
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports

Iterative embedding
and reweighting of complex
networks reveals community
structure
Bianka Kovács 1, Sadamori Kojaku 2,3, Gergely Palla 1,4* & Santo Fortunato 2

Graph embeddings learn the structure of networks and represent it in low-dimensional vector spaces.
Community structure is one of the features that are recognized and reproduced by embeddings.
We show that an iterative procedure, in which a graph is repeatedly embedded and its links are
reweighted based on the geometric proximity between the nodes, reinforces intra-community links
and weakens inter-community links, making the clusters of the initial network more visible and more
easily detectable. The geometric separation between the communities can become so strong that
even a very simple parsing of the links may recover the communities as isolated components with
surprisingly high precision. Furthermore, when used as a pre-processing step, our embedding and
reweighting procedure can improve the performance of traditional community detection algorithms.

Recent advances in machine learning have opened new productive research directions in the study of networks
(or graphs). Graph embeddings are paradigmatic examples. They represent the structure of a graph via the geo-
metric relations of a set of points arranged in a low-dimensional vector space, where the points are the network
nodes and some features of the original network are preserved. Once the graph has been embedded, one can
operate on the resulting spatial distribution of points by using the wealth of tools that are available in continuous
metric spaces, in particular the possibility of computing distances between the points.

Graph embeddings have been instrumental in various graph data applications, including link prediction1–4,
node classification5–9, and community detection10–31. Community detection is a pivotal task in network analy-
sis because communities play key roles in the dynamics and functionality of networks32–34. Communities are
groups of nodes with a significant density of internal links, whereas the density of links connecting the groups
to each other is comparatively lower. Since graph embedding methods typically place closely connected nodes
in a network at nearby points in the embedding space, prominent communities are often embedded as compact,
well-separated clusters13,35. These clusters can then be identified using data clustering techniques such as k-means
clustering36 or DBSCAN37. Alternatively, the node proximity in the embedding can be used to facilitate network
community detection algorithms by generating a good initial partition21 or defining link weights19. Whether it
is used for data clustering or enhancing network community detection algorithms, the applicability of graph
embedding for the identification of communities depends on the ability of the embedding to project communities
into distinct, compact clusters. This can be challenging, particularly when different communities are connected
by many links. However, even if communities are not well separated in the network, embeddings can still capture
node proximities, tending to place nodes within the same community closer together. This proximity information
can be leveraged to refine the embedding, resulting in better-defined, compact community clusters that can be
more easily identified using data clustering techniques.

We propose an iterative procedure, called Iterative Embedding and ReWeighting (IERW), consisting of embed-
ding the network and reweighting its links until a stable weighted graph configuration is reached. We find that,
by utilizing information about node proximities derived from the embedding, we can obtain weighted networks
in which the communities of the original graph are more and more pronounced over the iterations and easier
to find. This effect can be so strong that it allows the recovery of communities by simply removing the longest

OPEN

1Department of Biological Physics, Eötvös Loránd University, Budapest, Pázmány P. stny. 1/A, 1117,
Hungary. 2Luddy School of Informatics, Computing, and Engineering, Indiana University, 1015 East 11th Street,
Bloomington, IN 47408, USA. 3Department of Systems Science and Industrial Engineering, SUNY Binghamton,
P.O. Box 6000, Binghamton, NY 13902, USA. 4Health Services Management Training Centre, Semmelweis
University, Budapest, Kútvölgyi út 2., 1125, Hungary. *email: gergely.palla@emk.semmelweis.hu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-68152-w&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

links of the final weighted graph and identifying the connected components of the resulting network. This sim-
ple method is competitive with traditional community detection methods on synthetic graphs generated by the
planted partition (PP) model38 and can outperform them on the more realistic Lancichinetti–Fortunato–Radicchi
(LFR) benchmark39. Delivering link weights that strengthen the communities of the original network, IERW can
also improve the performance of traditional community detection methods like Louvain40, Infomap41 or label
propagation42. In addition, tests on real networks also show the benefits of applying IERW as a pre-processing
step in terms of the increased similarity between the ground truth partitioning and the modules detected by the
aforementioned traditional community finding methods.

Formerly, an iterative embedding method has been proposed in the field of graph neural networks, where both
the graph structure and the embedding are learned in an iterative manner, aiming for a better representation43.
In parallel, an iteration of node2vec embedding8 using k-means clustering36 cost regularization has been also
proposed44, whereas in an alternative approach, specifically tailored for hyperbolic embedding based on the
random hyperbolic graph45,46, the model likelihood was regularized iteratively by taking into account also the
communities47. Our work provides a more general framework, allowing the inclusion of any embedding method
in general. In the present study, we apply both Euclidean and hyperbolic embedding algorithms, all leading to
similar results at the qualitative level.

Results
Iterative embedding and reweighting
Given an embedding that can form dense spatial clusters from nodes that are strongly connected to each other,
it can be expected that when the cohesiveness within the network communities and the separation between
them are enhanced via some link weights, then a repeated embedding can further increase the density of the
initial spatial clusters. Following this concept, as it is shown in Fig. 1, the proposed Iterative Embedding and
ReWeighting (IERW) process repeatedly arranges the network nodes in a vector space according to the topo-
logical relations between them and assigns weights to the links of the network in accordance with the geometric
relations between the nodes in the previous embedding. During this process, no new links are introduced, only
the existing links are reweighted. This framework provides two opportunities for community detection: one can
either use standard data clustering methods on the spatial node arrangements generated by the embedding steps,
or utilize both the network topology and the geometric relations between the nodes by applying a community
detection method on the weighted networks obtained from the link weighting steps.

While our IERW framework is agnostic to the method applied for network embedding, we illustrate the
effectiveness of the iterative embedding by focusing on four embedding algorithms (described in the Methods
section): Laplacian Eigenmaps (LE)48, TRansformation of EXponential shortest Path lengths to hyperbolIC
measures (TREXPIC)49, Isomap (ISO)50 and node2vec8. All the applied embedding methods are capable of
embedding connected, possibly weighted undirected networks without self-loops and parallel edges in either
Euclidean (LE, ISO, node2vec) or hyperbolic (TREXPIC) spaces of any number of dimensions d. While LE,
TREXPIC and ISO are dimensional reduction techniques based on matrix factorization, in node2vec a neural
network creates embeddings based on random walks performed along the network.

As it is detailed in the Methods section, two of the considered methods, namely LE and TREXPIC build on
relatively fast-changing, exponential measures of the topological proximity and distance between the network
nodes. Following this idea, in order to emphasize the differences between the connectedness of different node
pairs in the case of ISO as well, we created a modified version of this embedding method by inserting an expo-
nentialization step into the algorithm. Similarly, we also included exponentialization in the iteration of node2vec,
where we left the embedding algorithm itself unaltered but chose an exponential link weight function in IERW.
The positive effect of introducing exponentialization in ISO and node2vec is demonstrated in Sect. S2 of the
Supplementary Information. In all figures appearing in this paper, we utilised the exponentialization in both ISO
and node2vec. Note that the exponentialization step has a tunable constant t > 0 in the case of all four embedding
methods. We did not search for its optimal value in each task individually but used the default setting in all of
our measurements. Therefore, our results achieved with IERW may not be the best possible outcomes and there
may be room for improvement. The effect of changing t in the exponentialization step of the different embedding
methods is examined in Sect. S3 of the Supplementary Information.

A crucial step of IERW is the calculation of the link weights based on the positions of the connected nodes
in the previous embedding. It is important to bear in mind that the different embedding methods may need
different types of link weights as input. Traditionally, in network science link weights represent the intensity or
strength of the connection, where a high weight value refers to a strong, close relation between the given node
pair. However, some of the embedding methods originate from algorithms initially designed to provide low-
dimensional approximations of distances in high-dimensional point clouds, where a high value associated to a
node pair refers to a high distance and therefore, presumably a weak connection or a distant relation. Among
the embedding methods used in this paper, LE, TREXPIC and ISO expect such distance-like link weights when
encountering a weighted link list as an input. In contrast, node2vec expects proximity-like link weights, matching
the traditional weight definition in network science.

