltic Sea32 and the Gulf of Mexico33 would essentially 
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Figure 6.   Average monthly changes relative to baseline conditions ( future − baseline ) along the mainstem 
transect (Fig. 2 dashed line) for the 30 year-Continuous experiment: (a) O2 concentrations and (b) apparent 
oxygen utilization (AOU). Dotted black and solid magenta lines along the mainstem profile represent the 
hypoxic contour of dissolved oxygen < 2 mg L−1 for baseline and future conditions, respectively.
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be held static for climate projections simulating future conditions using a climatic delta, and may not mirror 
results from multi-decadal simulations. In similar marine systems, differing lengths of time for model spin-
up may also magnify discrepancies between Continuous and Time Slice experiments that do not begin at the 
same time. More complex simulations of sediment dynamics in the Chesapeake Bay may also better represent 
additional shifting baselines necessary for more realistic future projections34, increasing the currently limited 
impact of estuarine model memory.

These results demonstrate the benefits and tradeoffs inherent to the Delta, Continuous, and Time Slice experi-
ments, and provide a useful hierarchy for model experiment design. The Delta experiment approach to regional 
climate projections is relatively simple and computationally inexpensive (relative to a long-term simulation), acts 

J F M A M J J A S O N D
0

5

10

15

D
ai

ly
 H

yp
ox

ic
 V

ol
um

e,
 k

m
3 Continuous: 30-year

Baseline
Future

J F M A M J J A S O N D
0

5

10

15

D
ai

ly
 H

yp
ox

ic
 V

ol
um

e,
 k

m
3 Continuous: 10-year

Baseline
Future

J F M A M J J A S O N D
0

5

10

15

D
ai

ly
 H

yp
ox

ic
 V

ol
um

e,
 k

m
3 Delta

Baseline
Future

J F M A M J J A S O N D
0

5

10

15

D
ai

ly
 H

yp
ox

ic
 V

ol
um

e,
 k

m
3 Time Slice

Baseline
Future

1980 1990 2000 2010 2020 2030 2040 2050 2060
600

800

1000

1200

1400

1600

1800

2000

2200

An
nu

al
 H

yp
ox

ic
 V

ol
um

e,
 k

m
3  d Continuous

Delta
Time Slice

Experiment (a)

(b) (c)

(d)

Year

(e)

Figure 7.   Simulated changes to (a) levels of annual hypoxic volume (AHV, km3 d) over the entirety of the 
Chesapeake Bay (and excluding the continental shelf) from the Continuous, Delta, and Time Slice experiments 
and (b–e) timing of the average baseline (grey) and future (colored) seasonal cycles of hypoxic volume.
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to isolate a climate change signal by maintaining historical patterns of interannual variability, and may provide 
a more accurate understanding of future climate signals by using realistic past conditions as a baseline. The 
impact of long-term changes in the mean climate is also relatively easy to capture with a Delta experiment, even 
if computational expense causes runs to be relatively short (e.g., 10 years) because the deltas themselves can be 
computed over much longer averaging periods (e.g., 30 years). However, the Delta approach is also incapable 
of determining long-term ecosystem feedbacks, and may misrepresent biogeochemical processes that are more 
sensitive to highly variable daily forcings like precipitation (Fig. 4a). The Continuous experiment solves many 
of these issues, but potentially with much greater computational expense, particularly for very long simulations 
(greater than a century) and without the potential benefit of representing a more realistic historical period. The 
Time Slice experiment implemented here more or less faithfully represents the results of the Continuous experi-
ment, although it does so without identifying ecosystem responses that may become more important over time. 
One potential pitfall of the Time Slice approach is that metrics with very high interannual variability, such as 
hypoxic volume, may require long time intervals in order to capture the climate signal above the background 
variability. For example, AHV in Chesapeake Bay is highly variable, with the climate signal difficult to discern, 
even over the long Continuous experiment (Fig. 7a). The use of a longer time period for a Time Slice experiment 
may help avoid misattribution of longer-term climate effects with shorter-term variability35,36.

