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Iterative embedding 
and reweighting of complex 
networks reveals community 
structure
Bianka Kovács 1, Sadamori Kojaku 2,3, Gergely Palla 1,4* & Santo Fortunato 2

Graph embeddings learn the structure of networks and represent it in low-dimensional vector spaces. 
Community structure is one of the features that are recognized and reproduced by embeddings. 
We show that an iterative procedure, in which a graph is repeatedly embedded and its links are 
reweighted based on the geometric proximity between the nodes, reinforces intra-community links 
and weakens inter-community links, making the clusters of the initial network more visible and more 
easily detectable. The geometric separation between the communities can become so strong that 
even a very simple parsing of the links may recover the communities as isolated components with 
surprisingly high precision. Furthermore, when used as a pre-processing step, our embedding and 
reweighting procedure can improve the performance of traditional community detection algorithms.

Recent advances in machine learning have opened new productive research directions in the study of networks 
(or graphs). Graph embeddings are paradigmatic examples. They represent the structure of a graph via the geo-
metric relations of a set of points arranged in a low-dimensional vector space, where the points are the network 
nodes and some features of the original network are preserved. Once the graph has been embedded, one can 
operate on the resulting spatial distribution of points by using the wealth of tools that are available in continuous 
metric spaces, in particular the possibility of computing distances between the points.

Graph embeddings have been instrumental in various graph data applications, including link prediction1–4, 
node classification5–9, and community detection10–31. Community detection is a pivotal task in network analy-
sis because communities play key roles in the dynamics and functionality of networks32–34. Communities are 
groups of nodes with a significant density of internal links, whereas the density of links connecting the groups 
to each other is comparatively lower. Since graph embedding methods typically place closely connected nodes 
in a network at nearby points in the embedding space, prominent communities are often embedded as compact, 
well-separated clusters13,35. These clusters can then be identified using data clustering techniques such as k-means 
clustering36 or DBSCAN37. Alternatively, the node proximity in the embedding can be used to facilitate network 
community detection algorithms by generating a good initial partition21 or defining link weights19. Whether it 
is used for data clustering or enhancing network community detection algorithms, the applicability of graph 
embedding for the identification of communities depends on the ability of the embedding to project communities 
into distinct, compact clusters. This can be challenging, particularly when different communities are connected 
by many links. However, even if communities are not well separated in the network, embeddings can still capture 
node proximities, tending to place nodes within the same community closer together. This proximity information 
can be leveraged to refine the embedding, resulting in better-defined, compact community clusters that can be 
more easily identified using data clustering techniques.

We propose an iterative procedure, called Iterative Embedding and ReWeighting (IERW), consisting of embed-
ding the network and reweighting its links until a stable weighted graph configuration is reached. We find that, 
by utilizing information about node proximities derived from the embedding, we can obtain weighted networks 
in which the communities of the original graph are more and more pronounced over the iterations and easier 
to find. This effect can be so strong that it allows the recovery of communities by simply removing the longest 
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links of the final weighted graph and identifying the connected components of the resulting network. This sim-
ple method is competitive with traditional community detection methods on synthetic graphs generated by the 
planted partition (PP) model38 and can outperform them on the more realistic Lancichinetti–Fortunato–Radicchi 
(LFR) benchmark39. Delivering link weights that strengthen the communities of the original network, IERW can 
also improve the performance of traditional community detection methods like Louvain40, Infomap41 or label 
propagation42. In addition, tests on real networks also show the benefits of applying IERW as a pre-processing 
step in terms of the increased similarity between the ground truth partitioning and the modules detected by the 
aforementioned traditional community finding methods.

Formerly, an iterative embedding method has been proposed in the field of graph neural networks, where both 
the graph structure and the embedding are learned in an iterative manner, aiming for a better representation43. 
In parallel, an iteration of node2vec embedding8 using k-means clustering36 cost regularization has been also 
proposed44, whereas in an alternative approach, specifically tailored for hyperbolic embedding based on the 
random hyperbolic graph45,46, the model likelihood was regularized iteratively by taking into account also the 
communities47. Our work provides a more general framework, allowing the inclusion of any embedding method 
in general. In the present study, we apply both Euclidean and hyperbolic embedding algorithms, all leading to 
similar results at the qualitative level.

Results
Iterative embedding and reweighting
Given an embedding that can form dense spatial clusters from nodes that are strongly connected to each other, 
it can be expected that when the cohesiveness within the network communities and the separation between 
them are enhanced via some link weights, then a repeated embedding can further increase the density of the 
initial spatial clusters. Following this concept, as it is shown in Fig. 1, the proposed Iterative Embedding and 
ReWeighting (IERW) process repeatedly arranges the network nodes in a vector space according to the topo-
logical relations between them and assigns weights to the links of the network in accordance with the geometric 
relations between the nodes in the previous embedding. During this process, no new links are introduced, only 
the existing links are reweighted. This framework provides two opportunities for community detection: one can 
either use standard data clustering methods on the spatial node arrangements generated by the embedding steps, 
or utilize both the network topology and the geometric relations between the nodes by applying a community 
detection method on the weighted networks obtained from the link weighting steps.

While our IERW framework is agnostic to the method applied for network embedding, we illustrate the 
effectiveness of the iterative embedding by focusing on four embedding algorithms (described in the Methods 
section): Laplacian Eigenmaps (LE)48, TRansformation of EXponential shortest Path lengths to hyperbolIC 
measures (TREXPIC)49, Isomap (ISO)50 and node2vec8. All the applied embedding methods are capable of 
embedding connected, possibly weighted undirected networks without self-loops and parallel edges in either 
Euclidean (LE, ISO, node2vec) or hyperbolic (TREXPIC) spaces of any number of dimensions d. While LE, 
TREXPIC and ISO are dimensional reduction techniques based on matrix factorization, in node2vec a neural 
network creates embeddings based on random walks performed along the network.

