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Temporal variation characteristics 
in the association between climate 
and vegetation in Northwest China
Shijun Zheng 1, Dailiang Peng 2,3*, Bing Zhang 2,3,4, Le Yu 1*, Yuhao Pan 2,3, Yan Wang 5, 
Xuxiang Feng 6 & Changyong Dou 2,3

Northwest China has undergone notable alterations in climate and vegetation growth in recent 
decades. Nevertheless, uncertainties persist concerning the response of different vegetation types 
to climate change and the underlying mechanisms. This study utilized the Normalized Difference 
Vegetation Index (NDVI) and three sets of meteorological data to investigate the interannual 
variations in the association between vegetation and climate (specifically precipitation and 
temperature) from 1982 to 2015. Several conclusions were drawn. (1)  RNDVI-GP (relationship between 
Growing Season NDVI and precipitation) decreased significantly across all vegetation, while  RNDVI-GT 
(relationship between Growing Season NDVI and temperature) showed an insignificant increase. 
(2) Trends of  RNDVI-GP and  RNDVI-GT exhibited great variations across various types of vegetation, with 
forests displaying notable downward trends in both indices. The grassland exhibited a declining 
trend in  RNDVI-GP but an insignificant increase in  RNDVI-GT, while no significant temporal changes in 
 RNDVI-GP or  RNDVI-GT were observed in the barren land. (3) The fluctuations in  RNDVI-GP and  RNDVI-GT closely 
aligned with variations in drought conditions. Specifically, in regions characterized by VPD (vapor 
pressure deficit) trends less than 0.02 hpa/yr, which are predominantly grasslands, a rise in SWV (soil 
water volume) tended to cause a reduction in  RNDVI-GP but an increase in  RNDVI-GT. However, a more 
negative trend in SWV was associated with a more negative trend in both  RNDVI-GP and  RNDVI-GT when 
the VPD trend exceeded 0.02 hPa/yr, primarily in forests. Our results underscore the variability in the 
relationship between climate change and vegetation across different vegetation types, as well as the 
role of drought in modulating these associations.
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Land vegetation serves as a crucial conduit that connects the soil, atmosphere, and water cycle, and plays a criti-
cal role in regulating the exchange of water and  heat1–3. Comprehending the interactions between climate and 
vegetation is important for ecological  restoration4. Considerable research efforts are aimed at investigating the 
response of vegetation growth to climate  change5–9, with a predominant focus on elucidating the promoting or 
inhibitory effects of climate variables, including temperature or precipitation, on vegetation dynamics. It has 
been found that the correlation between temperature and vegetation productivity may vary over time due to 
other environmental  constraints10,11, indicating that the interaction between climate and vegetation may undergo 
modifications as a result of vegetation’s self-adjustment or shifts in the surrounding ecosystem. Exploring these 
changes in the vegetation-climate correlation and their underlying mechanisms is of significant importance for 
maintaining ecosystem stability.

The changing correlation between climate and vegetation has recently gained some attention. For instance, 
Wang, et al.12 observed a weakening correlation between vegetation and temperature across China over the 
past 34 years. A study in Australia revealed a decreasing precipitation threshold necessary for vegetation 
 growth13. Keenan and  Riley14 investigated how vegetation cover responded to temperature variations and noted 
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a diminishing impact of temperature constraints over time. Zhao et al.15 reported an enhanced association 
between climate change and vegetation index in Northwest China over the past 34 years. Nevertheless, these 
studies have primarily focused on recognizing the changes in the relationship between climate and vegetation. 
Uncertainties remain regarding the underlying drivers and mechanisms that regulate these changes in the rela-
tionship. Moreover, current research on the changing relationship between climate and vegetation often fails to 
take into account the differences in vegetation types. Extensive documentation exists on the influencing mecha-
nisms of vegetation dynamics in diverse vegetation  types16–23, indicating potential variations in the patterns of 
interactions between climate and vegetation across different land cover types.

Northwest China is distinguished by extensive regions encompassing diverse land cover types, including 
grasslands, forests, and barren lands with sparse vegetation. Since the early 1980s, multiple studies have high-
lighted the presence of warmer and more humid conditions in this  area24–30. Furthermore, notable alterations 
in vegetation growth have also been documented in recent decades within this  region31,32. Yet, there is limited 
research on the changing relationship between climate and vegetation in Northwest China. Consequently, North-
west China provides an optimal context for investigating the evolving dynamics of the interaction between 
climate conditions and vegetation patterns across a range of vegetation types.

In this study, we utilized satellite-based normalized difference vegetation index (NDVI) data along with 
climate observations from three distinct sources (refer to the Methods section) to investigate the responses of 
various vegetation types in Northwest China to climate variations (temperature and precipitation). Additionally, 
we examined the temporal variation characteristics of the relationship between vegetation and climate. Fur-
thermore, we performed an attribution analysis to determine the cause of this relationship’s shifting trend. Our 
research will enhance the comprehension of the correlation between vegetation and climate, and concurrently 
provide a theoretical basis for safeguarding the ecological security of Northwest China.