The evidence presented here supports the preferred use of a Continuous simulation over Time Slice simula-
tions if computational expense is not a prohibitive factor. The use of a Time Slice simulation that omits estuarine 
model memory alone is the preferred alternative to a continuous simulation for rapidly flushed marine systems 
like the Chesapeake Bay. The Time Slice approach would also seem to make more sense as the time between the 
baseline and future periods increases and as the signal-to-noise ratio (climate signal vs. interannual variability) 
in the biogeochemical metric increases. The use of Delta experiments should be applied with appropriate caution 
when model memory is unlikely to be an issue and when changes in submonthly and interannual variability are 
expected to modestly impact the biogeochemistry. Altogether, when simulating biogeochemical changes in the 

Figure 8.   Schematic showing differences in terrestrial and estuarine biogeochemical responses to changes 
in distributions of future precipitation between the Continuous experiments (left) and the Delta experiment 
(right). Digital images and artwork used in this figure were developed by the Integration and Application 
Network (https://​ian.​umces.​edu/​media-​libra​ry).

https://ian.umces.edu/media-library
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coastal environment, researchers should carefully consider the memory and stability of long-term ecosystem 
responses, the ability of a modeling framework to represent various pathways given underlying stationarity 
assumptions, and the potential variability of biogeochemical inputs in terrestrial and ocean environments.

Future Chesapeake Bay oxygen projections
Results from the Continuous experiment show that that future Chesapeake Bay hypoxia will expand laterally 
and vertically early in the summer, but retreat down-estuary in mid-summer as organic matter is remineralized 
faster. Previous research in the Chesapeake Bay has shown that increasing temperatures play a dominant role in 
reducing oxygen solubility and increasing remineralization rates15–17. The importance of increasing temperatures 
is also demonstrated here; it was responsible for the rapid increase of production in the late spring and early sum-
mer and increased export of organic matter throughout the water column that further reduced bottom oxygen 
concentrations (Fig. 6). Future late summer oxygen losses were most concentrated in the southern half of the Bay 
and within 10 m of the surface (Fig. 6), denoting an absence of late summer production that is more limited by 
intensified grazing. Additionally, the lateral retreat and vertical alignment of the hypoxic zone relative to baseline 
conditions was largely attributable to earlier increases in remineralization of semilabile dissolved organic nitrogen 
that exhausted the supply of autochthonous organic matter that typically acts as an oxygen sink throughout the 
summer (Fig. 6). This process largely agrees with recently observed dynamics reported by others37,38, that identi-
fied a “speeding-up” of the hypoxic seasonal cycle and was partially attributed to observed estuarine warming.

Long-term changes to Bay oxygen levels and hypoxia shown in the Continuous experiment highlight the 
importance of better understanding and constraining the evolution of ecosystem dynamics when projecting real-
istic future conditions. The estuarine model used here represents a simplified version of producer and consumer 
dynamics, known to also be influenced by regular hypoxic conditions39,40. Introducing additional model state 
variables to capture these dynamics is unlikely to reduce current or future model uncertainty41. But an examina-
tion of temperature-dependent functions for potential shifts in dominant phytoplankton and zooplankton groups, 
due to both reduced nutrient loadings42–44 and species-optimal thermal acclimation45, may provide additional 
insights into the possibility of the Bay undergoing a fundamental “regime shift”46.

Refining regional hypoxia projections
Previous research on projected Chesapeake Bay climate impacts has found that increasing temperatures and sea 
surface height are likely to increase estuary temperatures and salinity16,17,47–49. There is agreement among multiple 
studies that increasing temperatures will more substantially decrease Bay dissolved oxygen levels by reducing 
solubility and increasing biogeochemical rates15–17. Sea level rise impacts on dissolved oxygen are more mixed 
overall50 and can be modified by enhanced estuarine circulation15, increased stratification strength16,49, tidal 
responses51, and enhanced production due to an increase in shallow areas52. Our findings are largely in agreement 
with these previous results, and reinforce that the greatest source of remaining uncertainty lies in characterizing 
the Bay’s response to changing nutrients from the watershed, which are affected by the choices of Earth System 
Model, downscaling methodology, and watershed model18, in addition to the distribution of future increases in 
precipitation events. Besides producing differing estimates of hypoxia, the relative discrepancy between experi-
mental approaches is likely to substantially influence other biogeochemical processes such as carbon export, 
which has been previously shown to change direction due to the influence of increased Chesapeake Bay net 
primary production53. Besides influencing future rates of Bay acidification54–56, methodological uncertainties 
identified here may affect whether the estuary acts more or less as a sink of atmospheric CO2.