As it is detailed in the Methods section, two of the considered methods, namely LE and TREXPIC build on 
relatively fast-changing, exponential measures of the topological proximity and distance between the network 
nodes. Following this idea, in order to emphasize the differences between the connectedness of different node 
pairs in the case of ISO as well, we created a modified version of this embedding method by inserting an expo-
nentialization step into the algorithm. Similarly, we also included exponentialization in the iteration of node2vec, 
where we left the embedding algorithm itself unaltered but chose an exponential link weight function in IERW. 
The positive effect of introducing exponentialization in ISO and node2vec is demonstrated in Sect. S2 of the 
Supplementary Information. In all figures appearing in this paper, we utilised the exponentialization in both ISO 
and node2vec. Note that the exponentialization step has a tunable constant t > 0 in the case of all four embedding 
methods. We did not search for its optimal value in each task individually but used the default setting in all of 
our measurements. Therefore, our results achieved with IERW may not be the best possible outcomes and there 
may be room for improvement. The effect of changing t in the exponentialization step of the different embedding 
methods is examined in Sect. S3 of the Supplementary Information.

A crucial step of IERW is the calculation of the link weights based on the positions of the connected nodes 
in the previous embedding. It is important to bear in mind that the different embedding methods may need 
different types of link weights as input. Traditionally, in network science link weights represent the intensity or 
strength of the connection, where a high weight value refers to a strong, close relation between the given node 
pair. However, some of the embedding methods originate from algorithms initially designed to provide low-
dimensional approximations of distances in high-dimensional point clouds, where a high value associated to a 
node pair refers to a high distance and therefore, presumably a weak connection or a distant relation. Among 
the embedding methods used in this paper, LE, TREXPIC and ISO expect such distance-like link weights when 
encountering a weighted link list as an input. In contrast, node2vec expects proximity-like link weights, matching 
the traditional weight definition in network science.

Although optimizing for different geometric measures on the level of pairwise node-node relations (see the 
Methods section and Sect. S1 of the Supplementary Information for the details), all the four examined embed-
ding methods tend to place the nodes within the same communities at rather similar angular coordinates, i.e. at 
small angular distances �θ from each other. For this reason, to make the embeddings gradually more focused 
on the community structure, we always defined the link weights in IERW based on the angular relations between 
the connected nodes. Since cosine distance and cosine proximity are both well-known measures of the angular 
relations of network nodes, we built our link weighting formulas in IERW on cos(�θ) . This can be easily 
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calculated for the d-dimensional Cartesian position vectors y
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(ℓ)2 . The exact definition of the link weighting formula applied in IERW is given in the Meth-
ods section for each embedding method.

Besides the link weights, we also have to specify the number of dimensions d of the embedding space and a 
stopping criterion for the iteration to make the IERW framework completed. In the case of the matrix factori-
zation methods (LE, TREXPIC and ISO), we aimed for an embedding dimension d equal to d = C − 1 , where 
C denotes the supposed number of communities in the network, which we determined from the eigengap of a 
normalized graph Laplacian (see Methods). Node2vec, however, often works better with a large d in practice 
due to the nature of the training algorithm. More specifically, node2vec is trained with the stochastic gradient 
descent algorithm, which regularizes node2vec and prevents it from overfitting51. For this reason, we simply used 
node2vec with a fixed value of d = 64 , corresponding to one of the standard choices in the literature. According 
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Figure 1.   Flowchart of the Iterative Embedding and ReWeighting process. IERW embeds a network into a 
vector space, where nodes belonging to the same communities are closer to each other compared to nodes from 
different communities. Then, IERW generates a weighted network with the same sets of nodes and edges, where 
the edge weights reflect the angular relations of the network nodes in the embedding space. Repeating these 
two steps, IERW iteratively embeds a weighted network and reweights its links until the variation in the average 
edge weight within one iteration falls below a specified threshold. Finally, the communities can be identified 
using data clustering or network community detection algorithms. The example network was generated by the 
stochastic block model and embedded with Laplacian Eigenmaps on the Euclidean plane. The coloring of the 
nodes indicates the block memberships assigned by the stochastic block model.
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to our measurements presented in Sect. S3.3 of the Supplementary Information, while LE, TREXPIC and ISO 
indeed seem to require a rather specific number of embedding dimensions, the performance of node2vec shows 
comparatively weak dependence on the value of d.

Finally, the stopping criterion for IERW was based on monitoring the relative change in the average link 
weight w̄ between subsequent iterations, and the process was terminated when this quantity dropped below a 
certain threshold, namely when we reached

Note that we stopped the iteration process after the 20th iteration even if the stopping criterion in Eq. (2) has 
not been fulfilled yet.

To demonstrate how IERW works, Fig. 2 shows three iterations using LE, performed on a network generated 
by the stochastic block model (SBM)52 with three communities of size |A| = 150 (orange), |B| = 130 (purple) and 
|C| = 120 (green). In the SBM, the link probability between two nodes only depends on their respective member-
ships. For three communities these probabilities thus fill a 3× 3 stochastic block matrix M , which in our case is

(2)
|w̄current − w̄previous|

w̄current
≤ 0.001.

Figure 2.   Example of IERW. A network with three communities built by the stochastic block model was 
embedded three times in the 2-dimensional Euclidean space with Laplacian Eigenmaps. Each row of panels 
corresponds to one iteration. Initially, all the link weights were 1, and we updated the weights after each 
embedding using the angular distances �θij as wij = 1− cos(�θij) . The left column of panels shows the 
embeddings, denoting the smaller link weights (that indicate smaller angular distances, and thus, stronger 
connections) at the end of the given iteration with darker and narrower lines, and coloring the network 
nodes according to the planted blocks. The column in the middle shows the distribution of the angular 
distances between all the node pairs in the embedding of the given iteration, while the right column shows the 
distribution of the link weights of the network.
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According to Fig. 2, IERW turns the communities into more and more concentrated spatial clusters. Conse-
quently, the distribution of the angular distances between all the node pairs (middle column) and also between 
the connected node pairs (right column) split into two peaks each with increasing separation. One peak cor-
responds to the node pairs of the same community (blue) whereas the other refers to the node pairs in different 
communities (orange).

