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Simulation‑based prior knowledge 
elicitation for parametric Bayesian 
models
Florence Bockting 1*, Stefan T. Radev 2 & Paul‑Christian Bürkner 1

A central characteristic of Bayesian statistics is the ability to consistently incorporate prior knowledge 
into various modeling processes. In this paper, we focus on translating domain expert knowledge 
into corresponding prior distributions over model parameters, a process known as prior elicitation. 
Expert knowledge can manifest itself in diverse formats, including information about raw data, 
summary statistics, or model parameters. A major challenge for existing elicitation methods is how 
to effectively utilize all of these different formats in order to formulate prior distributions that align 
with the expert’s expectations, regardless of the model structure. To address these challenges, we 
develop a simulation‑based elicitation method that can learn the hyperparameters of potentially any 
parametric prior distribution from a wide spectrum of expert knowledge using stochastic gradient 
descent. We validate the effectiveness and robustness of our elicitation method in four representative 
simulation studies covering linear models, generalized linear models, and hierarchical models. Our 
results support the claim that our method is largely independent of the underlying model structure 
and adaptable to various elicitation techniques, including quantile‑based, moment‑based, and 
histogram‑based methods.

The essence of Bayesian statistics lies in the ability to consistently incorporate prior knowledge into the mod-
eling  process1,2. The specification of sensible prior distributions over the parameters of Bayesian models can 
have multiple advantages including improved convergence, sampling efficiency, parameter recoverability, and 
predictive  performance3–6.

Despite these apparent advantages, it is often unclear a priori what constitutes a “sensible”  prior7. In this 
paper, we focus on the elicitation and translation of expert knowledge into prior distributions, also known as 
prior elicitation5. Against this background, a sensible prior is one that accurately reflects domain knowledge as 
elicited from an expert or a group of experts. However, meeting this criterion presents its own set of challenges: 
Model parameters for which priors are needed might lack intuitive meaning for the domain  expert8 and the 
relationship between priors and the data may not be apparent from the model, especially for complex  models9. 
Moreover, constructing priors for every single model parameter in models with a large number of parameters 
might be inefficient or even infeasible.

To address these challenges, several tools for prior elicitation have been developed in the  past5,6,10–16. Despite 
the widespread application of Bayesian statistics nowadays, the field of prior elicitation still lags behind in terms of 
its routine implementation by practitioners. One contributing factor is that many existing methods primarily aim 
to elicit information about the model parameters directly. This approach makes these methods inherently model-
specific, limits their widespread applicability, and poses a challenge for experts in terms of  interpretability9,17,18.

In recent years, there has been an increasing focus on the development of model-agnostic approaches that 
center around the prior predictive  distribution6. These methods allow for the integration of expert knowl-
edge regarding observed data patterns (i.e., elicitation in the observable space). In contrast to interpreting 
model parameters, domain experts can usually effectively interpret the scale and magnitude of observable 
 quantities5,9,16,19,20. Despite these recent developments, the general applicability as well as the actual application 
of elicitation methods remain  limited5. This lack of popularity persists, at least in part, because existing methods 
are still relatively complex, do not easily generalize to different types of expert information, or necessitate sub-
stantial tuning or other manual adjustments. In light of the preceding considerations, we introduce an elicitation 
method that seeks to overcome these challenges. Specifically, this work makes a contribution to prior elicitation 
research by proposing a method that satisfies the following criteria: 
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1. Model independence Our method is agnostic to the specific probabilistic model, as long as sampling from it 
is feasible and stochastic gradients can be computed.

2. Effective utilization of expert knowledge By incorporating diverse expert information on model parameters, 
observed data patterns, or other relevant statistics, our method maximizes the utility of expert knowledge.

3. Flexibility in elicitation techniques Our method can adapt to different elicitation techniques, ensuring that 
individual expert preferences are considered.

4. Modular design Due to its modular structure our method allows easy adaptation, improvement, or replace-
ment of specific components, both during method development and application.

Related work
The process of prior elicitation involves the extraction of expert knowledge and its translation into correspond-
ing prior distributions for the parameters in probabilistic  models5,10,11,14. Knowledge extraction can incorporate 
asking an expert directly about the probability distribution of the model parameters or indirectly about other 
quantities that may be easier for the expert to  understand11,21,22. These quantities include observable data patterns 
(i.e., variables in the data space such as expected mean responses) as well as familiar statistics derived from the 
predictive distribution of the outcome variable (e.g., the percentage of variance explained).

As interpretability is an essential requirement for elicited quantities, it has been argued that asking about 
parameters is only meaningful if they can be interpreted in terms of a limiting average of  observables5,23. That 
said, experts may also have knowledge about parameter values through prior studies, meta-analyses, and similar 
sources, which do not necessarily require easy interpretability. A thorough discussion of the interpretability of 
various elicited quantities is beyond the scope of this paper but is discussed in detail  elsewhere11,14,21,22.

Based on their comprehensive review, Mikkola et al.5 recently advocate that an elicitation method should 
include both a model’s parameter and observable space, exhibit model-agnostic characteristics, and prioritize 
sample efficiency to minimize the human effort involved. Taking these desiderata into consideration, our method 
builds upon recent advancements in prior elicitation, specifically on the works of Hartmann et al.16, da Silva 
et al.9, and Manderson &  Goudie6. All three methods are model-agnostic approaches that focus (mainly) on elic-
iting expert knowledge in the observable space but differ in their specification of target quantities, discrepancy 
measures, and the specific optimization procedure.