Although optimizing for different geometric measures on the level of pairwise node-node relations (see the
Methods section and Sect. S1 of the Supplementary Information for the details), all the four examined embed-
ding methods tend to place the nodes within the same communities at rather similar angular coordinates, i.e. at
small angular distances �θ from each other. For this reason, to make the embeddings gradually more focused
on the community structure, we always defined the link weights in IERW based on the angular relations between
the connected nodes. Since cosine distance and cosine proximity are both well-known measures of the angular
relations of network nodes, we built our link weighting formulas in IERW on cos(�θ) . This can be easily

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

calculated for the d-dimensional Cartesian position vectors y
i
 and y

j
 of nodes i and j in both the Euclidean and

the hyperbolic embedding space as

from the dot product y
i
· y

j
=

∑d
ℓ=1 yi

(ℓ) y
j
(ℓ) and the Euclidean norms �y

i
� =

√

∑d
ℓ=1 yi

(ℓ)2 and
�y

j
� =

√

∑d
ℓ=1 yj

(ℓ)2 . The exact definition of the link weighting formula applied in IERW is given in the Meth-
ods section for each embedding method.

Besides the link weights, we also have to specify the number of dimensions d of the embedding space and a
stopping criterion for the iteration to make the IERW framework completed. In the case of the matrix factori-
zation methods (LE, TREXPIC and ISO), we aimed for an embedding dimension d equal to d = C − 1 , where
C denotes the supposed number of communities in the network, which we determined from the eigengap of a
normalized graph Laplacian (see Methods). Node2vec, however, often works better with a large d in practice
due to the nature of the training algorithm. More specifically, node2vec is trained with the stochastic gradient
descent algorithm, which regularizes node2vec and prevents it from overfitting51. For this reason, we simply used
node2vec with a fixed value of d = 64 , corresponding to one of the standard choices in the literature. According

(1)cos(�θij) =
y
i
· y

j

�y
i
� �y

j
�

Figure 1.   Flowchart of the Iterative Embedding and ReWeighting process. IERW embeds a network into a
vector space, where nodes belonging to the same communities are closer to each other compared to nodes from
different communities. Then, IERW generates a weighted network with the same sets of nodes and edges, where
the edge weights reflect the angular relations of the network nodes in the embedding space. Repeating these
two steps, IERW iteratively embeds a weighted network and reweights its links until the variation in the average
edge weight within one iteration falls below a specified threshold. Finally, the communities can be identified
using data clustering or network community detection algorithms. The example network was generated by the
stochastic block model and embedded with Laplacian Eigenmaps on the Euclidean plane. The coloring of the
nodes indicates the block memberships assigned by the stochastic block model.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

to our measurements presented in Sect. S3.3 of the Supplementary Information, while LE, TREXPIC and ISO
indeed seem to require a rather specific number of embedding dimensions, the performance of node2vec shows
comparatively weak dependence on the value of d.

Finally, the stopping criterion for IERW was based on monitoring the relative change in the average link
weight w̄ between subsequent iterations, and the process was terminated when this quantity dropped below a
certain threshold, namely when we reached

Note that we stopped the iteration process after the 20th iteration even if the stopping criterion in Eq. (2) has
not been fulfilled yet.

To demonstrate how IERW works, Fig. 2 shows three iterations using LE, performed on a network generated
by the stochastic block model (SBM)52 with three communities of size |A| = 150 (orange), |B| = 130 (purple) and
|C| = 120 (green). In the SBM, the link probability between two nodes only depends on their respective member-
ships. For three communities these probabilities thus fill a 3× 3 stochastic block matrix M , which in our case is

(2)
|w̄current − w̄previous|

w̄current
≤ 0.001.

Figure 2.   Example of IERW. A network with three communities built by the stochastic block model was
embedded three times in the 2-dimensional Euclidean space with Laplacian Eigenmaps. Each row of panels
corresponds to one iteration. Initially, all the link weights were 1, and we updated the weights after each
embedding using the angular distances �θij as wij = 1− cos(�θij) . The left column of panels shows the
embeddings, denoting the smaller link weights (that indicate smaller angular distances, and thus, stronger
connections) at the end of the given iteration with darker and narrower lines, and coloring the network
nodes according to the planted blocks. The column in the middle shows the distribution of the angular
distances between all the node pairs in the embedding of the given iteration, while the right column shows the
distribution of the link weights of the network.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

According to Fig. 2, IERW turns the communities into more and more concentrated spatial clusters. Conse-
quently, the distribution of the angular distances between all the node pairs (middle column) and also between
the connected node pairs (right column) split into two peaks each with increasing separation. One peak cor-
responds to the node pairs of the same community (blue) whereas the other refers to the node pairs in different
communities (orange).

Angular separation of communities in iteratively embedded networks
We applied IERW to synthetic networks generated by the planted partition (PP) model38 or the Lancichi-
netti–Fortunato–Radicchi (LFR) model39. A key advantage of these generative models is that they enable the
definition of communities with tunable internal and external link densities, allowing to control the difficulty of
the network clustering problem through the adjustment of the mixing parameter µ , which corresponds to the
average fraction of neighbors of one node belonging to communities different from the one of the node. Details
on the synthetic network generation are provided in the Methods section.

In Fig. 3, we show the ratio between the average inter-community angular distance 〈�θ〉inter (i.e., the aver-
age of the angular distances over all the node pairs of different communities) and the average intra-community
angular distance 〈�θ〉intra (i.e., the average of the angular distances over all the node pairs belonging to the same
community) as a function of the number of IERW iterations performed for networks generated by the PP model.
According to the figure, the 〈�θ〉inter/〈�θ〉intra ratio starts to increase over the iterations and then saturates for
all the four studied embedding methods, reaching in some cases extremely high values, which indicates a strong
separation between the planted communities in the embedding space. Naturally, when the mixing parameter µ
is only 0.1, the angular separation ratio 〈�θ〉inter/〈�θ〉intra is higher compared to the case of moderate mixing
between the communities at µ = 0.3 , that in turn surpasses in every iteration the results observed for the rela-
tively strong mixing of µ = 0.5 , where nodes have roughly the same number of internal and external neighbors.
Nevertheless, the curves of the angular separation ratio are increasing as a function of the number of iterations
even at µ = 0.5 , indicating that our iterative embedding framework helps in separating the planted communi-
ties in the embedding space.

In Fig. 4, we display the results for the angular separation of planted communities in LFR networks. The
qualitative behaviour of the 〈�θ〉inter/〈�θ〉intra ratio is quite similar to that in Fig. 3: the angular separation ratio
starts with an increasing trend and then saturates as a function of the number of IERW iterations. The lower
the µ value, the higher the saturated ratio. As in Fig. 3, the actual value of the angular separation ratio can grow
even above ��θ�inter/��θ�intra = 107.

Separation of communities via weight thresholding
To give further perspective on the communities’ strong separation resulting from our framework, here we show
that even a clearly sub-optimal, overly simplistic community extraction method can provide surprisingly good
results when exploiting the geometric information encoded in the link weights at the end of the IERW process.
The basic idea is to set a threshold aiming to separate the links that connect members of the same community
from those between nodes of different communities. By deleting the links on one side of the threshold—those
that are suspected to connect different communities—, the network falls apart into disconnected components
that we may identify as the detected communities. Since, as it is illustrated by Fig. 2, a rather large gap can emerge
between the weight of intra- and inter-community links during IERW, this simple weight thresholding strategy
(detailed in the Methods section) can actually work effectively under optimal circumstances. Note that the
iteration of the embedding is indeed necessary to make the weight thresholding work as the weight threshold-
ing after a single embedding yields poor community detection performance (see Sect. S4 of the Supplementary
Information).

Although the applied weight thresholding approach is rather crude, thanks to the large angular separation
that IERW achieves between the communities, it can still yield results comparable in quality to state-of-the-art
community-finding methods. In Fig. 5, we compare the performance of the weight thresholding with that of
three commonly used, well-established network community detection methods. Even though all three methods
are able to take into account link weights, in the case of Fig. 5 we applied them on the original, unweighted test
graphs and not on the weighted versions obtained from the IERW process.

First, we used the Louvain algorithm40,53, performing a heuristic maximization of the well-known modu-
larity by Newman and Girvan54,55, which compares the observed internal link density of the communities to
its expected value. Though Louvain can unfold a hierarchical community structure (with nested modules and
submodules), we always considered the top-level community structure, i.e. the one with the highest modularity.

Besides, we applied the Infomap algorithm41,56, which relies on a heuristic minimization of the so-called map
equation41. It assumes that communities are regions of a network within which random walkers spend a relatively
long time, and searches for the community structure that is the best for compressing the description (i.e., the
code length) of random walk trajectories along the network. Infomap, just like Louvain, can create a hierarchy
of network partitions; here we considered the lowest hierarchical level, yielding the shortest description length.