Angular separation of communities in iteratively embedded networks
We applied IERW to synthetic networks generated by the planted partition (PP) model38 or the Lancichi-
netti–Fortunato–Radicchi (LFR) model39. A key advantage of these generative models is that they enable the 
definition of communities with tunable internal and external link densities, allowing to control the difficulty of 
the network clustering problem through the adjustment of the mixing parameter µ , which corresponds to the 
average fraction of neighbors of one node belonging to communities different from the one of the node. Details 
on the synthetic network generation are provided in the Methods section.

In Fig. 3, we show the ratio between the average inter-community angular distance 〈�θ〉inter (i.e., the aver-
age of the angular distances over all the node pairs of different communities) and the average intra-community 
angular distance 〈�θ〉intra (i.e., the average of the angular distances over all the node pairs belonging to the same 
community) as a function of the number of IERW iterations performed for networks generated by the PP model. 
According to the figure, the 〈�θ〉inter/〈�θ〉intra ratio starts to increase over the iterations and then saturates for 
all the four studied embedding methods, reaching in some cases extremely high values, which indicates a strong 
separation between the planted communities in the embedding space. Naturally, when the mixing parameter µ 
is only 0.1, the angular separation ratio 〈�θ〉inter/〈�θ〉intra is higher compared to the case of moderate mixing 
between the communities at µ = 0.3 , that in turn surpasses in every iteration the results observed for the rela-
tively strong mixing of µ = 0.5 , where nodes have roughly the same number of internal and external neighbors. 
Nevertheless, the curves of the angular separation ratio are increasing as a function of the number of iterations 
even at µ = 0.5 , indicating that our iterative embedding framework helps in separating the planted communi-
ties in the embedding space.

In Fig. 4, we display the results for the angular separation of planted communities in LFR networks. The 
qualitative behaviour of the 〈�θ〉inter/〈�θ〉intra ratio is quite similar to that in Fig. 3: the angular separation ratio 
starts with an increasing trend and then saturates as a function of the number of IERW iterations. The lower 
the µ value, the higher the saturated ratio. As in Fig. 3, the actual value of the angular separation ratio can grow 
even above ��θ�inter/��θ�intra = 107.

Separation of communities via weight thresholding
To give further perspective on the communities’ strong separation resulting from our framework, here we show 
that even a clearly sub-optimal, overly simplistic community extraction method can provide surprisingly good 
results when exploiting the geometric information encoded in the link weights at the end of the IERW process. 
The basic idea is to set a threshold aiming to separate the links that connect members of the same community 
from those between nodes of different communities. By deleting the links on one side of the threshold—those 
that are suspected to connect different communities—, the network falls apart into disconnected components 
that we may identify as the detected communities. Since, as it is illustrated by Fig. 2, a rather large gap can emerge 
between the weight of intra- and inter-community links during IERW, this simple weight thresholding strategy 
(detailed in the Methods section) can actually work effectively under optimal circumstances. Note that the 
iteration of the embedding is indeed necessary to make the weight thresholding work as the weight threshold-
ing after a single embedding yields poor community detection performance (see Sect. S4 of the Supplementary 
Information).

Although the applied weight thresholding approach is rather crude, thanks to the large angular separation 
that IERW achieves between the communities, it can still yield results comparable in quality to state-of-the-art 
community-finding methods. In Fig. 5, we compare the performance of the weight thresholding with that of 
three commonly used, well-established network community detection methods. Even though all three methods 
are able to take into account link weights, in the case of Fig. 5 we applied them on the original, unweighted test 
graphs and not on the weighted versions obtained from the IERW process.

First, we used the Louvain algorithm40,53, performing a heuristic maximization of the well-known modu-
larity by Newman and Girvan54,55, which compares the observed internal link density of the communities to 
its expected value. Though Louvain can unfold a hierarchical community structure (with nested modules and 
submodules), we always considered the top-level community structure, i.e. the one with the highest modularity.

Besides, we applied the Infomap algorithm41,56, which relies on a heuristic minimization of the so-called map 
equation41. It assumes that communities are regions of a network within which random walkers spend a relatively 
long time, and searches for the community structure that is the best for compressing the description (i.e., the 
code length) of random walk trajectories along the network. Infomap, just like Louvain, can create a hierarchy 
of network partitions; here we considered the lowest hierarchical level, yielding the shortest description length.

Finally, we used the asynchronous label propagation algorithm42,57, which does not aim at the optimization 
of any predefined measure but simulates the diffusion of the nodes’ community labels along the links, regularly 

(3)
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updating the community membership of each node following the current majority of the neighboring nodes, 
expecting that eventually a consensus on a unique label becomes established within densely connected groups 
of network nodes. Following the suggestion in Ref.42, we completed the label propagation process by separating 
groups of nodes that ended up with the same label but were not connected to each other.

The PP graphs (top row of panels) and the LFR networks (bottom row of panels) studied in Fig. 5 are the 
same as in Figs. 3 and 4, respectively. The network generation process is detailed in the Methods section. To 
evaluate the performance of the examined community detection methods, we measured the number of detected 
communities (right column of Fig. 5), as well as different similarity scores (left and middle columns of Fig. 5) 
between the planted and the detected community structures.