Manderson &  Goudie6 use multi-objective Bayesian optimization, while our approach employs stochastic 
gradient-based optimization in line with the methods proposed by da Silva et al.9 and Hartmann et al.16. All three 
methods, including ours, support quantile-based elicitation. However, our method goes a step further by also 
allowing histogram or moment-based elicitation. While all of the considered methods allow for eliciting expert 
information about observable variables, da Silva et al.9 additionally supports querying experts with respect to 
the parameter space. Our method follows this approach and enables the elicitation of expert knowledge about 
model parameters, observable quantities, and quantities derived from observable quantities (e.g. percentage of 
variance explained). As such, our method allows for the elicitation of model parameters and observable quan-
tities, both directly and indirectly, thus extending beyond elicitation in the parameter and observable space. 
Finally, an essential feature of our method is the use of simulations to obtain prior hyperparameter inference, 
which classifies it as a variant of simulation-based inference (SBI)24.

Simulation studies
In this section, we present four simulation studies demonstrating the performance of our elicitation method. We 
showcase our method using a normal linear regression model in simulation study 1 (Section "Simulation study 
1: normal linear regression"), a binomial regression with logit link in simulation study 2 (Section "Simulation 
study 2: GLMs—binomial model" ), a Poisson regression with log link in simulation study 3 (Section "Simulation 
study 3: GLMs—Poisson model"), and a multilevel model with normal likelihood in simulation study 4 (Sec-
tion "Simulation study 4: hierarchical model"). All code and material can be found on GitHub https:// github. 
com/ flore nce- bockt ing/ Prior Learn ing, our project website https:// flore nce- bockt ing. github. io/ Prior Learn ing/ 
index. html, and our simulation results in https:// osf. io/ rxgv2.

General setup
Learning algorithm In each simulation study, we utilize mini-batch stochastic gradient descent to learn all model 
hyperparameters. Each optimization process is characterized by a set of algorithm parameters including the batch 
size (B) , the number of epochs (E) , the number of samples from the prior distributions (S) , and the initial learn-
ing rate ( φ0 ) of the cosine decay schedule with restarts used with the Adam optimizer. The specific settings of the 
optimization process are fully described in the respective sections. All simulation studies were implemented in 
Python, utilizing the TensorFlow  library25, and optimization was executed on the Linux HPC cluster at Technical 
University Dortmund (LiDO3) on high-end GPUs (NVIDIA Tesla K40). We note that our methods can also be 
easily run on the CPUs of common consumer laptops, where they rarely required more than 30 to 60 minutes 
(often less) until convergence; at least for the models investigated in our simulation studies. More details for each 
simulation study (e.g. computing time) can be found in the appendix.

Method verification An essential property of any method is its validity. In the following simulation studies, 
we aim to demonstrate the validity of our proposed method, which we define as the method’s ability to recover 
a hypothetical ground truth. To achieve this, we use the following approach: First, we define a unique hyperpa-
rameter vector �∗ that represents the hypothetical ground truth. Conditional on �∗ , observations are simulated 
from the generative model, and predefined target quantities, along with the corresponding elicitation techniques, 
are computed. The resulting elicited statistics encode the ground truth. Consequently, a valid method should be 
able to learn �∗ when trained on these elicited statistics.

https://github.com/florence-bockting/PriorLearning
https://github.com/florence-bockting/PriorLearning
https://florence-bockting.github.io/PriorLearning/index.html
https://florence-bockting.github.io/PriorLearning/index.html
https://osf.io/rxgv2
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However, this approach has a caveat: learning unique prior distributions from elicited statistics becomes 
increasingly challenging as model complexity  grows21. Since the outcome variable generally has lower dimension-
ality than the model parameters for which we aim to learn prior  distributions6, a specific set of elicited statistics 
may correspond to many equally valid priors and thus varying �′ . This makes it difficult to determine whether 
the method can recover �∗ . As a consequence, for each simulation study, we constructed a set of elicited statistics 
that, on the one hand, conveys sufficient information to approximately ensure model identification and, on the 
other hand, is as small as possible.

Selection of target quantities and elicited statistics To demonstrate the flexibility of our method in selecting 
target quantities and elicitation techniques, we utilized the following target quantities in the subsequent simu-
lation studies: model parameters, prior predictions of the outcome variable, and statistics derived from these 
prior predictions (e.g., R2 ). Regarding elicitation techniques, we employed quantile-based, histogram-based, and 
moment-based elicitation. For quantile-based elicitation, the quartiles Qp with p = (0.25, 0.5, 0.75) ; for moment-
based elicitation, the mean and standard deviation of the target quantity; and for histogram-based elicitation, a 
histogram comprising S observations were used. Further specifications are provided in each simulation study.