Finally, we used the asynchronous label propagation algorithm42,57, which does not aim at the optimization
of any predefined measure but simulates the diffusion of the nodes’ community labels along the links, regularly

(3)

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

updating the community membership of each node following the current majority of the neighboring nodes,
expecting that eventually a consensus on a unique label becomes established within densely connected groups
of network nodes. Following the suggestion in Ref.42, we completed the label propagation process by separating
groups of nodes that ended up with the same label but were not connected to each other.

The PP graphs (top row of panels) and the LFR networks (bottom row of panels) studied in Fig. 5 are the
same as in Figs. 3 and 4, respectively. The network generation process is detailed in the Methods section. To
evaluate the performance of the examined community detection methods, we measured the number of detected
communities (right column of Fig. 5), as well as different similarity scores (left and middle columns of Fig. 5)
between the planted and the detected community structures.

First, we calculated the element-centric similarity (ECS)58,59 between the detected and planted partitions
(Fig. 5a,d), which is a measure comparing node-node transition probabilities in random walks performed along

Figure 3.   IERW increases angular separation of communities in networks generated by the PP model. We
plot the ratio between the average angular distance of all possible node pairs in different communities and
in the same community as a function of the number of IERW iterations for LE (a), TREXPIC (b), ISO with
exponentialized shortest path lengths (c) and node2vec (d). Curves of different colors correspond to different
values of the mixing parameter µ . Each depicted data point was obtained by averaging the results over 100
different network realizations, and the shaded areas show the standard error of the mean.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

the two graphs of cluster-induced (i.e., groupmate) relationships derived from the two partitions. ECS has its
maximum of 1 for identical partitions and decreases as the similarity between the compared divisions declines.
Note that the expected value of ECS when inputting two random partitions having an equal number of groups
and equal group sizes is not set to 027. Furthermore, the only tunable parameter of the method for non-hierar-
chical clusterings is given by the restart probability of the random walks, but it does not have any effect in the
case of hard partitions27, so in our measurements we simply used its default value.

Besides the ECS, following the suggestions of Ref.60, we used the adjusted Rand index (ARI)61–64 for the PP
networks (Fig. 5b), where the group sizes in the ground truth clustering were equal, and the adjusted mutual
information (AMI)65–68 for the LFR networks (Fig. 5e), where the ground truth partition was unbalanced with
respect to the group sizes, i.e. strongly different community sizes occurred. Both ARI and AMI take the value of
1 in the case of perfect agreement between two partitions, and (being corrected or adjusted for the agreement

Figure 4.   IERW increases angular separation of communities in networks generated by the LFR benchmark.
We plot the ratio between the average angular distance of all possible node pairs in different communities and
in the same community as a function of the number of IERW iterations for LE (a), TREXPIC (b), ISO with
exponentialized shortest path lengths (c) and node2vec (d). Curves of different colors correspond to different
values of the mixing parameter µ . Each depicted data point was obtained by averaging the results over 100
different network realizations, and the shaded areas show the standard error of the mean.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

emerging only by chance) the value of 0 on expectation when comparing random partitions having the same
number of communities and the same community sizes. ARI and AMI can decrease even below 0 if the consid-
ered two clusterings differ to a large extent. While ARI is a pair-counting similarity measure that relies on the
number of node pairs being groupmates or belonging to different groups in both the planted and the detected
community structures, AMI is an information-theoretic quantity operating with the community membership
probabilities of a randomly chosen node, which are calculated based on the relative size of the communities and
the overlaps between the groups from the different partitions. Though there are several different possibilities
for the normalization in the AMI formula, we always normalized with the maximum of the Shannon entropies
associated with the two partitions to be compared.

In the case of the PP model, the community-finding performance of the weight thresholding based on iter-
ated node2vec is poor according to both ECS (Fig. 5a) and ARI (Fig. 5b). In the meantime, the similarity scores
achieved using IERW in the case of TREXPIC or ISO with exponentialized shortest path lengths are very close
to that of Infomap and Louvain in Fig. 5a,b. The results based on iterated LE fall slightly behind, although they
still surpass the scores of asynchronous label propagation.

In the case of the LFR benchmark, the results for the weight thresholding based on IERW using both TREX-
PIC and ISO with exponentialized shortest path lengths slightly exceed that of even Infomap (Fig. 5d,e), which
is followed closely by the results achieved using iterated LE. Asynchronous label propagation falls somewhat
behind similarly to the PP case, but here it is followed relatively closely by the results based on iterated node2vec,
which in turn surpasses Louvain. Louvain has a poor performance on LFR graphs due to the resolution limit of
modularity maximization69.

Figure 5.   Extracting communities via weight thresholding the network yielded by IERW. Panels (a), (b) and
(c) refer to input networks generated by the PP model, while panels (d), (e) and (f) deal with input networks
obtained from the LFR benchmark. As a reference, the three dash-dotted lines show the results achieved by
traditional network community detection methods on the initial unweighted graphs: Louvain (dark cyan
upward-pointing triangles), Infomap (blue right-pointing triangles) and asynchronous label propagation (green
downward-pointing triangles). The other four colored lines illustrate the results for a simple weight thresholding
that we applied on the final weighted networks obtained from IERW with LE (red hexagons), TREXPIC (purple
squares), ISO with exponentialized shortest path lengths (orange pentagons) and node2vec with exponentialized
link weights (brown circles). We performed the community detection with all the methods only once for each
network. Each displayed data point corresponds to a result averaged over 100 networks, and the error bars
indicate the standard error of the mean.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

Facilitating traditional community detection methods with iterative embedding
As it is shown in Fig. 1, our IERW process can aid community detection in two different ways: one may either
apply standard data clustering techniques on the spatial node arrangements obtained from the embedding
steps, or opt for community-finding methods developed for weighted networks, taking into account both the
network topology and the geometric relations of the embedded nodes. In Fig. 6, we show examples for both
options. On the one hand, we compare the performance of traditional network community-finding approaches
on unweighted synthetic benchmark graphs to the results achieved when these methods are augmented by the
link weights obtained from a single and multiple iterations of IERW using node2vec. As the network community
detection methods, we employed Louvain40,53 (Fig. 6a,b), asynchronous label propagation42,57 (Fig. 6c,d) and
Infomap41,56 (Fig. 6e,f). In addition, we tested Hierarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN)70–72 on both the first and the iterated node embeddings (Fig. 6g,h), inputting only the cosine
distance between all the possible node pairs in the embedding space. The left column of Fig. 6 displays the ECS
scores achieved for the PP test graphs of Figs. 3 and 5a–c, whereas the right column of Fig. 6 refers to the LFR
networks examined in Figs. 4 and 5d–f. We repeated the experiments shown in Fig. 6 using LE, ISO and TREXPIC
embeddings too: the results, qualitatively very similar, are shown in Sect. S5 of the Supplementary Information.

Regarding traditional network community detection methods, it is important to keep in mind that while
Louvain, asynchronous label propagation and Infomap expect proximity-like link weights, the link weights wij
provided by IERW can be both distance-like (when using LE, ISO and TREXPIC) and proximity-like (in the case
of node2vec). Hence, following a similar practice to the one suggested in Ref.19, in Sect. S5 of the Supplementary
Information we used a conversion formula

on the link weights obtained from IERW with LE, ISO and TREXPIC before applying Louvain, asynchronous
label propagation or Infomap, where w0 > 0 is a tunable parameter. In general, by choosing a small w0 we put
more emphasis on the distances close to 0, in agreement with the expectation that the distances within communi-
ties eventually decrease over the iterations. Our analysis detailed in Sect. S5 of the Supplementary Information
shows that w0 can affect the performance of the network community-finding methods when using IERW with
LE, ISO and TREXPIC. Similarly, we also used a conversion formula

after applying IERW with node2vec, setting w0 to 1.0 in Fig. 6a–f, as we found that this shifting of all the
proximity-like exponential link weights provided by IERW can improve the performance of all the examined
traditional network community detection methods.

As it can be seen in Fig. 6, the node2vec-based IERW process can strongly improve the performance of
standard clustering methods. We observed the largest improvement in the case of Louvain, when applied to LFR
networks (Fig. 6b). It is well-known that community-finding methods based on modularity maximization (such
as Louvain) may fail in detecting small communities69. Since the size distribution of the communities is relatively
broad in the examined LFR networks, the ECS achieved on the original unweighted test graph (dark red curve)
remains well below 1 already at low µ values in Fig. 6b, indicating that Louvain in itself cannot fully uncover the
planted community structure. The performance after only a single embedding (light brown curve) is similar to
what is achieved in the unweighted case. However, when switching to the weighted networks provided by the
complete process of IERW (orange curve), the performance greatly improves. Note that in the similar measure-
ments performed with LE, TREXPIC and ISO in Figs. S11–S13 of the Supplementary Information, IERW seems
to actually eliminate the resolution limit of modularity optimization, increasing the ECS of Louvain to 1 in a
wide range of the mixing parameter.