First, we calculated the element-centric similarity (ECS)58,59 between the detected and planted partitions 
(Fig. 5a,d), which is a measure comparing node-node transition probabilities in random walks performed along 

Figure 3.   IERW increases angular separation of communities in networks generated by the PP model. We 
plot the ratio between the average angular distance of all possible node pairs in different communities and 
in the same community as a function of the number of IERW iterations for LE (a), TREXPIC (b), ISO with 
exponentialized shortest path lengths (c) and node2vec (d). Curves of different colors correspond to different 
values of the mixing parameter µ . Each depicted data point was obtained by averaging the results over 100 
different network realizations, and the shaded areas show the standard error of the mean.
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the two graphs of cluster-induced (i.e., groupmate) relationships derived from the two partitions. ECS has its 
maximum of 1 for identical partitions and decreases as the similarity between the compared divisions declines. 
Note that the expected value of ECS when inputting two random partitions having an equal number of groups 
and equal group sizes is not set to 027. Furthermore, the only tunable parameter of the method for non-hierar-
chical clusterings is given by the restart probability of the random walks, but it does not have any effect in the 
case of hard partitions27, so in our measurements we simply used its default value.

Besides the ECS, following the suggestions of Ref.60, we used the adjusted Rand index (ARI)61–64 for the PP 
networks (Fig. 5b), where the group sizes in the ground truth clustering were equal, and the adjusted mutual 
information (AMI)65–68 for the LFR networks (Fig. 5e), where the ground truth partition was unbalanced with 
respect to the group sizes, i.e. strongly different community sizes occurred. Both ARI and AMI take the value of 
1 in the case of perfect agreement between two partitions, and (being corrected or adjusted for the agreement 

Figure 4.   IERW increases angular separation of communities in networks generated by the LFR benchmark. 
We plot the ratio between the average angular distance of all possible node pairs in different communities and 
in the same community as a function of the number of IERW iterations for LE (a), TREXPIC (b), ISO with 
exponentialized shortest path lengths (c) and node2vec (d). Curves of different colors correspond to different 
values of the mixing parameter µ . Each depicted data point was obtained by averaging the results over 100 
different network realizations, and the shaded areas show the standard error of the mean.
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emerging only by chance) the value of 0 on expectation when comparing random partitions having the same 
number of communities and the same community sizes. ARI and AMI can decrease even below 0 if the consid-
ered two clusterings differ to a large extent. While ARI is a pair-counting similarity measure that relies on the 
number of node pairs being groupmates or belonging to different groups in both the planted and the detected 
community structures, AMI is an information-theoretic quantity operating with the community membership 
probabilities of a randomly chosen node, which are calculated based on the relative size of the communities and 
the overlaps between the groups from the different partitions. Though there are several different possibilities 
for the normalization in the AMI formula, we always normalized with the maximum of the Shannon entropies 
associated with the two partitions to be compared.

In the case of the PP model, the community-finding performance of the weight thresholding based on iter-
ated node2vec is poor according to both ECS (Fig. 5a) and ARI (Fig. 5b). In the meantime, the similarity scores 
achieved using IERW in the case of TREXPIC or ISO with exponentialized shortest path lengths are very close 
to that of Infomap and Louvain in Fig. 5a,b. The results based on iterated LE fall slightly behind, although they 
still surpass the scores of asynchronous label propagation.

In the case of the LFR benchmark, the results for the weight thresholding based on IERW using both TREX-
PIC and ISO with exponentialized shortest path lengths slightly exceed that of even Infomap (Fig. 5d,e), which 
is followed closely by the results achieved using iterated LE. Asynchronous label propagation falls somewhat 
behind similarly to the PP case, but here it is followed relatively closely by the results based on iterated node2vec, 
which in turn surpasses Louvain. Louvain has a poor performance on LFR graphs due to the resolution limit of 
modularity maximization69.

Figure 5.   Extracting communities via weight thresholding the network yielded by IERW. Panels (a), (b) and 
(c) refer to input networks generated by the PP model, while panels (d), (e) and (f) deal with input networks 
obtained from the LFR benchmark. As a reference, the three dash-dotted lines show the results achieved by 
traditional network community detection methods on the initial unweighted graphs: Louvain (dark cyan 
upward-pointing triangles), Infomap (blue right-pointing triangles) and asynchronous label propagation (green 
downward-pointing triangles). The other four colored lines illustrate the results for a simple weight thresholding 
that we applied on the final weighted networks obtained from IERW with LE (red hexagons), TREXPIC (purple 
squares), ISO with exponentialized shortest path lengths (orange pentagons) and node2vec with exponentialized 
link weights (brown circles). We performed the community detection with all the methods only once for each 
network. Each displayed data point corresponds to a result averaged over 100 networks, and the error bars 
indicate the standard error of the mean.
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Facilitating traditional community detection methods with iterative embedding
As it is shown in Fig. 1, our IERW process can aid community detection in two different ways: one may either 
apply standard data clustering techniques on the spatial node arrangements obtained from the embedding 
steps, or opt for community-finding methods developed for weighted networks, taking into account both the 
network topology and the geometric relations of the embedded nodes. In Fig. 6, we show examples for both 
options. On the one hand, we compare the performance of traditional network community-finding approaches 
on unweighted synthetic benchmark graphs to the results achieved when these methods are augmented by the 
link weights obtained from a single and multiple iterations of IERW using node2vec. As the network community 
detection methods, we employed Louvain40,53 (Fig. 6a,b), asynchronous label propagation42,57 (Fig. 6c,d) and 
Infomap41,56 (Fig. 6e,f). In addition, we tested Hierarchical Density-Based Spatial Clustering of Applications with 
Noise (HDBSCAN)70–72 on both the first and the iterated node embeddings (Fig. 6g,h), inputting only the cosine 
distance between all the possible node pairs in the embedding space. The left column of Fig. 6 displays the ECS 
scores achieved for the PP test graphs of Figs. 3 and 5a–c, whereas the right column of Fig. 6 refers to the LFR 
networks examined in Figs. 4 and 5d–f. We repeated the experiments shown in Fig. 6 using LE, ISO and TREXPIC 
embeddings too: the results, qualitatively very similar, are shown in Sect. S5 of the Supplementary Information.