Methodology
Study area
This study focuses on northwest China (Fig. 1a). Located in the interior of Eurasia, the altitude of this region 
ranges from  − 152 to 8058 m, with the majority of areas situated at elevations exceeding 1000 m. The intricate 
topography hinders the long-distance transport of oceanic moisture across mountain barriers, resulting in an arid 
climate. The primary land cover types in this region include forest, grassland, and barren land (areas with an aver-
age annual NDVI below 0.1 were excluded to eliminate non-vegetated regions, hence the barren land here repre-
sents areas with sparse vegetation). Forest is predominantly concentrated in southern Shaanxi, while grassland 
is primarily distributed in the southern Qinghai Plateau, as well as the Qilian Mountains, Tianshan Mountains, 
and Altai Mountains (Fig. 1b). The distribution of NDVI and precipitation here demonstrates a coherent pattern, 
with notably elevated values predominantly localized in the southern areas of Qinghai and Shaanxi (Fig. 1c,d). 
This alignment suggests that precipitation is the primary climatic factor influencing vegetation growth under 
dry  conditions33,34. The pronounced temperature disparities in this area stem from altitude-related influences 

Figure 1.  Study area. (a) The location and elevation of the study area, (b) land cover map, and spatial 
distribution of Growing Season (c) NDVI, (d) precipitation and (e) temperature. As the areas with an average 
annual NDVI of less than 0.1 were removed, the barren land in (b) represents sparse vegetation.
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(Fig. 1e). High-altitude regions like the Qinghai Plateau, Qilian Mountains, Tianshan Mountains, and Altai 
Mountains exhibit growing season temperatures averaging below 5 °C. Conversely, most other areas have aver-
age temperatures surpassing 15 °C, with specific areas in southern Shaanxi, the Junggar Basin, and the Tarim 
Basin even exceeding 25 °C.

Data sets
Three sets of climate data were employed in our analysis. The first dataset comprises temperature and pre-
cipitation grid data obtained through interpolation of meteorological station data at a spatial resolution of 1 
 kilometers25, denoted as “Interp”. Additionally, we utilized temperature and precipitation data from the Climatic 
Research Unit (CRU) Time Series 4.0135, with a resolution of 0.5°. Lastly, the ERA5-land reanalysis dataset 
with a resolution of 0.1° was also  utilized36, encompassing climate variables such as temperature, precipitation, 
shortwave radiation (SR), dew point temperature (DT), surface pressure (SP), and soil water volume at a depth 
of 0–7 cm (SWV). Among these climate variables, SR was utilized as a controlled variable in partial correlation 
analysis to mitigate its impact on the inter-annual changes of NDVI when examining the relationship between 
NDVI, temperature, and precipitation. The variables DT and SP were used for calculating vapor pressure deficit 
(VPD) and, in conjunction with SWV, to investigate the impact of drought on the correlation between tempera-
ture, precipitation, and NDVI. As all meteorological data were at monthly scale, we transformed them into the 
Growing Season (GS) by aggregating precipitation and averaging temperature, shortwave radiation (SR), vapor 
pressure deficit (VPD), and soil water volume (SWV). The Growing Season was defined as April to October. 
Subsequently, all climate variables were resampled to a 0.05° resolution through bilinear interpolation to align 
with the resolution of the land cover data. Additionally, all variable raster data in this study were georeferenced 
using the WGS84 coordinate system with a longitude-latitude projection. VPD was calculated by the following 
 formulas37:

where SVP and AVP are vapor pressure and actual vapor pressure (kPa), respectively. Ta is the air temperature 
(°C). Td is the dew point temperature (°C). SP is the surface pressure (hPa).

The NDVI is a widely used indicator of vegetation greenness, commonly employed in studies investigating 
changes in vegetation greenness and their responses to climate  variability38. In this study, NDVI data spanning 
the period 1982–2015 was obtained from the Global Inventory Modeling and Mapping Studies NDVI third gen-
eration (GIMMS NDVI3g) (available in “https:// clima tedat aguide. ucar. edu/ clima te- data/ ndvi- norma lized- diffe 
rence- veget ation- index- 3rd- gener ation- nasag fsc- gimms”), which has been shown to be one of the best products 
for monitoring temporal changes in  vegetation39,40. This dataset, derived from NOAA’s Advanced Very High Reso-
lution Radiometer (AVHRR) sensor, provides average NDVI values by filtering out atmospheric disturbances, 
snow, and other interferences, with a temporal resolution of 15 days and a spatial resolution of approximately 
8 km. To aggregate the biweekly NDVI data into monthly intervals, the Maximum Value Composite (MVC)41 
approach was employed to eliminate noise from cloud and atmospheric conditions effectively. Subsequently, 
Growing Season (GS) NDVI was calculated by averaging the monthly NDVI values while excluding regions with 
an average annual NDVI below 0.1 to eliminate non-vegetated  areas42,43. Moreover, the NDVI data was also resa-
mpled to a spatial resolution of 0.05° using bilinear interpolation to match the resolution of the land cover data.