In the case of Louvain applied to PP networks (Fig. 6a) and Infomap (Fig. 6e,f), the results on the original,
unweighted input graphs are already of very high quality. However, a slight increase can still be observed here
when switching to the networks weighted by IERW with node2vec. In the case of asynchronous label propaga-
tion (Fig. 6c,d), the performance of a single embedding is similar to that of the iterated embedding, both being
significantly better compared to the unweighted case. Finally, when applying HDBSCAN to the spatial node
arrangements created by node2vec (Fig. 6g,h), although the performance after a single embedding is modest,
the iteration of the embedding yields major improvements for both the PP and the LFR graphs.

Experiments on real‑world networks
While the previous subsections demonstrate the applicability of IERW on synthetic networks of different levels
of mixing between the communities, there is a natural need for the study of real graphs too, as these may not
have as clearly defined or regular communities as those produced by network models. Therefore, Fig. 7 and
Table 1 show some results for three real-world networks. The first one (Fig. 7a) is the American College Foot-
ball network73,74 with 115 teams as nodes and 613 games as edges, where the 12 ground truth communities are
given by the conferences of the football teams. The second real dataset (Fig. 7b) is a network of 2026 contacts
of at least 2 minutes length between 227 high school students (see the cumulative contact network for day 2 in
Ref.75), where a community information describing 10 classes is given. The third real network (Fig. 7c) is based
on 16064 emails sent between 986 members of a research institute76–78, where the 42 known groups of the nodes
correspond to the departments of the institute.

According to Fig. 7, albeit the changes are not as extreme as in the PP graphs (Fig. 3) or the LFR networks
(Fig. 4), the increasing tendency of the angular separation between the communities is a common trait of iterated

(4)w̃ij =
1

w0 + wij

(5)w̃ij = w0 + wij

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

embeddings when applied on real graphs too. The single exception is when we applied IERW with node2vec on
the email network (Fig. 7c, brown curve). However, even in this case, the performance of traditional community
finding methods may be still better on the iteratively reweighted network than on the original one, as it is shown

Figure 6.   Performance of standard clustering methods on the weighted networks and the embeddings derived
by IERW using node2vec with exponentialized link weights. Each row of panels corresponds to a different
community detection method. The left column refers to networks generated by the PP model and the right one
to networks generated by the LFR benchmark. We performed the community detection with all the methods
only once for each network. Each displayed data point corresponds to a result averaged over 100 networks, and
the error bars depict the standard error of the mean.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

Figure 7.   Angular separation of communities during IERW on three real graphs with known community
structure. The different panels correspond to different real datasets: panel (a) to the American College Football
network, panel (b) to the contact network of high school students, while panel (c) to the email network. Each
panel depicts the ratio between the average angular distance of all possible node pairs in different communities
and in the same community as a function of the number of IERW iterations for LE (red hexagons), TREXPIC
(purple squares), ISO with exponentialized shortest path lengths (orange pentagons) and node2vec with
exponentialized link weights (brown circles).

Table 1.   Element-centric similarities achieved by different community detection approaches on three real
graphs with known community structure. As a reference, the first three rows show the similarity scores
achieved by traditional community detection methods on the original, unweighted real graphs. Below that,
the performance of weight thresholding, Louvain, Infomap and asynchronous label propagation is listed
when utilizing the link weights obtained from the final iteration of IERW with LE, TREXPIC, ISO with
exponentialized shortest path lengths and node2vec with exponentialized link weights. Lastly, the bottom
of the table indicates the quality of the communities found by HDBSCAN on the final embedding provided
by IERW using the studied four embedding methods. The community detection was performed with all the
methods only once for each network. For all three examined networks, the best results are written in bold.

Community detection method Football network High school contact network Email network

Louvain on unweighted graph 0.786 0.714 0.333

Infomap on unweighted graph 0.826 0.879 0.364

async. label prop. on unweighted graph 0.775 0.777 0.047

weight threshold after IERW with LE 0.819 0.962 0.484

weight threshold after IERW with TREXPIC 0.819 0.918 0.393

weight threshold after IERW with ISO 0.819 0.918 0.398

weight threshold after IERW with node2vec 0.755 0.879 0.118

Louvain after IERW with LE 0.819 1.0 0.483

Louvain after IERW with TREXPIC 0.819 0.936 0.429

Louvain after IERW with ISO 0.819 0.936 0.438

Louvain after IERW with node2vec 0.827 0.799 0.330

Infomap after IERW with LE 0.867 0.879 0.368

Infomap after IERW with TREXPIC 0.867 0.879 0.387

Infomap after IERW with ISO 0.867 0.879 0.383

Infomap after IERW with node2vec 0.860 0.984 0.418

async. label prop. after IERW with LE 0.819 0.962 0.248

async. label prop. after IERW with TREXPIC 0.819 0.924 0.385

async. label prop. after IERW with ISO 0.819 0.924 0.403

async. label prop. after IERW with node2vec 0.860 0.849 0.047

HDBSCAN after IERW with LE 0.386 1.0 0.484

HDBSCAN after IERW with TREXPIC 0.386 0.925 0.393

HDBSCAN after IERW with ISO 0.386 0.925 0.369

HDBSCAN after IERW with node2vec 0.479 0.946 0.068

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

in Table 1 for Infomap. Furthermore, as it is indicated by Table 1, the communities can be extracted from the
weighted versions of the real networks produced by IERW even with a simple weight thresholding (which was
tested on synthetic graphs in Fig. 5) with a relatively good accuracy, and the performance of traditional com-
munity detection methods (studied on synthetic networks in Fig. 6) was also generally improved by IERW on
all the examined real networks.

Discussion
We have shown that graph embeddings facilitate the identification of communities, by providing distance- or
proximity-based weights to the links of the input graph, which makes its community structure topologically more
pronounced and more easily detectable. At the same time, embedding graphs with progressively stronger com-
munity structures makes communities more apparent also in the embedding space, where they appear as clouds
of points that become more and more compact and separated from each other. These observations inspired our
IERW framework, which realizes a simple iterative procedure to ease community detection, where the network
is repeatedly embedded and reweighted based on the geometric distance between the endpoints of the links. For
embedding methods such as node2vec, where a larger link weight is interpreted as the indicator of a stronger
and closer connection, as we keep iterating, intra-community link weights get larger and inter-community link
weights get smaller. For the other embedding methods studied in the present paper (where the link weights are
assumed to be distance-like), IERW acts in the opposite manner, increasing the weight of inter-community links
and decreasing the weight of intra-community links over the iterations. Both cases suggest a simple way to find
the clusters: removing inter-community links via weight thresholding. Such an approach, albeit elementary, is
competitive with state-of-the-art community detection techniques.

We stress that we only reweight the links of the original graph. If we assigned a weighted link to each pair
of nodes, whether they are connected or not, the identification of the communities may become easier but at
the cost of having a procedure with at least quadratic complexity in the number of nodes N. By focusing on the
actual links of the input network, instead, the reweighting procedure has linear complexity in the number of
links, which is much lower than N2 on sparse networks. The ultimate complexity of the repeated embedding and
weighting steps is determined by the running time of the chosen embedding algorithm. In the case of node2vec,
for instance, the complexity of IERW would be O

(

E + N · d · ω2
)

 for a network of N nodes and E edges when
using a d-dimensional embedding space and ω window length (empirically measured running times are also
presented in Sect. S7 of the Supplementary Information). Here the results are fairly stable as a function of d, so
one can pick a fixed value (we used d = 64 in our experiments). For the other examined embeddings, there is
a much stronger dependence on the number of embedding dimensions, and identifying a good range may be
costly (see Methods).

Our method could be used as a pre-processing step in a community detection pipeline. We find that a single
iteration of IERW can already produce a weighted network having stronger communities than the original
graph. Applied after IERW, standard community detection techniques generally deliver better results than when
they operate on the initial graph. Interestingly, our reweighting strategy provides a way to mitigate the effect of
the resolution limit of modularity maximization, significantly improving the performance of such methods on
realistic benchmarks.

Finally, we would like to stress that techniques like IERW could help facilitating other tasks, besides com-
munity detection. It would be interesting, for instance, to check whether link prediction also becomes easier on
the weighted graphs and/or embeddings built by IERW or similar procedures, bearing in mind that different
tasks may need different weighting rules and the application of different geometric measures.