Simulation study 1: Normal linear regression
Setup The first simulation study is presented along with an example inspired by a study from Unkelbach & 
 Rom26. In this study, participants encounter general knowledge statements in two consecutive phases, dur-
ing the second of which they must indicate whether each statement is true or false. The main objective is to 
investigate the influence of two factors on the proportion of true judgments (PTJs): (1) repetition (ReP), which 
involves presenting some statements from the first phase again in the second phase, and (2) encoding depth 
(EnC), whereby participants are randomly assigned to groups that differ in the level of elaboration required 
when processing the statements during the first phase. We consider a 2 (ReP: repeated, new) × 3 (EnC: shallow, 
standard, deep) between-subject factorial design with treatment contrasts for both factors. The baseline levels 
are new for ReP and deep for EnC. Following Unkelbach &  Rom26, we use a linear regression model to describe 
the data-generating process

The responses yi for each observation i = 1, . . . ,N are normally distributed with mean θi and standard devia-
tion s. The expected value θi is modeled as a linear function of ReP and EnC. The regression coefficients βk for 
k = 0, . . . , 5 are assigned normal prior distributions. The standard deviation s of the normal likelihood follows 
a Gamma prior with concentration parameter α and rate parameter β . The goal is to learn a total of 14 hyper-
parameters, � = (µk , σk ,α,β).

Elicitation procedure The following four target quantities were selected: the expected PTJ for the marginal of 
both factors EnC (1) and ReP (2), the expected difference in PTJ ( �PTJ) between repeated and new statements 
for each EnC level (3), and the expected R2 defined as a variance ratio of the modeled predictive means and the 
predictive observations including the residual variance, R2 = var(θi)/var(yi) (4). For target quantities 1-3 quantile 
elicitation is used and for target quantity 4 histogram elicitation. As hypothetical ground truth, we specify the 
following hyperparameter vector �∗ = (µ0 = 0.12, σ0 = 0.02,µ1 = 0.15, σ1 = 0.02,µ2 = −0.02, σ2 = 0.06,

µ3 = −0.03, σ3 = 0.06,µ4 = −0.02, σ4 = 0.03,µ5 = −0.04, σ5 = 0.03,α = 20.,β = 200.) . The elicited statistics 
conditional on �∗ are depicted in Fig. 1. The first column depicts the histogram for R2 and the remaining columns 
the results of quantile-based elicitation.

Optimization To instantiate the optimization process the hyperparameters � are randomly initialized as fol-
lows: µk ∼ Normal(0, 0.1) , log σk ∼ Uniform(−2,−4) , logα ∼ Normal(3, 0.1) , and logβ ∼ Normal(5, 0.1) , 

(1)

yi ∼ Normal(θi , s)

θi = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5

βk ∼ Normal(µk , σk) for k = 0, . . . , 5

s ∼ Gamma(α,β).

Figure 1.  Elicited statistics conditional on �∗ . (a) elicited histogram of R2 ; (b) three elicited quantiles for each 
remaining target quantity (see text for detailed information). Abbreviations: For the factor Encoding depth: dep-
deep, std-standard, and shw-shallow and for the factor Repetition: rep-repeated and new.
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whereby the scale, concentration, and rate parameter are initialized on the log scale. Subsequently, we simulate 
from the forward model and compute the corresponding model-implied target quantities, along with the elicited 
statistics. The discrepancy between the model-implied and true elicited statistics can then be computed and the 
hyperparameters updated. The learning process is considered completed once the maximum number of epochs 
has been reached. Details about the optimization algorithm can be found in the "Methods" section and the cor-
responding specification of the algorithm parameters can be found in "Appendix B.1".

To assess whether learning was successful, we first check the convergence diagnostics as summarized in Fig. 2. 
Examining the loss functions depicted in the leftmost column demonstrates the desired decreasing behavior 
for both the total loss as well as the individual loss components. The gradients of the hyperparameters � are 
depicted in the upper, right row, indicating the expected decreasing behavior towards zero across time. Finally, 
convergence of hyperparameters � during the learning process is illustrated in the lower, right row.

Results After having confirmed successful convergence, we shift our focus to the simulation results as depicted 
in Fig. 3. The final learned hyperparameter � is computed as the average of the last 30 epochs. The resulting 
learned prior distributions are shown in the upper row of Fig. 3. Solid lines indicate the learned priors and dotted 
lines the true priors (according to �∗).

The substantial overlap between these distributions indicates a successful learning process. This is further 
emphasized in the second row, where the error between the learned and true hyperparameter values gradually 
decreases towards zero.

Simulation study 2: GLMs—Binomial model
Setup In simulation study 2 we utilize a binomial response distribution with a logit-link function for the prob-
ability parameter. As accompanying example, we use the Haberman’s survival dataset from the UCI machine 
learning  repository27. The dataset contains cases from a study on the survival of patients who had undergone 
surgery for breast cancer. In the following, we use the detected number of axillary lymph nodes that contain 
cancer (i.e., (positive) axillary nodes) as numerical predictor X which consists in total of 31 observations rang-
ing between 0 and 59 axillary nodes. The dependent variable y is the number of patients who died within five 
years out of T = 100 trials for each observation i = 1, . . . ,N . We consider a simple binomial regression model 
with one continuous predictor

We assume normal priors for the regression coefficients, with mean µk and standard deviation σk for k = 0, 1 . 
Through the logit-link function, the probability θi is mapped to the scale of the linear predictor. The objective is 
to learn four hyperparameters � = (µk , σk).