Regarding traditional network community detection methods, it is important to keep in mind that while 
Louvain, asynchronous label propagation and Infomap expect proximity-like link weights, the link weights wij 
provided by IERW can be both distance-like (when using LE, ISO and TREXPIC) and proximity-like (in the case 
of node2vec). Hence, following a similar practice to the one suggested in Ref.19, in Sect. S5 of the Supplementary 
Information we used a conversion formula

on the link weights obtained from IERW with LE, ISO and TREXPIC before applying Louvain, asynchronous 
label propagation or Infomap, where w0 > 0 is a tunable parameter. In general, by choosing a small w0 we put 
more emphasis on the distances close to 0, in agreement with the expectation that the distances within communi-
ties eventually decrease over the iterations. Our analysis detailed in Sect. S5 of the Supplementary Information 
shows that w0 can affect the performance of the network community-finding methods when using IERW with 
LE, ISO and TREXPIC. Similarly, we also used a conversion formula

after applying IERW with node2vec, setting w0 to 1.0 in Fig. 6a–f, as we found that this shifting of all the 
proximity-like exponential link weights provided by IERW can improve the performance of all the examined 
traditional network community detection methods.

As it can be seen in Fig. 6, the node2vec-based IERW process can strongly improve the performance of 
standard clustering methods. We observed the largest improvement in the case of Louvain, when applied to LFR 
networks (Fig. 6b). It is well-known that community-finding methods based on modularity maximization (such 
as Louvain) may fail in detecting small communities69. Since the size distribution of the communities is relatively 
broad in the examined LFR networks, the ECS achieved on the original unweighted test graph (dark red curve) 
remains well below 1 already at low µ values in Fig. 6b, indicating that Louvain in itself cannot fully uncover the 
planted community structure. The performance after only a single embedding (light brown curve) is similar to 
what is achieved in the unweighted case. However, when switching to the weighted networks provided by the 
complete process of IERW (orange curve), the performance greatly improves. Note that in the similar measure-
ments performed with LE, TREXPIC and ISO in Figs. S11–S13 of the Supplementary Information, IERW seems 
to actually eliminate the resolution limit of modularity optimization, increasing the ECS of Louvain to 1 in a 
wide range of the mixing parameter.

In the case of Louvain applied to PP networks (Fig. 6a) and Infomap (Fig. 6e,f), the results on the original, 
unweighted input graphs are already of very high quality. However, a slight increase can still be observed here 
when switching to the networks weighted by IERW with node2vec. In the case of asynchronous label propaga-
tion (Fig. 6c,d), the performance of a single embedding is similar to that of the iterated embedding, both being 
significantly better compared to the unweighted case. Finally, when applying HDBSCAN to the spatial node 
arrangements created by node2vec (Fig. 6g,h), although the performance after a single embedding is modest, 
the iteration of the embedding yields major improvements for both the PP and the LFR graphs.

Experiments on real‑world networks
While the previous subsections demonstrate the applicability of IERW on synthetic networks of different levels 
of mixing between the communities, there is a natural need for the study of real graphs too, as these may not 
have as clearly defined or regular communities as those produced by network models. Therefore, Fig. 7 and 
Table 1 show some results for three real-world networks. The first one (Fig. 7a) is the American College Foot-
ball network73,74 with 115 teams as nodes and 613 games as edges, where the 12 ground truth communities are 
given by the conferences of the football teams. The second real dataset (Fig. 7b) is a network of 2026 contacts 
of at least 2 minutes length between 227 high school students (see the cumulative contact network for day 2 in 
Ref.75), where a community information describing 10 classes is given. The third real network (Fig. 7c) is based 
on 16064 emails sent between 986 members of a research institute76–78, where the 42 known groups of the nodes 
correspond to the departments of the institute.

According to Fig. 7, albeit the changes are not as extreme as in the PP graphs (Fig. 3) or the LFR networks 
(Fig. 4), the increasing tendency of the angular separation between the communities is a common trait of iterated 

(4)w̃ij =
1

w0 + wij

(5)w̃ij = w0 + wij
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embeddings when applied on real graphs too. The single exception is when we applied IERW with node2vec on 
the email network (Fig. 7c, brown curve). However, even in this case, the performance of traditional community 
finding methods may be still better on the iteratively reweighted network than on the original one, as it is shown 

Figure 6.   Performance of standard clustering methods on the weighted networks and the embeddings derived 
by IERW using node2vec with exponentialized link weights. Each row of panels corresponds to a different 
community detection method. The left column refers to networks generated by the PP model and the right one 
to networks generated by the LFR benchmark. We performed the community detection with all the methods 
only once for each network. Each displayed data point corresponds to a result averaged over 100 networks, and 
the error bars depict the standard error of the mean.
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Figure 7.   Angular separation of communities during IERW on three real graphs with known community 
structure. The different panels correspond to different real datasets: panel (a) to the American College Football 
network, panel (b) to the contact network of high school students, while panel (c) to the email network. Each 
panel depicts the ratio between the average angular distance of all possible node pairs in different communities 
and in the same community as a function of the number of IERW iterations for LE (red hexagons), TREXPIC 
(purple squares), ISO with exponentialized shortest path lengths (orange pentagons) and node2vec with 
exponentialized link weights (brown circles).

Table 1.   Element-centric similarities achieved by different community detection approaches on three real 
graphs with known community structure. As a reference, the first three rows show the similarity scores 
achieved by traditional community detection methods on the original, unweighted real graphs. Below that, 
the performance of weight thresholding, Louvain, Infomap and asynchronous label propagation is listed 
when utilizing the link weights obtained from the final iteration of IERW with LE, TREXPIC, ISO with 
exponentialized shortest path lengths and node2vec with exponentialized link weights. Lastly, the bottom 
of the table indicates the quality of the communities found by HDBSCAN on the final embedding provided 
by IERW using the studied four embedding methods. The community detection was performed with all the 
methods only once for each network. For all three examined networks, the best results are written in bold.