Methods
Node embedding with Laplacian Eigenmaps
Based on the eigendecomposition of the Laplacian matrix of a neighborhood graph made from the original
data set, the Laplacian Eigenmaps (LE) approach was first devised in Ref.48 for mapping data points supplied
in a high-dimensional space onto a lower dimensional one. When applied to a weighted network, in the first
step the assumed distance-like input weights wij are converted to proximity-like weights using the exponential
formula w′

ij(wij) = exp(−w2
ij/t) , where, following the implementation created for Ref.19, we set the parameter

t to be equal to the square of the mean of the distance-like weights. Then, from the corresponding adjacency
matrix A and the diagonal matrix D with Dii =

∑

j Aij , we can obtain the Laplacian matrix as L = D − A . The
eigenvectors f1, f2, . . . , fd satisfying the generalized eigenvector problem L · f

ℓ
= �ℓ ·D · f

ℓ
 with the smallest

non-zero eigenvalues �1 ≤ �2 ≤ . . . ≤ �d naturally define an embedding in the d-dimensional Euclidean space,
where the ℓth coordinate of the ith node is given by the ith component of fℓ , making strongly connected nodes
being as close to each other as possible.

The computational complexity of LE is O
(

(d + 1) · N2
)

 , where the dominant contribution comes from the
eigendecomposition of the N × N-sized graph Laplacian. A fully detailed algorithmic description of LE is pro-
vided in Sect. S1 of the Supplementary Information.

In IERW with LE, we defined the distance-like input weights based on the angular distance �θij in the previ-
ous embedding as wij = 1− cos(�θij).

Node embedding with TRansformation of EXponential shortest path lengths to hyperbolIC
measures
The TRansformation of EXponential shortest Path lengths to hyperbolIC measures (TREXPIC) method49 embeds
networks in a d-dimensional hyperbolic space, trying to express the topological node-node distances as hyper-
bolic distances. First, TREXPIC prepares a matrix X of expected hyperbolic distances based on the shortest path

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

lengths SPLij measured along the graph, using the exponential formula Xij = exp(−t/SPLij) . Here we set the
parameter t > 0 to the default value defined in Ref.49, given by t =

√

ln(1.0/0.9999) · ln(1.0/0.1) · SPLmax with
SPLmax being the maximal shortest path length found in the network. The distance matrix X is then converted
into the matrix L of expected pairwise Lorentz products, using the formula Lij = cosh(ζ · Xij) , where we set ζ
simply to 1, and thus, the curvature of the hyperbolic space K = −ζ 2 to −1 . Finally, the matrix L is subjected to
singular value decomposition (formulated as L = U · � · VT ): the length of the node position vectors is calcu-
lated from the largest singular value σ1 ≡ �11 and the corresponding singular vector u1 (given by the first column
of the matrix U  ), while the direction vectors of the embedded nodes are calculated from the next d singular values
( σ2 ≥ σ3 ≥ · · · ≥ σd+1 ) and the corresponding singular vectors ( u2, u3, . . . , ud+1).

The computational complexity of TREXPIC for d + 1 < ln(N) is dominated by the calculation of the N × N
-sized shortest path length matrix, yielding O

(

ln(N) · N2
)

 , while the computational complexity of the truncated
singular value decomposition is O

(

(d + 1) · N2
)

 . A fully detailed description of the TREXPIC approach is pre-
sented in Sect. S1 of the Supplementary Information.

Similarly to the case of LE, in IERW with TREXPIC we defined the distance-like input weights as
wij = 1− cos(�θij) based on the previous embedding iteration.

Node embedding with Isomap
Similarly to LE, the Isomap (ISO) method was originally proposed50 for finding a lower-dimensional repre-
sentation of a high-dimensional data set using a nearest neighbor graph. Aiming at a mapping between the
topological node-node distances and the Euclidean distances in the embedding, a matrix I of expected pairwise
inner products is calculated from the shortest path length (SPL) matrix of the graph to be embedded, placing
the center of mass of the embedded graph at the origin. In the present paper, we followed the implementation
applied in Ref.19, which performs not the eigendecomposition but the singular value decomposition of the
matrix I . This singular value decomposition (formulated as I = U · � · VT ) provides the node coordinates in
the d-dimensional Euclidean space: by taking the d largest singular values σ1 ≥ σ2 ≥ · · · ≥ σd and the corre-
sponding singular vectors u1, u2, . . . , ud , the ℓth component of the position vector of the ith network node is
defined as y

i
(ℓ) = √

σℓ · uℓ(i).
To improve the performance of IERW, we introduced an alternative version of ISO that is built on exponential-

ized shortest path lengths, similarly to TREXPIC. Here, the original formula Dij = SPLij of the expected pairwise
Euclidean distances is replaced by Dij = exp(−t/SPLij) , where t > 0 is a tunable parameter. We used the same
setting for this t parameter as in the default case of TREXPIC, namely t =

√

ln(1.0/0.9999) · ln(1.0/0.1) · SPLmax ,
where SPLmax is the largest shortest path length of the examined network. The beneficial effect of exponentializa-
tion in ISO is demonstrated in Sect. S2 of the Supplementary Information.

The computational complexity of ISO for d < ln(N) is dominated by the calculation of the N × N-sized
shortest path length matrix, yielding O

(

ln(N) · N2
)

 , while the computational complexity of the truncated sin-
gular value decomposition is O

(

d · N2
)

 . A fully detailed description of ISO embeddings is given in Sect. S1 of
the Supplementary Information.

In complete analogy with LE and TREXPIC, in IERW with both versions of ISO we defined the link weights
of the network based on the previous embedding iteration simply as wij = 1− cos(�θij).

Node embedding with node2vec
The node2vec method8 provides Euclidean node embeddings based on random walks in the network. The central
idea is to use the sequences of the visited nodes as textual input for the word2vec79 method, originally designed
to embed words from a large text corpus into a vector space. In the present paper, we followed the parameter
setting proposed in Ref.26 by setting the number of walks started from each node to 80, the length of the random
walk to 10 and the length of the considered context windows in word2vec to ω = 10 . The parameters p and q,
controlling the locality and the depth of the random walks were set to the default value of p = q = 1.

The computational complexity of creating a d-dimensional embedding for a network of N nodes and E edges
with node2vec is O

(

E + N · d · ω2
)

 . Note that since node2vec operates with random walks, it is a stochastic
embedding method. Nonetheless, as we performed all of our measurements on multiple network samples anyway,
we ran IERW with node2vec only once for each network. A more detailed description of the node2vec method
is given in Sect. S1 of the Supplementary Information.

When provided with a weighted input network, the random walk transition probabilities are modified in
node2vec according to the link weights, where a higher link weight is accompanied by a higher transition
probability. According to that, opposite to the previous embedding methods, node2vec expects proximity-like
link weights instead of distance-like weights. To utilize the beneficial effects of exponentialization in IERW
also with node2vec, here we defined exponential link weights based on the previous embedding iteration as
wij = exp

(

t · [cos(�θij)− 1]
)

 , where the parameter t was set to t = 10 · κ̄/κ̂ with κ̄ denoting the average and
κ̂ the mode of the node degrees, respectively. The advantage of the exponentialization over the application of a
simple proximity-like link weight formula given by wij = cos(�θij)+ 1 is demonstrated in Sect. S2 of the Sup-
plementary Information.

Choosing the number of embedding dimensions
When using IERW with node2vec, we followed one of the standard choices in the literature and simply set the
number of embedding dimensions d always to 64. However, as it is demonstrated in Sect. S3 of the Supplementary
Information, the performance of LE, ISO and TREXPIC shows a relatively strong dependence on the setting
of d, and in the case of these matrix decomposition methods, it seems that the best choice is a d close to the
number of communities in the examined network. Therefore, before applying IERW with LE, ISO or TREXPIC,

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

we estimated the number of planted communities C based on the number of non-zero eigenvalues below the
largest eigengap of the normalized Laplacian matrix of the given network, and using this estimation, we set the
number of embedding dimensions to d = C − 1 , which fits the expectation that e.g. a two-dimensional pattern
(namely a triangle) is needed in general to describe all the pairwise relations between three communities. The
algorithmic details of choosing the number of embedding dimensions for LE, ISO and TREXPIC are provided
in Sect. S3 of the Supplementary Information.