Elicitation procedure and optimization As target quantities we select the expected number of patients who 
died within five years for different numbers of axillary nodes xi , with i = 0, 5, 10, 15, 20, 25, 30 . For each selected 
design point, we consider quantile-based elicitation. The hypothetical ground truth is defined by the follow-
ing hyperparameter vector �∗ = (µ0 = −0.51, σ0 = 0.06,µ1 = 0.26, σ1 = 0.04) . The specification of the algo-
rithm parameters for the optimization procedure can be found in "Appendix B.2". The convergence diagnostics 

(2)
yi ∼ Binomial(T , θi)

logit(θi) = β0 + β1xi

βk ∼ Normal(µk , σk) for k = 0, 1.

Figure 2.  Convergence diagnostics for simulation study 1. (a) loss value across epochs, demonstrating the 
desired decreasing trend of all loss values (i.e., the total loss and the individual loss components); (b) expected 
decreasing trend towards zero of the gradients for each learned hyperparameter � ; (c) update values of each 
learned hyperparameter after each iteration step (epoch), stabilizing in the long run at a specific value.
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check follows the same procedure as discussed for simulation study 1, and showed successful convergence (see 
"Appendix B.2.1").

Results The simulation results, based on the final learned hyperparameters � , are presented in Fig. 4.
The upper row shows a comparison between the true and learned quantiles for each number of axillary nodes 

xi , revealing an almost perfect match between both quantities. In the lower right panels, the error between the 
true and learned hyperparameters is depicted and indicates successful learning. Additionally, the lower right 
panel presents the true (dotted line) and learned (solid line) prior distributions which show a perfect match.

Figure 3.  Results of simulation study 1. (a) true (dotted line) and learned (solid line) prior distributions per 
model parameter βk and s; (b) error between learned and true hyperparameter values (α,β ,µk , σk) over time.

Figure 4.  Results of simulation study 2: (a) comparison between learned and true quantiles for each selected xi ; 
(b) learning of hyperparameters across epochs, showcasing the difference between the true and learned values; 
(c) true (dotted line) and learned (solid line) prior distributions of each model parameter.
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Simulation study 3: GLMs—Poisson model
Setup In simulation study 3, we expand our examination of count data likelihoods to include a Poisson distribu-
tion. For demonstration purposes, we adapt an example from Johnson et al.28, which investigates the number of 
LGBTQ+ anti-discrimination laws in each US state. The distribution of these laws is assumed to follow a Poisson 
distribution, with the rate parameter being influenced by demographic and voting trend. The demographic trend 
is quantified by the percentage of a state’s residents living in urban areas, ranging from 38.7% to 94.7% . Addition-
ally, the voting trend is represented by historical voting patterns in presidential elections, categorizing each state 
as consistently voting for the Democratic or Republican candidate or being a Swing state. We employ a Poisson 
regression model including one treatment-coded categorical predictor: the voting trend. This predictor has three 
levels: Democrats, Republicans, and Swing, with Democrats serving as the reference category. Furthermore, the 
model incorporates one continuous predictor: the demographic trend, measured as a percentage. The Poisson 
regression model is represented as follows

Here, yi is the number of counts for observation i = 1, . . . ,N . The counts follow a Poisson distribution with rate θi 
and log-link function. The rate parameter is predicted by a linear combination of the two predictors demographic 
and voting trend. All regression coefficients are assumed to have normal prior distributions with mean µk and 
standard deviation σk for k = 0, . . . , 3 . Our goal is to learn eight hyperparameters � = (µk , σk).

Elicitation procedure We consider two target quantities: the predictive distribution of the group means for states 
categorized as Democrats, Republicans, and Swing, and the expected number of LGBTQ+ anti-discrimination 
laws for selected US states xi with i = 0, 13, 14, 35, 37, 48 . Quantile-based elicitation is used for the distribution of 
group means and histogram elicitation for the observations per US state. Furthermore, the expected maximum 
number of LGBTQ+ anti-discrimination laws in one US state is required. This value is used as upper truncation 
threshold, tu , of the Poisson distribution which is needed for applying the Softmax-Gumbel Trick that allows for 
computing gradients for discrete random variables (see Section "Gradient-based optimization" for details). For the 
current example, we assume tu = 80 and define the following hyperparameter vector �∗ representing the ground 
truth: �∗ = (µ0 = 2.91, σ0 = 0.07,µ1 = 0.23, σ1 = 0.05,µ2 = −1.51, σ2 = 0.135,µ3 = −0.61, σ3 = 0.105) . The 
specification of algorithm parameters for the optimization procedure as well as a figure summarizing the con-
vergence diagnostics can be found in "Appendix B.3".

Results The learned hyperparameters’ results are presented in Fig. 5. In the upper panels, a comparison 
between model-based and true elicited statistics is presented and shows a high level of agreement: quantile-based 
elicitation for the voting groups is depicted in the first three panels and histogram elicitation for single states in 
the remaining upper panels.

The model-based histograms are depicted in blue and the ground truth in red. The lower left panels demon-
strate that the error between learned and true hyperparameter values converges towards zero over time. Finally, 
the learned prior distributions are depicted in the lower right panel, with solid lines representing the learned 
and dotted lines the true priors.

Simulation study 4: Hierarchical model
Setup In this concluding simulation study, we investigate the performance of our elicitation method when applied 
to a hierarchical model. This specific model class poses a distinct challenge for analysts and domain experts alike 
due to the inherent complexity of the model and the non-intuitive nature of varying effects (i.e., varying intercepts 
and slopes). Our method allows for learning prior distributions within a hierarchical framework, while relying 
on expert knowledge that is articulated in terms of interpretable target quantities.