Community detection method Football network High school contact network Email network

Louvain on unweighted graph 0.786 0.714 0.333

Infomap on unweighted graph 0.826 0.879 0.364

async. label prop. on unweighted graph 0.775 0.777 0.047

weight threshold after IERW with LE 0.819 0.962 0.484

weight threshold after IERW with TREXPIC 0.819 0.918 0.393

weight threshold after IERW with ISO 0.819 0.918 0.398

weight threshold after IERW with node2vec 0.755 0.879 0.118

Louvain after IERW with LE 0.819 1.0 0.483

Louvain after IERW with TREXPIC 0.819 0.936 0.429

Louvain after IERW with ISO 0.819 0.936 0.438

Louvain after IERW with node2vec 0.827 0.799 0.330

Infomap after IERW with LE 0.867 0.879 0.368

Infomap after IERW with TREXPIC 0.867 0.879 0.387

Infomap after IERW with ISO 0.867 0.879 0.383

Infomap after IERW with node2vec 0.860 0.984 0.418

async. label prop. after IERW with LE 0.819 0.962 0.248

async. label prop. after IERW with TREXPIC 0.819 0.924 0.385

async. label prop. after IERW with ISO 0.819 0.924 0.403

async. label prop. after IERW with node2vec 0.860 0.849 0.047

HDBSCAN after IERW with LE 0.386 1.0 0.484

HDBSCAN after IERW with TREXPIC 0.386 0.925 0.393

HDBSCAN after IERW with ISO 0.386 0.925 0.369

HDBSCAN after IERW with node2vec 0.479 0.946 0.068
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in Table 1 for Infomap. Furthermore, as it is indicated by Table 1, the communities can be extracted from the 
weighted versions of the real networks produced by IERW even with a simple weight thresholding (which was 
tested on synthetic graphs in Fig. 5) with a relatively good accuracy, and the performance of traditional com-
munity detection methods (studied on synthetic networks in Fig. 6) was also generally improved by IERW on 
all the examined real networks.

Discussion
We have shown that graph embeddings facilitate the identification of communities, by providing distance- or 
proximity-based weights to the links of the input graph, which makes its community structure topologically more 
pronounced and more easily detectable. At the same time, embedding graphs with progressively stronger com-
munity structures makes communities more apparent also in the embedding space, where they appear as clouds 
of points that become more and more compact and separated from each other. These observations inspired our 
IERW framework, which realizes a simple iterative procedure to ease community detection, where the network 
is repeatedly embedded and reweighted based on the geometric distance between the endpoints of the links. For 
embedding methods such as node2vec, where a larger link weight is interpreted as the indicator of a stronger 
and closer connection, as we keep iterating, intra-community link weights get larger and inter-community link 
weights get smaller. For the other embedding methods studied in the present paper (where the link weights are 
assumed to be distance-like), IERW acts in the opposite manner, increasing the weight of inter-community links 
and decreasing the weight of intra-community links over the iterations. Both cases suggest a simple way to find 
the clusters: removing inter-community links via weight thresholding. Such an approach, albeit elementary, is 
competitive with state-of-the-art community detection techniques.

We stress that we only reweight the links of the original graph. If we assigned a weighted link to each pair 
of nodes, whether they are connected or not, the identification of the communities may become easier but at 
the cost of having a procedure with at least quadratic complexity in the number of nodes N. By focusing on the 
actual links of the input network, instead, the reweighting procedure has linear complexity in the number of 
links, which is much lower than N2 on sparse networks. The ultimate complexity of the repeated embedding and 
weighting steps is determined by the running time of the chosen embedding algorithm. In the case of node2vec, 
for instance, the complexity of IERW would be O

(

E + N · d · ω2
)

 for a network of N nodes and E edges when 
using a d-dimensional embedding space and ω window length (empirically measured running times are also 
presented in Sect. S7 of the Supplementary Information). Here the results are fairly stable as a function of d, so 
one can pick a fixed value (we used d = 64 in our experiments). For the other examined embeddings, there is 
a much stronger dependence on the number of embedding dimensions, and identifying a good range may be 
costly (see Methods).

Our method could be used as a pre-processing step in a community detection pipeline. We find that a single 
iteration of IERW can already produce a weighted network having stronger communities than the original 
graph. Applied after IERW, standard community detection techniques generally deliver better results than when 
they operate on the initial graph. Interestingly, our reweighting strategy provides a way to mitigate the effect of 
the resolution limit of modularity maximization, significantly improving the performance of such methods on 
realistic benchmarks.

Finally, we would like to stress that techniques like IERW could help facilitating other tasks, besides com-
munity detection. It would be interesting, for instance, to check whether link prediction also becomes easier on 
the weighted graphs and/or embeddings built by IERW or similar procedures, bearing in mind that different 
tasks may need different weighting rules and the application of different geometric measures.

Methods
Node embedding with Laplacian Eigenmaps
Based on the eigendecomposition of the Laplacian matrix of a neighborhood graph made from the original 
data set, the Laplacian Eigenmaps (LE) approach was first devised in Ref.48 for mapping data points supplied 
in a high-dimensional space onto a lower dimensional one. When applied to a weighted network, in the first 
step the assumed distance-like input weights wij are converted to proximity-like weights using the exponential 
formula w′

ij(wij) = exp(−w2
ij/t) , where, following the implementation created for Ref.19, we set the parameter 

t to be equal to the square of the mean of the distance-like weights. Then, from the corresponding adjacency 
matrix A and the diagonal matrix D with Dii =

∑

j Aij , we can obtain the Laplacian matrix as L = D − A . The 
eigenvectors f1, f2, . . . , fd satisfying the generalized eigenvector problem L · f

ℓ
= �ℓ ·D · f

ℓ
 with the smallest 

non-zero eigenvalues �1 ≤ �2 ≤ . . . ≤ �d naturally define an embedding in the d-dimensional Euclidean space, 
where the ℓth coordinate of the ith node is given by the ith component of fℓ , making strongly connected nodes 
being as close to each other as possible.