Extraction of communities with weight thresholding
As described in Results, for demonstration purposes we implemented a really simple community detection
method that performs a weight thresholding on the weighted networks obtained from the IERW process. Namely,
we aimed at splitting a network into groups of densely connected nodes through the following steps:

1.	 Sort the weights of the E number of links of the embedded network in increasing order.
2.	 Remove the ⌊0.05 · E⌋ lowest and the largest links from the ordered list to ensure the removal of at least 5%

but at most 95% of the links during the weight thresholding.
3.	 Find the largest gap between the consecutive link weights in the ordered list and set the weight threshold to

the average of the two weight values on the sides of the largest gap.
4.	 Prune the examined graph.

(a)	 When dealing with distance-like link weights that are smaller for stronger connections (i.e., when
using LE, TREXPIC or ISO), remove the links having weights larger than the threshold.

(b)	 When dealing with proximity-like link weights that are larger for stronger connections (i.e., when
using node2vec), remove the links having weights smaller than the threshold.

5.	 Identify each of the connected components in the pruned graph as a community.

Generating synthetic networks with communities using the planted partition model
The planted partition (PP) model38 is a special case of the stochastic block model (SBM)52, where there are only
two values for the link probability: pin , for pairs of nodes in the same community/block and pout for pairs of
nodes in different communities/blocks. To generate networks with the PP model, we used the Python function
‘planted_partition_graph’ available in the ‘NetworkX’ package.

The input parameters of the model are the total number N of nodes, the number m of nodes in each commu-
nity and the expected average degree κ̄ . In the above-presented measurements, following the settings in Ref.26,
we used N = 1000 , m = 50 (yielding C = N/m = 20 communities) and κ̄ = 20 . To obtain community structures
of different strengths, we tuned the mixing parameter µ ∈ [0, 1] , which we defined as the fraction between the
expected number of neighbors of a randomly chosen node outside of its community and the expected total
number of neighbors, i.e. as µ = κ̄out/κ̄ . Given the mixing parameter µ and the expected average degree κ̄ , we
calculated the expected number of inter-cluster edges of each node as κ̄out = µ · κ̄ , and the expected number of
intra-cluster edges of each node as κ̄in = κ̄ − κ̄out . Then, we derived the desired connection probabilities pout
and pin from the formulas κ̄out = pout · (C − 1) ·m and κ̄in = pin · (m− 1) . Self-loops are not included in the
applied implementation, meaning that the number of possible neighbors of a node within its own block is m− 1
instead of m. In our measurements, we used the settings µ = 0.1, 0.15, 0.2, . . . , 0.85, 0.9 , where smaller values
correspond to more easily detectable community structures.

To provide an example for a more complicated case, in Sect. S6 of the Supplementary Information we also
utilise the ability of the stochastic block model to generate hierarchical community structures and show that
IERW can facilitate the detection of the planted communities on both levels of the examined hierarchy.

Generating synthetic networks with communities using the Lancichinetti–Fortunato–Radic-
chi benchmark
The Lancichinetti–Fortunato–Radicchi (LFR) benchmark39 generates graphs with power-law distributions of the
node degrees and the community sizes, enabling the emergence of heterogeneity in these two quantities. The
input parameters of the model are the total number N of nodes, the expected average degree κ̄ , the allowed largest
degree κmax , the exponent γ of the tail of the degree distribution ( P(κ) ∼ κ−γ ), the allowed smallest and largest
community sizes mmin and mmax , the exponent β of the tail of the community size distribution ( P(m) ∼ m−β ),
and the mixing parameter µ ∈ [0, 1] , having the same definition that we used in the case of the PP model, mean-
ing that each node is expected to share a fraction of 1− µ of its links with the other nodes of its own community
and the remaining fraction µ with the nodes of the other communities. We examined LFR networks with non-
overlapping clusters that we generated with the C++ code downloaded from https://​www.​santo​fortu​nato.​net/​
resou​rces. In the above measurements, following the settings in Ref.26, we used N = 1000 , κ̄ = 20 , κmax = 50 ,
γ = 2.0 , mmin = 10 , mmax = 100 and β = 3.0 , tuning the mixing parameter between µ = 0.1 (yielding easily
detectable community structures with links falling mostly within communities) and µ = 0.9 (where most of the
links connect nodes of different communities).

Data availability
All data generated during the current study are available from the corresponding author upon request.

https://www.santofortunato.net/resources
https://www.santofortunato.net/resources

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

Code availability
The code used for performing the iterative embedding is available at https://​github.​com/​BianK​ov/​iterE​mb.

Received: 16 February 2024; Accepted: 19 July 2024

References
	 1.	 Lü, L. & Zhou, T. Link prediction in complex networks: A survey. Phys. A Stat. Mech. Appl. 390, 1150–1170. https://​doi.​org/​10.​

1016/j.​physa.​2010.​11.​027 (2011).
	 2.	 Chen, H. et al. PME: Projected metric embedding on heterogeneous networks for link prediction. In Proceedings of the 24th ACM

SIGKDD International Conference on KDD, KDD ’18, 1177–1186 (Association for Computing Machinery, New York, NY, USA,
2018).

	 3.	 Kunegis, J. & Lommatzsch, A. Learning spectral graph transformations for link prediction. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, 561–568 (Association for Computing Machinery, New York, NY, USA,
2009).

	 4.	 Masrour, F., Wilson, T., Yan, H., Tan, P.-N. & Esfahanian, A. Bursting the filter bubble: Fairness-aware network link prediction.
Proc. AAAI Conf. Artif. Intell. 34, 841–848 (2020).

	 5.	 Bhagat, S., Cormode, G. & Muthukrishnan, S. Node classification in social networks. In Soc. Netw. Data Anal. (ed. Aggarwal, C.
C.) 115–148 (Springer, 2011). https://​doi.​org/​10.​1007/​978-1-​4419-​8462-3_5.

	 6.	 Perozzi, B., Al-Rfou, R. & Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’14, 701–710, https://​doi.​org/​10.​1145/​26233​30.​26237​32
(Association for Computing Machinery, New York, NY, USA, 2014).

	 7.	 Wang, D., Cui, P. & Zhu, W. Structural deep network embedding. In Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’16, 1225–1234, https://​doi.​org/​10.​1145/​29396​72.​29397​53 (Association for
Computing Machinery, New York, NY, USA, 2016).

	 8.	 Grover, A. & Leskovec, J. Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, 855–864, https://​doi.​org/​10.​1145/​29396​72.​29397​54 (2016).

	 9.	 Ou, M., Cui, P., Pei, J., Zhang, Z. & Zhu, W. Asymmetric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, 1105–1114, https://​doi.​org/​10.​1145/​29396​
72.​29397​51 (Association for Computing Machinery, New York, NY, USA, 2016).

	10.	 Donath, W. & Hoffman, A. Lower bounds for the partitioning of graphs. IBM J. Res. Dev. 17, 420–425 (1973).
	11.	 Fiedler, M. Algebraic connectivity of graphs. Czechoslov. Math. J. 23, 298–305 (1973).
	12.	 Spielman, D. A. & Teng, S.-H. Spectral partitioning works: Planar graphs and finite element meshes. In IEEE Symposium on

Foundations o Computer Science, 96–105 (1996).
	13.	 von Luxburg, U. A tutorial on spectral clustering. Tech. Rep. 149, Max Planck Institute for Biological Cybernetics, Tübingen (2006).
	14.	 Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
	15.	 Fortunato, S. & Hric, D. Community detection in networks: A user guide. Phys. Rep. 659, 1–44. https://​doi.​org/​10.​1016/j.​physr​ep.​

2016.​09.​002 (2016).
	16.	 Fortunato, S. & Newman, M. 20 years of network community detection. Nat. Phys. 18, 848–850 (2022).
	17.	 Wang, Z., Li, Q., Xiong, W., Jin, F. & Wu, Y. Fast community detection based on sector edge aggregation metric model in hyperbolic

space. Phys. A Stat. Mech. Appl. 452, 178–191. https://​doi.​org/​10.​1016/j.​physa.​2016.​01.​020 (2016).
	18.	 Bruno, M. et al. Community detection in the hyperbolic space (2019). Preprint at arXiv:​1906.​09082 [physics.soc-ph].
	19.	 Muscoloni, A., Thomas, J. M., Ciucci, S., Bianconi, G. & Cannistraci, C. V. Machine learning meets complex networks via coalescent

embedding in the hyperbolic space. Nat. Commun. 8, 1615. https://​doi.​org/​10.​1038/​s41467-​017-​01825-5 (2017).
	20.	 Barot, A., Bhamidi, S. & Dhara, S. Community detection using low-dimensional network embedding algorithms (2021). Preprint

at arXiv:​2111.​05267 [cs.SI].
	21.	 Pankratz, B., Kamiński, B. & Prałat, P. Community detection supported by node embeddings (searching for a suitable method).