The accompanying example draws inspiration from the sleepstudy  dataset29. This dataset contains informa-
tion about the average reaction time (RT) in milliseconds for N individuals who undergo sleep deprivation for 
nine consecutive nights. In order to construct a model for this data, we consider a hierarchical model with days 
serving as a continuous predictor x,

Here yij represents the average RT for the jth participant at the ith day with j = 1, . . . , 200 and i = 0, . . . , 9 . The 
RT data is assumed to follow a normal distribution with local mean θij and within-person standard deviation s. 
Here, θij is predicted by a linear combination of the continuous predictor x with overall slope β1 and intercept 
β0 . Given the potential variation in both baseline and change in RT across participants, the model incorporates 

(3)
yi ∼ Poisson(θi)

log(θi) = β0 + β1x1 + β2x2 + β3x3

βk ∼ Normal(µk , σk) for k = 0, . . . , 3.

(4)

yij = Normal(θij , s)

θij = β0 + u0,j + (β1 + u1,j)xij

(u0,j , u1,j) ∼ MvNormal(0,�u)

�u =

(

τ 20 ρ01τ0τ1
ρ01τ0τ1 τ 21

)

βk ∼ Normal(µk , σk) for k = 0, 1

τk ∼ TruncatedNormal(0,ωk) for k = 0, 1

ρ01 ∼ LKJ(αLKJ)

s ∼ Gamma(α,β).
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varying (i.e., “random”) intercepts u0,j and slopes u1,j . These varying effects follow a multivariate normal distri-
bution, centered at a mean vector of zero and with a covariance matrix �u . This encodes the variability ( τ0, τ1 ) 
and the correlation ( ρ01 ) between u0,j and u1,j . For the resulting set of model parameters, the following prior 
distributions are assumed: A normal distribution for the overall (i.e., “fixed”) effects βk ( k = 0, 1 ) with mean µk 
and standard deviation σk . A truncated normal distribution centered at zero with a standard deviation of ωk , 
is employed for the person-specific variation τk , which is constrained to be positive. The correlation parameter 
ρ01 follows a Lewandowski-Kurowicka-Joe [LKJ;30] distribution with scale parameter αLKJ . In the subsequent 
context, we set αLKJ to 1. Additionally, a Gamma prior distribution with concentration α and rate β is used for 
the within-person (error) standard deviation s. The goal is to learn eight hyperparameters � = (µk , σk ,ωk ,α,β).

Elicitation procedure and optimization We consider the following target quantities and elicitation tech-
niques: quantile-based elicitation for the expected average RT for specific days xi , where i = 0, 2, 5, 6, 9 . 
Moment-based elicitation using mean and standard deviation for the within-person standard deviation s 
(elicitation in the parameter space), and histogram-elicitation for the expected distribution of R2 for the ini-
tial and final day ( i = 0, 9 ). We define the expected ground truth by the following hyperparameter vector 
�
∗ = (µ0 = 250.40,µ1 = 30.26, σ0 = 7.27, σ1 = 4.82,ω0 = 33.00,ω1 = 23.00,α = 200,β = 8) . Please refer to 

"Appendix B.4" for detailed information about the algorithm parameters of the optimization procedure together 
with a figure summarizing the convergence diagnostics indicating successful convergence.

Results Figure 6 presents the results derived from the optimization process. The upper two rows depict the 
congruence between simulation-based and true elicited statistics, effectively highlighting successful learning. The 
first row illustrates the alignment between true and learned quantiles for the chosen days xi . The first two plots in 
the lower row show the distributions of R2 as predicted by the model and the ground truth for day 0 and 9. The 
model-based histograms are depicted in blue and the ground truth in red. Finally, moment-based elicitation (i.e., 
mean and standard deviation) for the model parameter s is depicted as remaining information in the second row.

The learned prior distributions for each model parameter are depicted in the lower, right column of Fig. 6. 
The high overlap between true (dashed lines) and learned (solid lines) prior distributions indicates an additional 
instance of successful learning. This is further supported by the assessment of the error between true and learned 
hyperparameters in the lower left column, revealing a progressive convergence towards zero across epochs.

Figure 5.  Results of simulation study 3: (a) comparison between model-based and true elicited statistics. First 
three panels depict quantile-based elicitation for the group means, while the remaining upper panels show 
histogram elicitation for each state xi . The model-based histograms are depicted in blue and the ground truth 
in red. (b) learning of hyperparameters across epochs, showcasing the difference between the true and learned 
values; (a) true (dotted line) and learned (solid line) prior distributions of the model parameters.
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Discussion
When developing Bayesian models, analysts face the challenge of specifying appropriate prior distributions 
for each model parameter, involving both the choice of the distributional family as well as the corresponding 
hyperparameter values. We proposed an elicitation method that assists analysts in identifying the hyperparameter 
values of given prior distribution families based on expert knowledge. Our method accommodates various types 
and formats of expert knowledge and is agnostic to the specific probabilistic model. In our simulation studies, 
we demonstrated the excellent performance of our method for various modeling tasks and kinds of expert 
knowledge. Despite these highly promising results, some relevant limitations remain, which are discussed below 
together with ideas for future research.