The land cover data, characterized by a spatial resolution of 0.05°, was obtained from GLASS-GLC (Global 
Land Surface Satellite—global land cover)44 and can be accessed at “https:// doi. org/ 10. 1594/ PANGA EA. 913496”. 
It’s categorized into seven classes: cropland, forest, grassland, shrubland, tundra, barren land, and snow/ice. This 
dataset has been extensively employed in various academic  studies45–47.

Partial correlation analysis
Prior to the analysis, the linear trends in both the NDVI and climate time series were detrended using the least 
squares method. The relationship between precipitation (temperature) and NDVI is assessed by computing the 
partial correlation coefficient between GS precipitation (temperature) and GS NDVI, while statistically control-
ling for interannual variation in GS temperature (precipitation) and GS radiation. The calculation of the partial 
correlation coefficient is depicted in formula (4)48.

where Rxjy is the partial correlation coefficient between the j th independent variable and the dependent vari-
able y , c is the corresponding element in the inverse matrix of the correlation coefficient matrix. The statistical 
significance of the partial correlations was calculated using the t-test shown in formula (5)49 with the significance 
level set to 0.05:

(1)SVP = 6.112×
(

1+ 7× 10−4 + 3.46× 10−6SP
)

× e
17.67Ta
Ta+243.5

(2)AVP = 6.112×
(

1+ 7× 10−4 + 3.46× 10−6SP
)

× e

17.67Td
Td+243.5

(3)VPD = SVP− AVP

(4)Rxjy =
−cjy

√
cjjcyy

https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://doi.org/10.1594/PANGAEA.913496
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here m is the number of independent variables and n is the number of samples.

Results
The correlation of climate and NDVI
The Northwest China witnessed a remarkable shift towards warmer and more humid climate from 1982 to 2015, 
characterized by an overall temperature rise across all regions and a precipitation increase in the majority of 
areas (Fig. S1a,b). The primary regions experiencing a decrease in precipitation are the forests in the southern 
Shaanxi and the barren lands in the northern part of Xinjiang (Figs. 1a and S1b).

We utilized various sets of meteorological data to compute the partial correlation coefficients between tem-
perature, precipitation, and NDVI, as depicted in Fig. 2. Across the majority of areas, NDVI exhibited a positive 
correlation with precipitation, particularly in sparsely vegetated regions. Remarkably, in the grassland areas 
of southern Qinghai Plateau, NDVI displayed a significant negative correlation with precipitation. Except for 
specific regions like the Tianshan Mountains and southern Qinghai Plateau, a negative correlation was observed 
between NDVI and temperature in a significant portion of northwest China, particularly in sparsely vegetated 
areas. The partial correlation analysis conducted with Interp and ERA5 meteorological data revealed a subtle 
positive correlation between temperature and NDVI in some barren regions situated in the northern part of the 
Tianshan Mountains (Fig. 2b, f). This may potentially be attributed to the accelerated melting of high mountain 
glaciers caused by rising temperatures, subsequently facilitating the growth of  vegetation50.

The correlation between climate and NDVI is closely linked to the spatial distribution of climate in Northwest 
China. Generally, a strong correlation between NDVI and precipitation is observed in areas with low precipitation 
levels. However, as precipitation levels increase, the correlation gradually weakens, and may even become negative 
(Fig. 3a–c). This can be attributed to the high dependence of vegetation growth on precipitation in water-deficient 
areas, while vegetation growth in relatively humid regions shows less sensitivity to  precipitation51,52. As a result, 
the correlation between NDVI and precipitation is more pronounced in areas with sparse vegetation and bare 
ground compared to grassland and forest. At low temperatures, there is a positive relationship between NDVI and 
temperature, which strengthens with increasing temperature. However, upon reaching a specific threshold, the 

(5)txy,z =
rxy,z

√

1− r2xy,z

√
n−m− 1

Figure 2.  Spatial distribution of partial correlation of NDVI and climate. Partial correlation coefficient 
 (RNDVI-GP) between Growing Season NDVI and precipitation is calculated using climate data from Interp 
(a), CRU (c) and ERA5 (e). Partial correlation coefficient  (RNDVI-GT) between Growing Season NDVI and 
temperature is calculated using climate data from Interp (b), CRU (d) and ERA5 (f). The areas with an average 
annual NDVI of less than 0.1 were removed. All variables are detrended. To calculate the partial correlation of 
NDVI versus Growing Season precipitation (or temperature), temperature (or precipitation) and radiation are 
controlled for. The dots indicate the regions with significant relationship in  RNDVI-GP (or  RNDVI-GT) (P < 0.05).