In Complex Networks and their Applications XI (eds Cherifi, H. et al.) 221–232 (Springer, 2023). https://​doi.​org/​10.​1007/​978-3-​
031-​21131-7_​17.

	22.	 Brzozowski, L., Siudem, G. & Gagolewski, M. Community detection in complex networks via node similarity, graph representation
learning, and hierarchical clustering (2023). Preprint at arXiv:​2303.​12212 [cs.SI].

	23.	 Agrawal, R., Arquam, M. & Singh, A. Community detection in networks using graph embedding. Procedia Comput. Sci. 173,
372–381. https://​doi.​org/​10.​1016/j.​procs.​2020.​06.​044 (2020) (International Conference on Smart Sustainable Intelligent Com-
puting and Applications under ICITETM2020).

	24.	 Zhang, J., He, X. & Wang, J. Directed community detection with network embedding. J. Am. Stat. Assoc. 117, 1809–1819. https://​
doi.​org/​10.​1080/​01621​459.​2021.​18877​42 (2022).

	25.	 Faqeeh, A., Osat, S. & Radicchi, F. Characterizing the analogy between hyperbolic embedding and community structure of complex
networks. Phys. Rev. Lett. 121, 098301. https://​doi.​org/​10.​1103/​PhysR​evLett.​121.​098301 (2018).

	26.	 Tandon, A. et al. Community detection in networks using graph embeddings. Phys. Rev. E 103, 022316. https://​doi.​org/​10.​1103/​
PhysR​evE.​103.​022316 (2021).

	27.	 Kojaku, S., Radicchi, F., Ahn, Y.-Y. & Fortunato, S. Network community detection via neural embeddings (2023). Preprint at arXiv:​
2306.​13400 [physics.soc-ph].

	28.	 Zheng, V. W., Cavallari, S., Cai, H., Chang, K. C.-C. & Cambria, E. From node embedding to community embedding (2016).
Preprint at arXiv:​1610.​09950 [cs.SI].

	29.	 Cavallari, S., Zheng, V. W., Cai, H., Chang, K. C.-C. & Cambria, E. Learning community embedding with community detection
and node embedding on graphs. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM
’17, 377–386, https://​doi.​org/​10.​1145/​31328​47.​31329​25 (Association for Computing Machinery, New York, NY, USA, 2017).

	30.	 Sun, H. et al. Network embedding for community detection in attributed networks. ACM Trans. Knowl. Discov. Data.https://​doi.​
org/​10.​1145/​33854​15 (2020).

	31.	 Wang, C. et al. Deep neighbor-aware embedding for node clustering in attributed graphs. Pattern Recognit. 122, 108230. https://​
doi.​org/​10.​1016/j.​patcog.​2021.​108230 (2022).

	32.	 Salathé, M. & Jones, J. H. Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6, e1000736
(2010).

	33.	 Dong, G. et al. Resilience of networks with community structure behaves as if under an external field. Proc. Natl. Acad. Sci. 115,
6911–6915 (2018).

	34.	 Masuda, N., Porter, M. A. & Lambiotte, R. Random walks and diffusion on networks. Phys. Rep. 716, 1–58 (2017).
	35.	 Zhang, Y. & Tang, M. Consistency of random-walk based network embedding algorithms. arXiv:​2101.​07354 (2021).
	36.	 MacQueen, J. B. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley

Symposium on Mathematical Statistics and Probability, Vol. 1, 281–297 (1967).

https://github.com/BianKov/iterEmb
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1016/j.physa.2010.11.027
https://doi.org/10.1007/978-1-4419-8462-3_5
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1145/2939672.2939751
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physa.2016.01.020
http://arxiv.org/abs/1906.09082
https://doi.org/10.1038/s41467-017-01825-5
http://arxiv.org/abs/2111.05267
https://doi.org/10.1007/978-3-031-21131-7_17
https://doi.org/10.1007/978-3-031-21131-7_17
http://arxiv.org/abs/2303.12212
https://doi.org/10.1016/j.procs.2020.06.044
https://doi.org/10.1080/01621459.2021.1887742
https://doi.org/10.1080/01621459.2021.1887742
https://doi.org/10.1103/PhysRevLett.121.098301
https://doi.org/10.1103/PhysRevE.103.022316
https://doi.org/10.1103/PhysRevE.103.022316
http://arxiv.org/abs/2306.13400
http://arxiv.org/abs/2306.13400
http://arxiv.org/abs/1610.09950
https://doi.org/10.1145/3132847.3132925
https://doi.org/10.1145/3385415
https://doi.org/10.1145/3385415
https://doi.org/10.1016/j.patcog.2021.108230
https://doi.org/10.1016/j.patcog.2021.108230
http://arxiv.org/abs/2101.07354

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

	37.	 Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, 226–231 (AAAI Press,
1996).

	38.	 Condon, A. & Karp, R. M. Algorithms for graph partitioning on the planted partition model. Random Structures & Algorithms 18,
116–140. https://doi.org/10.1002/1098-2418(200103)18:2<116::AID-RSA1001>3.0.CO;2-2 (2001).

	39.	 Lancichinetti, A., Fortunato, S. & Radicchi, F. Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78,
046110. https://​doi.​org/​10.​1103/​PhysR​evE.​78.​046110 (2008).

	40.	 Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008, P10008. https://​doi.​org/​10.​1088/​1742-​5468/​2008/​10/​p10008 (2008).

	41.	 Rosvall, M. & Bergstrom, C. T. Multilevel compression of random walks on networks reveals hierarchical organization in large
integrated systems. PLOS ONE 6, 1–10. https://​doi.​org/​10.​1371/​journ​al.​pone.​00182​09 (2011).

	42.	 Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys.
Rev. E 76, 036106. https://​doi.​org/​10.​1103/​PhysR​evE.​76.​036106 (2007).

	43.	 Chen, Y., Wu, L. & Zaki, M. Iterative deep graph learning for graph neural networks: Better and robust node embeddings. In
Advances in Neural Information Processing Systems Vol. 33 (eds Larochelle, H. et al.) 19314–19326 (Curran Associates, Inc., 2020).

	44.	 Oborevich, A. & Makarov, I. Iterative graph embedding and clustering. In Advances in Computational Intelligence (eds Rojas, I. et
al.) 68–79 (Springer, 2023).

	45.	 Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A. & Boguñá, M. Hyperbolic geometry of complex networks. Phys. Rev. E 82,
036106. https://​doi.​org/​10.​1103/​PhysR​evE.​82.​036106 (2010).

	46.	 García-Pérez, G., Allard, A., Serrano, M. Á. & Boguñá, M. Mercator: Uncovering faithful hyperbolic embeddings of complex
networks. New J. Phys. 21, 123033. https://​doi.​org/​10.​1088/​1367-​2630/​ab57d2 (2019).

	47.	 Ye, D., Jiang, H., Jiang, Y., Wang, Q. & Hu, Y. Community preserving mapping for network hyperbolic embedding. Knowl. Based
Syst. 246, 108699. https://​doi.​org/​10.​1016/j.​knosys.​2022.​108699 (2022).

	48.	 Belkin, M. & Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Infor-
mation Processing Systems Vol. 14 (eds Dietterich, T. et al.) (MIT Press, 2001).

	49.	 Kovács, B. & Palla, G. Model-independent embedding of directed networks into Euclidean and hyperbolic spaces. Commun. Phys.
6, 28. https://​doi.​org/​10.​1038/​s42005-​023-​01143-x (2023).

	50.	 Tenenbaum, J. B., de Silva, V. & Langford, J. C. A global geometric framework for nonlinear dimensionality reduction. Science 290,
2319–2323. https://​doi.​org/​10.​1126/​scien​ce.​290.​5500.​2319 (2000).

	51.	 Smith, S. L., Dherin, B., Barrett, D. G. & De, S. On the origin of implicit regularization in stochastic gradient descent (2021).
Preprint at arXiv:​2101.​12176 [cs.LG].

	52.	 Holland, P. W., Laskey, K. B. & Leinhardt, S. Stochastic blockmodels: First steps. Soc. Netw. 5, 109–137. https://​doi.​org/​10.​1016/​
0378-​8733(83)​90021-7 (1983).

	53.	 We used the Python implementation of the Louvain algorithm available at https://​github.​com/​tayna​ud/​python-​louva​in. Accessed
23 July 2024.

	54.	 Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113. https://​doi.​
org/​10.​1103/​PhysR​evE.​69.​026113 (2004).