Our method employs gradient-based optimization to learn hyperparameter values which requires only the 
ability to sample from the generative model. However, it comes with the prerequisite that all operations and 
functions in the computational graph are differentiable or admit a reparameterization whose gradients can be 
approximated with sufficient accuracy. Consequently, for discrete random variables, specific techniques, such 
as the Softmax-Gumbel trick, are necessary. Alternatively, one could opt for optimization methods that entirely 
forego gradient computations such as Bayesian  optimization31 as used by Manderson &  Goudie6. Nevertheless, 
this choice has its own limitations, notably in terms of scalability to higher-dimensional  spaces32.

Figure 6.  Results of simulation study 4: (a) comparison between model-based and true elicited statistics. First 
row depicts quantile-based elicitation for each day xi . Second row shows histogram-based elicitation for R2 
(red true and blue model-implied) and moment-based elicitation for model parameter s ( mtrue, sdtrue stands 
for true elicited mean and standard deviation, respectively). (b) learning of hyperparameters across epochs, 
showcasing the difference between the true and learned values; (c) true (dotted line) and learned (solid line) 
prior distributions of each model parameter.
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Having a suitable optimization method is fundamental for learning hyperparameters based on expert knowl-
edge. However, there are cases where hyperparameters cannot be uniquely determined from available expert data, 
leading to different learned hyperparameters upon multiple replications of the learning process. This situation 
raises the question of how to choose between prior distributions that represent the elicited expert knowledge 
equally well. Initial approaches, such as incorporating a regularization term in the loss function to favor priors 
with higher entropy, have been proposed to address this  challenge6. Another avenue to achieve model identifica-
tion involves the model architecture. For instance, statistical models that adopt joint priors for their parameters 
and thus keep the number of hyperparameters low, are expected to exhibit improved model identification [e.g.,33]. 
Nevertheless, further research is needed to develop informative metrics for assessing model identification as well 
as techniques that can efficiently handle unidentified  models34.

Finally, all gradient-based optimization methods share the objective of finding an optimal point estimate for 
the hyperparameters � . By adopting this approach, any uncertainties surrounding the value of � are neglected, 
despite the potential introduction of uncertainty during the prior elicitation process. To address this limitation, 
it would be advantageous to adopt a probabilistic approach that explicitly accounts for uncertainty in the hyper-
parameters [e.g.,5,16]. Given the flexibility of our method, it can readily accommodate this concept, offering a 
promising avenue for future development and next steps.

Methods
We propose a new elicitation method for translating knowledge from a domain expert into an appropriate 
parametric prior distribution. Building on recent  contributions6,9,16 we developed a model-agnostic method 
in which the search for appropriate prior distributions is formulated as an optimization problem. Thus, the 
objective is to determine the optimal hyperparameters that minimize the discrepancy between model-implied 
and expert-elicited statistics. Our elicitation method supports expert feedback in both the space of parameters 
and observable quantities (i.e., a hybrid approach) and minimizes human effort. The key ideas underlying our 
method are outlined as follows: 

1. The analyst defines a generative model comprising a likelihood function p(y | θ) and a parametric prior 
distribution p(θ | �) for the model parameters, where � represents the prior hyperparameters to be inferred 
from expert knowledge.

2. The analyst selects a set of target quantities, which may involve queries related to observable quantities (data), 
model parameters, or anything else in between.

3. The domain expert is queried using a specific elicitation technique for each target quantity (expert-elicited 
statistics) .

4. From the generative model, parameters and (prior) predictive data are simulated, and the predefined set of 
target quantities is computed (model-implied quantities) .

5. The discrepancy between the model-implied and the expert-elicited statistics is evaluated via a specific loss 
function.

6. Stochastic gradient descent is employed to update the hyperparameters � so as to minimize the loss function.
7. Steps 4 to 6 are repeated iteratively until an optimal set of hyperparameters � is found that minimizes the 

discrepancy between the model-implied and the expert-elicited statistics.

In the upcoming sections, we will delve into the details of the outlined approach. To provide a visual representa-
tion of all steps involved in our proposed elicitation method, Fig. 7 presents a graphical overview. In addition, 
readers can find a symbol glossary in "Appendix A" for a quick reference. An illustrative example that details each 
step of the workflow using specific values can be found in our online supplement https:// osf. io/ rxgv2.

Elicited statistics from the expert
We assume that the analyst queries the domain expert regarding a predetermined set of I target quantities, rep-
resented as {zi} := {zi}

I
i=1 . The set {zi} is selected by the analyst depending on the requirements of the statistical 

model and the knowledge of the  expert5,9,21. Once this set is defined, the expert is queried regarding each indi-
vidual target quantity zi , assuming that the expert possesses an implicit representation, denoted as ẑi , which can 
be accessed using expert elicitation techniques6,14,16,35. While numerous elicitation techniques have been proposed 
in the  literature21, it can be argued that these techniques essentially represent different facets of the following 
three general method families: moment-based elicitation (e.g., mean and standard deviation), quantile-based 
elicitation (e.g., median, lower quartile, and upper quartile), and histogram elicitation (e.g., constructing a histo-
gram by sampling from the distribution of zi ). Each target quantity zi can be elicited through a distinct elicitation 
technique fj . Within our notation, we represent the ith target quantity elicited from the expert through the jth 
elicitation technique as t̂m = t̂ij and refer to it as elicited statistics t̂m = fj(ẑi) . The index m = 1, . . . ,M indicates 
the number of elicited statistics resulting from specific target-quantity × elicitation-technique combinations, as 
selected by the analyst.