The computational complexity of LE is O
(

(d + 1) · N2
)

 , where the dominant contribution comes from the 
eigendecomposition of the N × N-sized graph Laplacian. A fully detailed algorithmic description of LE is pro-
vided in Sect. S1 of the Supplementary Information.

In IERW with LE, we defined the distance-like input weights based on the angular distance �θij in the previ-
ous embedding as wij = 1− cos(�θij).

Node embedding with TRansformation of EXponential shortest path lengths to hyperbolIC 
measures
The TRansformation of EXponential shortest Path lengths to hyperbolIC measures (TREXPIC) method49 embeds 
networks in a d-dimensional hyperbolic space, trying to express the topological node-node distances as hyper-
bolic distances. First, TREXPIC prepares a matrix X of expected hyperbolic distances based on the shortest path 
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lengths SPLij measured along the graph, using the exponential formula Xij = exp(−t/SPLij) . Here we set the 
parameter t > 0 to the default value defined in Ref.49, given by t =

√

ln(1.0/0.9999) · ln(1.0/0.1) · SPLmax with 
SPLmax being the maximal shortest path length found in the network. The distance matrix X is then converted 
into the matrix L of expected pairwise Lorentz products, using the formula Lij = cosh(ζ · Xij) , where we set ζ 
simply to 1, and thus, the curvature of the hyperbolic space K = −ζ 2 to −1 . Finally, the matrix L is subjected to 
singular value decomposition (formulated as L = U · � · VT ): the length of the node position vectors is calcu-
lated from the largest singular value σ1 ≡ �11 and the corresponding singular vector u1 (given by the first column 
of the matrix U  ), while the direction vectors of the embedded nodes are calculated from the next d singular values 
( σ2 ≥ σ3 ≥ · · · ≥ σd+1 ) and the corresponding singular vectors ( u2, u3, . . . , ud+1).

The computational complexity of TREXPIC for d + 1 < ln(N) is dominated by the calculation of the N × N
-sized shortest path length matrix, yielding O

(

ln(N) · N2
)

 , while the computational complexity of the truncated 
singular value decomposition is O

(

(d + 1) · N2
)

 . A fully detailed description of the TREXPIC approach is pre-
sented in Sect. S1 of the Supplementary Information.

Similarly to the case of LE, in IERW with TREXPIC we defined the distance-like input weights as 
wij = 1− cos(�θij) based on the previous embedding iteration.

Node embedding with Isomap
Similarly to LE, the Isomap (ISO) method was originally proposed50 for finding a lower-dimensional repre-
sentation of a high-dimensional data set using a nearest neighbor graph. Aiming at a mapping between the 
topological node-node distances and the Euclidean distances in the embedding, a matrix I of expected pairwise 
inner products is calculated from the shortest path length (SPL) matrix of the graph to be embedded, placing 
the center of mass of the embedded graph at the origin. In the present paper, we followed the implementation 
applied in Ref.19, which performs not the eigendecomposition but the singular value decomposition of the 
matrix I . This singular value decomposition (formulated as I = U · � · VT ) provides the node coordinates in 
the d-dimensional Euclidean space: by taking the d largest singular values σ1 ≥ σ2 ≥ · · · ≥ σd and the corre-
sponding singular vectors u1, u2, . . . , ud , the ℓth component of the position vector of the ith network node is 
defined as y

i
(ℓ) = √

σℓ · uℓ(i).
To improve the performance of IERW, we introduced an alternative version of ISO that is built on exponential-

ized shortest path lengths, similarly to TREXPIC. Here, the original formula Dij = SPLij of the expected pairwise 
Euclidean distances is replaced by Dij = exp(−t/SPLij) , where t > 0 is a tunable parameter. We used the same 
setting for this t parameter as in the default case of TREXPIC, namely t =

√

ln(1.0/0.9999) · ln(1.0/0.1) · SPLmax , 
where SPLmax is the largest shortest path length of the examined network. The beneficial effect of exponentializa-
tion in ISO is demonstrated in Sect. S2 of the Supplementary Information.

The computational complexity of ISO for d < ln(N) is dominated by the calculation of the N × N-sized 
shortest path length matrix, yielding O

(

ln(N) · N2
)

 , while the computational complexity of the truncated sin-
gular value decomposition is O

(

d · N2
)

 . A fully detailed description of ISO embeddings is given in Sect. S1 of 
the Supplementary Information.

In complete analogy with LE and TREXPIC, in IERW with both versions of ISO we defined the link weights 
of the network based on the previous embedding iteration simply as wij = 1− cos(�θij).

Node embedding with node2vec
The node2vec method8 provides Euclidean node embeddings based on random walks in the network. The central 
idea is to use the sequences of the visited nodes as textual input for the word2vec79 method, originally designed 
to embed words from a large text corpus into a vector space. In the present paper, we followed the parameter 
setting proposed in Ref.26 by setting the number of walks started from each node to 80, the length of the random 
walk to 10 and the length of the considered context windows in word2vec to ω = 10 . The parameters p and q, 
controlling the locality and the depth of the random walks were set to the default value of p = q = 1.

The computational complexity of creating a d-dimensional embedding for a network of N nodes and E edges 
with node2vec is O

(

E + N · d · ω2
)

 . Note that since node2vec operates with random walks, it is a stochastic 
embedding method. Nonetheless, as we performed all of our measurements on multiple network samples anyway, 
we ran IERW with node2vec only once for each network. A more detailed description of the node2vec method 
is given in Sect. S1 of the Supplementary Information.

When provided with a weighted input network, the random walk transition probabilities are modified in 
node2vec according to the link weights, where a higher link weight is accompanied by a higher transition 
probability. According to that, opposite to the previous embedding methods, node2vec expects proximity-like 
link weights instead of distance-like weights. To utilize the beneficial effects of exponentialization in IERW 
also with node2vec, here we defined exponential link weights based on the previous embedding iteration as 
wij = exp

(

t · [cos(�θij)− 1]
)

 , where the parameter t was set to t = 10 · κ̄/κ̂ with κ̄ denoting the average and 
κ̂ the mode of the node degrees, respectively. The advantage of the exponentialization over the application of a 
simple proximity-like link weight formula given by wij = cos(�θij)+ 1 is demonstrated in Sect. S2 of the Sup-
plementary Information.