A multi-pronged effort among research institutions could also narrow the range of likely hypoxia futures by 
evaluating common metrics to find particular points of agreement and disagreement. Applying long-term pro-
jections to a suite of estuarine biogeochemical models will better constrain outcome uncertainty57, particularly 
with respect to more complex representations of sediment diagenesis58 and wetland interactions59. A combined 
effort studying different biogeochemical responses should utilize direct climate projections in such a regional 
application, avoiding the delta method that can consequentially alter watershed export of discharge and nutrients 
and may be magnified with other ESMs. Such an effort has been ongoing over the past decade in the Baltic Sea60, 
another large coastal area seeking to decrease nutrient loadings in a multi-jurisdictional framework. Future work 
may also benefit from simplified data-based modeling approaches and metamodels to rapidly simulate a larger 
distribution of future changes to physical and biogeochemical dynamics in the Chesapeake Bay61–63.

Serious challenges remain in narrowing the range of projected water quality outcomes in the Chesapeake 
Bay, despite major advancements in the representation of the linked terrestrial–coastal ecosystem in recent 
decades64. Many potential negative water quality consequences for a warmer, more stratified estuary can be over-
come by meeting terrestrial nutrient reduction targets12, which have been repeatedly shown to offer a pathway 
to improved oxygen levels despite multiple climate change pressures15,18. The influence of watershed sediment 
export due to more extreme precipitation events and subsequent resuspension within the estuary will also influ-
ence biogeochemical cycling34,65,66, but linkages between climate projections for precipitation and wind events 
and their subsequent impacts is limited67. An improved representation of changing phytoplankton dynamics 
can also help better determine how nutrient recycling may vary in the Bay’s bottom waters, and better quantify 
the potential for future untested legacy effects of eutrophication. Generating a range of consistent estimates at 
the base of the coastal food web will continue to pay dividends when projecting impacts on higher trophic level 
species and communities that rely on them and will help refine scientific tools to better prepare for unanticipated 
ecosystem changes.
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Conclusions
This study investigated differences in future hypoxia projected by a regional model of the Chesapeake Bay using 
three different climate scenario methodological approaches: a Continuous simulation spanning 1980–2065, a 
Delta simulation with a change in climatic conditions applied to a 1990s baseline, and a future Time Slice simula-
tion representative of mid-twenty-first century conditions compared to the same 1990s baseline. Despite nearly 
equal changes in estuarine physical conditions (i.e., temperature and salinity), the Delta method increased average 
hypoxia by 19%, nearly twice the amount projected by the Continuous (11%) and Time Slice (9%) methods. The 
greater increase in hypoxia is primarily driven by increases in nitrate loadings in the Delta experiment, which are 
themselves due to increasing watershed nitrate concentrations and a lesser decrease in annual flow. Additionally, 
results from the Continuous and Time Slice simulations show that hypoxic conditions initiate 2–3 weeks earlier 
than baseline conditions but will also exhaust nutrients more rapidly, leading to equivalent or slightly lower 
levels of late-summer hypoxia.

Based on these conclusions, we can provide several recommendations for future research directions. When 
there is relatively little ecosystem memory, the Time Slice method is a reliable alternative to the Continuous 
method for climate projections of coastal hypoxia. Aforementioned differences in watershed nitrate concentra-
tions found in the Delta experiment warrant caution when using this approach, particularly when simulating 
changes to precipitation intensity, duration, and frequency that affect terrestrial biogeochemistry. Additionally, 
the methodological approach should be chosen carefully based on a regional model’s ability to account for the 
internal ecosystem memory of biogeochemical dynamics. Earlier increases in hypoxic conditions and elevated 
levels of remineralization that limit secondary production in the summer previously reported and reproduced 
here may vary with respect to nutrient reduction efforts in the watershed. Simulated responses to biogeochemical 
changes in future conditions are dependent upon a multitude of implicit factors and potential feedbacks, and 
researchers should continue to investigate underlying assumptions and points of uncertainty in the experimental 
design that may result in significant differences for projected hypoxia.

Methods
Modeling framework
Estuarine model
This work applied a three-dimensional, fully coupled hydrodynamic–biogeochemical model, with 20 vertical 
levels and approximately 1 km horizontal resolution, to simulate future changes in the Chesapeake Bay18,53,68 
(Fig. 2). The hydrodynamic model uses the Regional Ocean Modeling System (ROMS;69) implemented in the 
Chesapeake Bay (ChesROMS;70) with an Estuarine Carbon Biogeochemistry (ECB) component53,71. The coupled 
model (ChesROMS-ECB) explicitly represents estuarine nitrogen and carbon processes and includes single 
phytoplankton and zooplankton state variables and two detrital size classes. Parameters defining the maximum 
growth rate of phytoplankton and the critical bottom shear stress were the same as those used in18.