Model‑based quantities
Considering the set of elicited statistics queried from the expert {t̂m} , it is possible to assess the extent to which a 
generative model, as specified by the analyst, aligns with the expert’s expectations. A Bayesian model comprises a 
likelihood p(y | θ) as well as parametric prior distributions p(θ | �) for the model parameters θ . Here, � represents 
the prior hyperparameters to be inferred by our method and y a vector of observations. The degree to which the 
model captures the expert’s expectations relies on the specific values assigned to � . Consequently, the objective 

https://osf.io/rxgv2
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is to identify a specification of � that minimizes the discrepancy between the set of expert-elicited statistics {t̂m} 
and model-implied elicited statistics, {tm}.

First, we need to derive the set of model-implied target quantities {zi} . As a target quantity can represent 
an observable, a parameter, or anything else in between, we define it in the most general form as a function 
of the model parameters θ , denoted as zi = gi(θ) , where the function g can take on various forms and be of 
deterministic or stochastic nature. In its simplest form, the target quantity directly corresponds to a parameter 
of interest in the data-generating model ( zi = gi(θ) = θi ; i.e., g would be a simple projection). Alternatively, g 
can be aligned with the generative model of the data, resulting in the target quantity being equivalent to the 
observations ( zi = gi(θ) = y ). Moreover, the function g can take on more complex forms. Suppose the domain 
expert provides prior knowledge about the coefficient of determination R2 commonly used to measure model 
fit in regression  models36. To obtain the corresponding model-implied R2 , we first generate observations y using 
the specified generative model and then compute the R2 value from the observations. Given the set of model-
implied target quantities, we get the respective model-implied elicited statistics, denoted by {tm} , by applying the 
elicitation technique fj to the target quantity zi : tm = fj(zi).

A challenge with this approach is that the distribution of {tm} may not be analytical or have a straightforward 
computational solution. For instance, consider the case where the target quantity is equivalent to the observa-
tions, zi = y . In this case, the distribution of the predicted observations y gives rise to an integral equation known 
as the prior predictive distribution (PPD), denoted by p(y | �) and defined by averaging out the prior from the 
generative model: p(y | �) =

∫

�
p(y | θ)p(θ | �)dθ . Obtaining a closed-form expression for this integral is only 

feasible in certain special cases, such as when dealing with conjugate priors. This challenge extends to all situ-
ations where the target quantity is a function of the observations y. However, to ensure the broad applicability 
of our elicitation method to a wide range of models, we adopt a simulation-based approach that relies solely 
on the ability to generate samples from the relevant quantities. Bayesian models, by their very formulation, can 
simulate data from their prior and likelihood distributions, thereby enabling us to generate samples from the 
Bayesian probabilistic  model2,37. For example, in the case where zi = y , the simulation-based procedure involves 
two steps: Firstly, we sample the model parameters from the prior distribution conditioned on hyperparameters 
� : θ(s) ∼ p(θ | �) . Subsequently, we generate data by sampling from the likelihood distribution, resulting in 
y(s) ∼ p(y | θ(s)) . The superscript (s) is used to denote the sth sample of the corresponding simulated quantity. 
By repeating these steps, we can generate a collection of S simulations {y(s)} := {y(s)}Ss=1 , where each element 
corresponds to a data point drawn from the PPD: y(s) ∼ p(y | �).

Multi‑objective optimization problem
Once the elicited statistics {t̂m} from the expert and a procedure to compute the corresponding model-implied 
elicited statistics {tm} are chosen, the focus can be shifted towards the main objective: Determine the hyperpa-
rameters � that minimize some discrepancy measure (loss function) L(�) between the expert-elicited {t̂m} and 
the model-implied statistics {tm} = {tm(�)} . Since the evaluation of the discrepancy extends to all elicited statistics 
{tm} , L(�) has to be formulated as a multi-objective loss function. This loss function encompasses a linear combi-
nation of discrepancy measures Lm , with corresponding weights αm (see Section "Dynamic weight averaging"). 

{ }{ } { }
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Figure 7.  Graphical illustration of our simulation-based elicitation method. Step 1 involves employing 
elicitation techniques to extract target quantities from the domain expert. Subsequently, the objective 
is to minimize the discrepancy between model-implied and expert-elicited statistics by optimizing the 
hyperparameters � . The optimization process iteratively simulates data using the current hyperparameters 
� , computes model-implied elicited statistics, compares them with the expert-elicited statistics using a loss 
function ( Lm ), and updates � to improve agreement between model-implied and expert-elicited statistics. Here, 
αm is the weight of the mth loss component and δ is the step size.
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In the following, we will also use the term loss components to refer to the individual components in the weighted 
sum. The selection of the discrepancy measure Lm is contingent upon the elicited statistic, therefore different 
choices may be appropriate depending on the specific quantity to be compared (see Section "Maximum mean 
discrepancy"). Independently of these specific choices, our main objective can be written as

where �∗ denotes the optimal value of the hyperparameters � given the provided expert knowledge.