Choosing the number of embedding dimensions
When using IERW with node2vec, we followed one of the standard choices in the literature and simply set the 
number of embedding dimensions d always to 64. However, as it is demonstrated in Sect. S3 of the Supplementary 
Information, the performance of LE, ISO and TREXPIC shows a relatively strong dependence on the setting 
of d, and in the case of these matrix decomposition methods, it seems that the best choice is a d close to the 
number of communities in the examined network. Therefore, before applying IERW with LE, ISO or TREXPIC, 
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we estimated the number of planted communities C based on the number of non-zero eigenvalues below the 
largest eigengap of the normalized Laplacian matrix of the given network, and using this estimation, we set the 
number of embedding dimensions to d = C − 1 , which fits the expectation that e.g. a two-dimensional pattern 
(namely a triangle) is needed in general to describe all the pairwise relations between three communities. The 
algorithmic details of choosing the number of embedding dimensions for LE, ISO and TREXPIC are provided 
in Sect. S3 of the Supplementary Information.

Extraction of communities with weight thresholding
As described in Results, for demonstration purposes we implemented a really simple community detection 
method that performs a weight thresholding on the weighted networks obtained from the IERW process. Namely, 
we aimed at splitting a network into groups of densely connected nodes through the following steps: 

1.	 Sort the weights of the E number of links of the embedded network in increasing order.
2.	 Remove the ⌊0.05 · E⌋ lowest and the largest links from the ordered list to ensure the removal of at least 5% 

but at most 95% of the links during the weight thresholding.
3.	 Find the largest gap between the consecutive link weights in the ordered list and set the weight threshold to 

the average of the two weight values on the sides of the largest gap.
4.	 Prune the examined graph. 

(a)	 When dealing with distance-like link weights that are smaller for stronger connections (i.e., when 
using LE, TREXPIC or ISO), remove the links having weights larger than the threshold.

(b)	 When dealing with proximity-like link weights that are larger for stronger connections (i.e., when 
using node2vec), remove the links having weights smaller than the threshold.

5.	 Identify each of the connected components in the pruned graph as a community.

Generating synthetic networks with communities using the planted partition model
The planted partition (PP) model38 is a special case of the stochastic block model (SBM)52, where there are only 
two values for the link probability: pin , for pairs of nodes in the same community/block and pout for pairs of 
nodes in different communities/blocks. To generate networks with the PP model, we used the Python function 
‘planted_partition_graph’ available in the ‘NetworkX’ package.

The input parameters of the model are the total number N of nodes, the number m of nodes in each commu-
nity and the expected average degree κ̄ . In the above-presented measurements, following the settings in Ref.26, 
we used N = 1000 , m = 50 (yielding C = N/m = 20 communities) and κ̄ = 20 . To obtain community structures 
of different strengths, we tuned the mixing parameter µ ∈ [0, 1] , which we defined as the fraction between the 
expected number of neighbors of a randomly chosen node outside of its community and the expected total 
number of neighbors, i.e. as µ = κ̄out/κ̄ . Given the mixing parameter µ and the expected average degree κ̄ , we 
calculated the expected number of inter-cluster edges of each node as κ̄out = µ · κ̄ , and the expected number of 
intra-cluster edges of each node as κ̄in = κ̄ − κ̄out . Then, we derived the desired connection probabilities pout 
and pin from the formulas κ̄out = pout · (C − 1) ·m and κ̄in = pin · (m− 1) . Self-loops are not included in the 
applied implementation, meaning that the number of possible neighbors of a node within its own block is m− 1 
instead of m. In our measurements, we used the settings µ = 0.1, 0.15, 0.2, . . . , 0.85, 0.9 , where smaller values 
correspond to more easily detectable community structures.

To provide an example for a more complicated case, in Sect. S6 of the Supplementary Information we also 
utilise the ability of the stochastic block model to generate hierarchical community structures and show that 
IERW can facilitate the detection of the planted communities on both levels of the examined hierarchy.

Generating synthetic networks with communities using the Lancichinetti–Fortunato–Radic-
chi benchmark
The Lancichinetti–Fortunato–Radicchi (LFR) benchmark39 generates graphs with power-law distributions of the 
node degrees and the community sizes, enabling the emergence of heterogeneity in these two quantities. The 
input parameters of the model are the total number N of nodes, the expected average degree κ̄ , the allowed largest 
degree κmax , the exponent γ of the tail of the degree distribution ( P(κ) ∼ κ−γ ), the allowed smallest and largest 
community sizes mmin and mmax , the exponent β of the tail of the community size distribution ( P(m) ∼ m−β ), 
and the mixing parameter µ ∈ [0, 1] , having the same definition that we used in the case of the PP model, mean-
ing that each node is expected to share a fraction of 1− µ of its links with the other nodes of its own community 
and the remaining fraction µ with the nodes of the other communities. We examined LFR networks with non-
overlapping clusters that we generated with the C++ code downloaded from https://​www.​santo​fortu​nato.​net/​
resou​rces. In the above measurements, following the settings in Ref.26, we used N = 1000 , κ̄ = 20 , κmax = 50 , 
γ = 2.0 , mmin = 10 , mmax = 100 and β = 3.0 , tuning the mixing parameter between µ = 0.1 (yielding easily 
detectable community structures with links falling mostly within communities) and µ = 0.9 (where most of the 
links connect nodes of different communities).

Data availability
All data generated during the current study are available from the corresponding author upon request.

https://www.santofortunato.net/resources
https://www.santofortunato.net/resources
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Code availability
The code used for performing the iterative embedding is available at https://​github.​com/​BianK​ov/​iterE​mb.
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