Terrestrial model
In this study, ChesROMS-ECB received daily estimates of watershed discharge, nitrogen loading, and carbon 
loading from the Dynamic Land Ecosystem Model (DLEM;20,72,73) at ten river input points around the estuary 
(Fig. 2). DLEM is a process-based terrestrial ecosystem model that is used to simulate fluxes of water, carbon, 
and nitrogen while accounting for climate change and land-use change74. DLEM has previously performed well 
under observed conditions when applied to the Chesapeake Bay watershed18,68.

Climate inputs
Simulations of historical conditions and mid-twenty-first century projected change to the Chesapeake Bay were 
conducted using Continuous, Delta, and Time Slice methodologies (Fig. 1; Table 1). In all experiments, past and 
future climate forcings were derived from the IPSL-CM5B-LR model (r1i1p1 ensemble member;75), which is part 
of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5;76). This ESM was previously identified 
as the centroid among multiple downscaled ESMs when considering changes to atmospheric precipitation and 
temperature over the Chesapeake Bay watershed18. A future climate scenario representative of continued increases 
in greenhouse gas emissions was selected for this analysis: Representative Concentration Pathway (RCP) 8.577. 
This scenario increases average global radiative forcing by 8.5 W m−2 in 2100 and by approximately 4.0 W m−2 
in 2050 relative to pre-industrial conditions in the selected ESM77–79.

The atmospheric output from the selected ESM was statistically downscaled and bias corrected using Multi-
variate Adapted Constructed Analogs (MACA;80) and applied to both the terrestrial and estuarine models. Daily 
downscaled estimates of temperature, precipitation, and net shortwave radiation were applied directly to DLEM, 
and the remaining atmospheric forcings were calculated internally. In contrast, the estuarine model was forced 
by daily MACA-downscaled inputs of atmospheric temperature, relative humidity, air pressure, net shortwave, 
wind speed and direction, and precipitation, as well as downwelling longwave radiation compute from selected 
MACA variables81. Local diurnal cycles were imposed on downscaled estimates of daily shortwave radiation 
inputs internally within the estuarine model.

Ocean forcings included both physical and biogeochemical ocean boundary conditions along the open bound-
ary of the estuarine model grid. These forcings were combined from equations for regional sea level rise trends as 
well as ESM outputs representative of the historical period (1865–2005) and the future climate scenario period 
(2006–2100). Specifically, ocean temperature was derived from the oceanic component of the ESM at the grid 
cell nearest to the estuarine model boundary, averaged over the upper 40 m (approximately equivalent to the 
depth of the mouth of Chesapeake Bay), and then bias-corrected using a quadratic relationship derived from a 
comparison with the World Ocean Database82 observations. Salinity, carbon, and nitrogen concentrations for 



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17544  | https://doi.org/10.1038/s41598-024-68329-3

www.nature.com/scientificreports/

the historical period were based on information from the World Ocean Database and taken from83. O2 concen-
trations were set to saturation conditions as in83. Ocean boundary forcings are prescribed at monthly intervals 
as in previous work54 for physical and biogeochemical variables. Sea surface height forcings representative of 
1980 conditions at the model’s open boundary were derived from hourly coastal observations and the Advanced 
Circulation model84 as in previous work18. Long-term changes in sea surface height were added to observed 
1980s levels using the equation provided by85, which is based on defined parameters for long-term projections 
at the Norfolk, VA tidal gage.

Experimental design
Continuous experiment
The Continuous experiment simulated the daily variability and long-term changes in the evolution of climate 
model impacts over the period 1980–2065 using daily, bias-corrected ESM outputs, together with watershed 
and coastal ocean inputs as previously described (Table 1). The terrestrial model simulated dynamic historical 
conditions from 1900 to 1980 using observed climate (from PRISM;86), land use, and nutrient inputs73, and 
then held land use and nutrient inputs constant from 1980 to 2065. The estuarine model was spun-up for three 
years prior to the start of the full 86-year simulation using ESM and watershed forcings from 1980 to 1983. An 
additional long-term estuarine model simulation was completed over the same time period as the Continuous 
experiment (1980–2065) but applied the same atmospheric, oceanic, and watershed forcings representative of 
1980 conditions for each year, following an approach described by87. This additional simulation quantified model 
drift over the simulation period and revealed no significant trend in hypoxia (a decrease of 0.6%); interannual 
variability in annual hypoxic volume was ~ 1% (16.1 km3 d) of the long-term average (1295.3 km3 d). Therefore, 
model drift present within the long-term simulation of the estuarine model produced negligible changes in 
biogeochemical outcomes.