Gradient‑based optimization
The optimization procedure for solving Eq. (5) follows an iterative approach. In each iteration, we sample from 
the generative model, compute the model-implied elicited statistics, and update the hyperparameters � . This 
update relies on calculating the gradient of the discrepancy loss with respect to the hyperparameters � and 
adjusting them in the opposite direction of the  gradient38. The procedure continues until a convergence crite-
rion is met, usually when all elements of the gradient approach zero. We employ mini-batch stochastic gradient 
descent (SGD) with automatic differentiation, facilitated by the reparameterization trick [explicit or implicit;39,40. 
In our case, stochasticity in mini-batch SGD arises naturally as we simulate new model-implied quantities at 
each iteration step.

The reparameterization trick involves splitting the representation of a random variable into stochastic and 
deterministic parts. By differentiating through the deterministic part, we can compute gradients with respect to 
� using automatic  differentiation41. To leverage backpropagation, it is essential that all operations and functions 
in the computational graph are differentiable with respect to � . This requirement extends to the loss function 
and all computational operations in the generative  model9,16.

However, dealing with discrete random variables poses a challenge due to the non-differentiable nature 
of discrete probability distributions, making gradient descent through such variables difficult. One approach 
to overcome this challenge is to use continuous relaxation of discrete random variables, which enables the 
estimation of gradients and thus the use of gradient-based optimization methods for models that involve dis-
crete random  variables42–44. For instance, both Maddison et al.43 and Jang et al.44 independently proposed the 
Gumbel-Softmax trick, which approximates a categorical distribution, with finite number of categories, with a 
continuous distribution. Joo et al.45 proposed an extension of the Gumbel-Softmax trick to arbitrary discrete 
distributions by introducing truncation for those distributions that lack upper and/or lower boundaries. We 
used the Softmax-Gumbel trick in simulation study 2 and applied the truncation technique in simulation study 
3 (Sections "Simulation study 2: GLMs—binomial model" and "Simulation study 3: GLMs—Poisson model").

Maximum mean discrepancy
A key aspect of the optimization problem, as expressed in Eq. (5), is the selection of an appropriate discrepancy 
measure, Lm . This measure depends on the characteristics of the elicited statistics {tm} and {t̂m} . Given that our 
method entails the generation of {tm} through repeated sampling from the generative model, a loss function is 
needed that can quantify the discrepancy between samples. The maximum mean discrepancy (MMD)46,47 is a 
kernel-based method designed for comparing two probability distributions when only samples are available, 
making it suitable for our specific requirements. We utilize the MMD for all loss components in our applications. 
This decision is based on the robust simulation results and excellent performance as reported in the simulation 
studies section. That said, our method does not strictly require the MMD, but allows analysts to choose a differ-
ent discrepancy measure for each loss component, if desired.

Let x = {x1, . . . , xn} and y = {y1, . . . , ym} be iid draws from the distributions p and q, respectively. The MMD 
measures the distance between two sets of samples by taking the maximum difference in sample averages over 
a function class F  (Def. 2)46: MMD = supf ∈F

(

Ex∼p[f (x)] − Ey∼q[f (y)]
)

. If F  is a unit ball in the universal 
reproducing kernel Hilbert space H with associated reproducing kernel k(·, ·) , the MMD is a strictly proper diver-
gence, thus equals zero if and only if p = q47. The (biased) empirical estimate of the squared-MMD is defined as 
MMD2

b =
1
n2

∑n
i,j=1 k(xi , xj)+

1
m2

∑m
i,j=1 k(yi , yj)−

2
mn

∑m,n
i,j=1 k(xi , yj) where k(·, ·) is a continuous and charac-

teristic kernel function. In our simulations, we used the energy distance kernel k(x, y) = −||x − y|| , as proposed 
by  Feydy48 and Feydy et al.49, which does not require an extra hyperparameter for tuning.

Dynamic weight averaging
In addition to selecting an appropriate discrepancy measure, another important consideration involves choosing 
the weights αm in Eq. (5). One possibility is for the user to customize the choice of αm , signifying the varying 
degrees of importance for each loss component in a particular  application50. However, another consideration 
refers to the task balancing problem. When employing stochastic gradient descent to minimize the objective as 
outlined in Eq. (5), the hyperparameters � are updated according to the following rule � ← �− δ

∑M
m=1 αm

∂Lm
∂�

, 
where δ is the step size (i.e., learning rate). The equation suggests that the hyperparameter update may not yield 
optimal results if one loss component significantly outweighs the  others50.

Consequently, a strategy is needed to dynamically modify the weights αm to ensure effective learning of all 
loss components. For example, the dynamic weight averaging (DWA) method proposed by Liu et al.51 determines 
the weights based on the learning speed of each component, aiming to achieve a more balanced learning process. 
Specifically, the weight of a component exhibiting a slower learning speed is increased, while it is decreased for 
faster learning  components52.

(5)�
∗ = argmin

�

L(�) = argmin
�

M
∑

m=1

αmLm(tm(�), t̂m),
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In our simulation studies, we consider an equal-weighting scheme ( αm = 1 ), as this choice has demonstrated 
good learning outcomes without introducing additional free hyperparameters required by most task balancing 
approaches. However, we believe that investigating different task balancing approaches is a promising avenue 
for future research. Such exploration could have a beneficial impact on the method’s performance, particularly 
in cases involving conflicting expert information.

Data and code availability
All code and data is openly available on OSF https:// osf. io/ rxgv2 and GitHub https:// github. com/ flore nce- bockt 
ing/ Prior Learn ing.
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