	55.	 Newman, M. E. J. Analysis of weighted networks. Phys. Rev. E 70, 056131. https://​doi.​org/​10.​1103/​PhysR​evE.​70.​056131 (2004).
	56.	 We used the Python package for the Infomap algorithm available at https://​pypi.​org/​proje​ct/​infom​ap/. Accessed 23 July 2024.
	57.	 We used the Python function ‘asyn_lpa_communities’, an implementation of the asynchronous label propagation algorithm avail-

able in the ‘networkx.algorithms.community.label_propagation’ package at https://​netwo​rkx.​org/​docum​entat​ion/​stable/​refer​ence/​
algor​ithms/​gener​ated/​netwo​rkx.​algor​ithms.​commu​nity.​label_​propa​gation.​asyn_​lpa_​commu​nities.​html. Accessed 23 July 2024.

	58.	 Gates, A. J., Wood, I. B., Hetrick, W. P. & Ahn, Y.-Y. Element-centric clustering comparison unifies overlaps and hierarchy. Sci.
Rep. 9, 8574. https://​doi.​org/​10.​1038/​s41598-​019-​44892-y (2019).

	59.	 Gates, A. J. & Ahn, Y.-Y. Clusim: A python package for calculating clustering similarity. J. Open Sour. Softw. 4, 1264. https://​doi.​
org/​10.​21105/​joss.​01264 (2019).

	60.	 Romano, S., Vinh, N. X., Bailey, J. & Verspoor, K. Adjusting for chance clustering comparison measures. J. Mach. Learn. Res. 17,
1–32 (2016).

	61.	 Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193–218. https://​doi.​org/​10.​1007/​BF019​08075 (1985).
	62.	 Steinley, D. Properties of the Hubert-Arabie adjusted Rand index. Psychol. Methods 9, 386–396. https://​doi.​org/​10.​1037/​1082-​

989x.9.​3.​386 (2004).
	63.	 Chacón, J. E. & Rastrojo, A. I. Minimum adjusted rand index for two clusterings of a given size. Adv. Data Anal. Classif. 17, 125–133.

https://​doi.​org/​10.​1007/​s11634-​022-​00491-w (2023).
	64.	 We calculated the adjusted Rand index values with the Python function ‘adjusted_rand_score’ available in the ‘sklearn.metrics’

package at https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​metri​cs.​adjus​ted_​rand_​score.​html. Accessed 23 July 2024.
	65.	 Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings comparison: Is a correction for chance necessary?

In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, 1073-1080, 10.1145/1553374.1553511
(Association for Computing Machinery, New York, NY, USA, 2009).

	66.	 Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings comparison: Variants, properties, normalization
and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010).

	67.	 McCarthy, A. D. & Matula, D. W. Normalized mutual information exaggerates community detection performance. In SIAM
Workshop on Network Science 2018, 78–79 (2018).

	68.	 We calculated the adjusted mutual information values with the Python function ‘adjusted_mutual_info_score’ available in the
‘sklearn.metrics’ package at https://​scikit-​learn.​org/​stable/​modul​es/​gener​ated/​sklea​rn.​metri​cs.​adjus​ted_​mutual_​info_​score.​html.
Accessed 23 July 2024.

	69.	 Fortunato, S. & Barthélemy, M. Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41. https://​doi.​org/​
10.​1073/​pnas.​06059​65104 (2007).

	70.	 McInnes, L. & Healy, J. Accelerated hierarchical density based clustering. In 2017 IEEE International Conference on Data Mining
Workshops (ICDMW), 33–42, https://​doi.​org/​10.​1109/​ICDMW.​2017.​12 (2017).

	71.	 Campello, R. J. G. B., Moulavi, D. & Sander, J. Density-based clustering based on hierarchical density estimates. In Advances in
Knowledge Discovery and Data Mining (eds Pei, J. et al.) 160–172 (Springer, 2013).

	72.	 We used the Python package for the HDBSCAN algorithm available at https://​pypi.​org/​proje​ct/​hdbsc​an/. Accessed 23 July 2024.
	73.	 The American College Football network was downloaded from http://​www-​perso​nal.​umich.​edu/​~mejn/​netda​ta/​footb​all.​zip.

Accessed 23 July 2024.
	74.	 Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99, 7821–7826.

https://​doi.​org/​10.​1073/​pnas.​12265​3799 (2002).
	75.	 Stehlé, J. et al. High-resolution measurements of face-to-face contact patterns in a primary school. PLOS ONE 6, 1–13. https://​doi.​

org/​10.​1371/​journ​al.​pone.​00231​76 (2011).
	76.	 The email network that we used for testing our embedding methods was downloaded from http://​snap.​stanf​ord.​edu/​data/​email-​

Eu-​core.​html. Accessed 23 July 2024.

https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1371/journal.pone.0018209
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1088/1367-2630/ab57d2
https://doi.org/10.1016/j.knosys.2022.108699
https://doi.org/10.1038/s42005-023-01143-x
https://doi.org/10.1126/science.290.5500.2319
http://arxiv.org/abs/2101.12176
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://github.com/taynaud/python-louvain
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.70.056131
https://pypi.org/project/infomap/
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.label_propagation.asyn_lpa_communities.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.label_propagation.asyn_lpa_communities.html
https://doi.org/10.1038/s41598-019-44892-y
https://doi.org/10.21105/joss.01264
https://doi.org/10.21105/joss.01264
https://doi.org/10.1007/BF01908075
https://doi.org/10.1037/1082-989x.9.3.386
https://doi.org/10.1037/1082-989x.9.3.386
https://doi.org/10.1007/s11634-022-00491-w
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1073/pnas.0605965104
https://doi.org/10.1109/ICDMW.2017.12
https://pypi.org/project/hdbscan/
http://www-personal.umich.edu/~mejn/netdata/football.zip
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1371/journal.pone.0023176
https://doi.org/10.1371/journal.pone.0023176
http://snap.stanford.edu/data/email-Eu-core.html
http://snap.stanford.edu/data/email-Eu-core.html

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:17184 | https://doi.org/10.1038/s41598-024-68152-w

www.nature.com/scientificreports/

	77.	 Yin, H., Benson, A. R., Leskovec, J. & Gleich, D. F. Local higher-order graph clustering. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17, 555-564, https://​doi.​org/​10.​1145/​30979​83.​30980​69
(Association for Computing Machinery, New York, NY, USA, 2017).

	78.	 Leskovec, J., Kleinberg, J. & Faloutsos, C. Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov.
Data 1, 2-es. https://​doi.​org/​10.​1145/​12172​99.​12173​01 (2007).

	79.	 Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space (2013). Preprint at arXiv:​
1301.​3781 [cs.CL].

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement no. 101021607, the European Union project RRF-2.3.1-21-2022-00004 within the frame-
work of the Artificial Intelligence National Laboratory and was partially supported by the National Research,
Development and Innovation Office under grant no. K128780. We acknowledge the support of the AccelNet-
MultiNet program, a project of the National Science Foundation (Award #1927425 and #1927418), of the Army
Research Office under Contract No. W911NF-21-1-0194, and of the National Institutes of Health under awards
U01AG072177 and U19AG074879.

Author contributions
S.F. and G.P. developed the concept of the study, B.K. worked out the details of the iterative embedding algo-
rithms, performed the measurements and prepared the figures, B.K., G.P., S.F. and S.K. analysed and interpreted
the results, S.K. optimized the implementation of the algorithms, B.K., G.P., S.F. and S.K. wrote the paper. All
authors reviewed the manuscript.

Funding
Open access funding provided by Semmelweis University.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​68152-w.

Correspondence and requests for materials should be addressed to G.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1145/1217299.1217301
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1038/s41598-024-68152-w
https://doi.org/10.1038/s41598-024-68152-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Iterative embedding and reweighting of complex networks reveals community structure
	Results
	Iterative embedding and reweighting
	Angular separation of communities in iteratively embedded networks
	Separation of communities via weight thresholding
	Facilitating traditional community detection methods with iterative embedding
	Experiments on real-world networks

	Discussion
	Methods
	Node embedding with Laplacian Eigenmaps
	Node embedding with TRansformation of EXponential shortest path lengths to hyperbolIC measures
	Node embedding with Isomap
	Node embedding with node2vec
	Choosing the number of embedding dimensions
	Extraction of communities with weight thresholding
	Generating synthetic networks with communities using the planted partition model
	Generating synthetic networks with communities using the Lancichinetti–Fortunato–Radicchi benchmark

	References
	Acknowledgements