Time slice experiment
A second main experiment directly applied the same daily ESM forcings to a 10-year baseline period (1991–2000) 
and a 10-year future period (2046–2055) as in the Continuous experiment, without simulating the intervening 
years in the estuarine or watershed models (Fig. 1; Table 1). Watershed model conditions were initialized using 
the same approach as the Continuous experiment. Also like the Continuous experiment, the estuarine model 
was spun-up for three years prior to the start of the 10-year simulation using ESM and watershed forcings rep-
resentative of baseline and future conditions. Therefore, in this experiment, neither the terrestrial model nor 
the estuarine model retained any ecosystem memory of conditions leading up to the start of the future period, 
while the atmospheric and oceanic forcings for the baseline and future periods were the same as those used in 
the Continuous experiment. An additional two closely related experiments, referred to as Watershed Bypass and 
Estuary Bypass, individually accounted for the ecosystem memory of the terrestrial model and estuarine model, 
respectively. The Watershed Bypass experiment used future watershed model starting conditions equivalent 
to those in the combined Time Slice experiment, but applied future estuarine start conditions that matched 
the Continuous experiment. Conversely, the Estuary Bypass experiment used future estuarine model starting 
conditions that matched the combined Time Slice experiment while retaining future watershed model starting 
conditions from the Continuous experiment.

Delta experiment
The Delta experiment (Fig. 1; Table 1) simulated a baseline period (1991–2000) that was identical to the Time 
Slice baseline, and a future period representative of mid-century conditions (2046–2055). In contrast to the 
typical implementation of the Delta approach, which uses observed climate forcing for the historical simulation, 
here we use climate forcing solely from the ESM. By doing so, we facilitate a straightforward comparison of the 
Continuous, Time Slice, and Delta experiments. For application to the watershed model, climatic changes in 
atmospheric forcings were calculated from the mean annual cycles of a 30-year reference period (1981–2010) 
and a future mid-century period (2036–2065). For all variables except precipitation, the difference in the mean 
annual cycles was computed but for precipitation, the monthly fractional change was computed and applied 
instead of using the absolute difference. To determine the 2046–2055 atmospheric forcings, these changes were 
applied to the 1991–2000 forcings. In this way, the baseline period of the Delta experiment was the same as in the 
Continuous and Time Slice experiments (1991–2000), and the future period retained the same interannual and 
sub–monthly variability as in the baseline period. Like the spin-up period for the Continuous experiment, DLEM 
was initialized in 1900 using PRISM atmospheric forcings86, and nutrient input levels were held constant from 
1980 onwards. However, PRISM is continuously used to force DLEM until 1991, the point when ESM climate 
baseline and delta conditions are used to force the watershed model. Initial conditions for the estuarine model 
also included a three-year spin–up period using baseline (1991–1993) ESM and DLEM forcings.

Method comparison
Differences introduced by the methodological approaches described above were quantified by comparing long-
term projections of physical and biogeochemical change within the estuary. Estimates of annual hypoxic volume 
(AHV, km3 d), which integrate daily hypoxic volume (HV, km3) over a full year88, were calculated by summing the 
volume of model grid cells containing daily average oxygen concentrations below a specified threshold (< 2 mg 
L−1) within the Chesapeake Bay and excluding the continental shelf. Average percent and absolute changes in 
these metrics were evaluated over 10 years for the Continuous, Delta, and Time Slice experiments, comparing the 
1991–2000 baseline against the future period of 2046–2055. Comparing the Continous and Time Slice experi-
ments (as well as the associated Bypass experiments) over the 10-year time periods allows for a direct assessment 
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of the impacts of terrestrial and estuarine model memory. A period of 30 years was also used for the Continuous 
experiment, with baseline and future periods spanning the years 1981–2010 and 2036–2065, respectively. This 
longer comparison period for the Continuous experiment is needed for a comparison to the Delta experiment, 
because this period is reflective of the fact that the change in climatic forcing applied in the Delta experiment is 
derived by averaging over these same two 30-year spans of ESM output to minimize the effect of decadal oscil-
lations. Comparing the 10- and 30-year periods for the Continuous experiment allows for an assessement of the 
representativeness of a single decade in capturing long-term climate change.

Data availability
The model results and datasets generated and analysed for this study are permanently archived at the W&M 
ScholarWorks data repository associated with this article and are available for free download, https://​doi.​org/​
10.​25773/​AWQB-​Z988.
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