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17905  | https://doi.org/10.1038/s41598-024-68066-7

www.nature.com/scientificreports/

correlation between NDVI and temperature weakens with further temperature elevation (Fig. 3d–f), signifying a 
potential decline or cessation of the current trend towards enhanced  greening53. Prior studies have indicated that 
vegetation growth typically exhibits an optimal temperature, representing the temperature at which vegetation 
growth is most  favorable54,55. In areas with lower temperatures, vegetation growth is highly sensitive to tempera-
ture variations, whereas in warmer regions, elevated temperatures can hinder vegetation growth. Consequently, 
grassland in high-altitude areas exhibits a positive correlation with temperature, whereas sparse vegetation on 
bare ground in warmer areas shows a negative correlation with temperature.

For some forested areas in Shaanxi, NDVI demonstrates a weak negative correlation with precipitation 
(Fig. 2a,c,e), potentially due to the elevation of solar radiation with decreasing precipitation in this region 
(Fig. S1b,e). To investigate the impact of solar radiation on vegetation productivity in Northwest China, we 
conducted an analysis on the partial correlations between interannual fluctuations in shortwave radiation and 
NDVI (Fig. S2). Increased radiation can enhance photosynthetic efficiency and promote vegetation growth, lead-
ing to a significant positive correlation between NDVI and radiation in forests (Fig. S2). However, high-altitude 
grasslands primarily exhibit a negative correlation with NDVI, possibly due to excessive radiation also raising 
transpiration rates and then causing soil moisture  loss56.

Trends in the relationship between climate and NDVI
The trends of  RNDVI-GP and  RNDVI-GT were calculated for overall vegetation areas, as well as individually for forest, 
grassland, and barren land, utilizing a sliding window approach along the time axis and relying on three sets of 
meteorological datasets, Interp, ERA5, and CRU. Figure 4 displays the outcomes derived from a 13-year sliding 
window, while Figs. S3–6 present additional analyses conducted with sliding windows of 9, 11, 15, and 17 years 
to bolster the reliability of the findings. The  RNDVI-GP exhibited a notable decreasing trend for across all vegeta-
tion, with statistical significance (P < 0.05) observed in all cases except when utilizing Interp data with a 17-year 
sliding window. Specifically, the decline in  RNDVI-GP within the forest was highly significant (P < 0.01 and r < − 0.75 
for all cases). In the grassland, a consistent downward trend in  RNDVI-GP was evident (P < 0.1 for most cases), 
although with lower significance than in the forest. Conversely, there was no consistent trend, either upward 
or downward, observed in  RNDVI-GP for barren lands, and the results lacked statistical significance. The trend 
analyses of  RNDVI-GT show distinct disparities compared to those of  RNDVI-GP. Across all vegetation, the majority 
of  RNDVI-GT trends demonstrate a non-significant increase. In the forest,  RNDVI-GT exhibited a notable downward 
trend (P < 0.05 for most cases). More than two-thirds of cases demonstrate an increasing trend in the grassland, 
but the majority of them are not statistically significant. In the barren  land, the trends of  RNDVI-GT, like  RNDVI-GP, 
lack a consistent directional pattern.

Figure 3.  Scatter plots between  RNDVI-GP and precipitation from Interp (a), CRU (b) and ERA5 (c), and scatter 
plots between  RNDVI-GT and temperature from Interp (d), CRU (e) and ERA5 (f). Here,  RNDVI-GP is the partial 
correlation coefficient between Growing Season NDVI and precipitation, and  RNDVI-GT is the partial correlation 
coefficient between Growing Season NDVI and temperature (All variables are detrended). As the parts with 
NDVI < 0.1 are removed, the barren areas here represent sparse vegetation. The yellow dashed line is the 
quadratic fit for all the scatters.
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The spatial distribution of trends in  RNDVI-GP and  RNDVI-GT using a 13-year sliding window was depicted in 
Fig. 5, while additional analyses conducted with sliding windows of 9, 11, 15, and 17 years were presented in 
Figs. S7–10, respectively. The consistent spatial patterns across different sliding windows validate the reliability 
of the experimental findings. Significant declines in  RNDVI-GP were predominantly concentrated in the southern 
Shaanxi, northern Qinghai, and areas bordering the Tianshan Mountains, characterized by forests and grasslands. 
Conversely, regions with noteworthy increases in  RNDVI-GP were observed in some interlaced areas of bare land 
and grassland in the northern part of Xinjiang and the western part of Qinghai. Significant decreases in  RNDVI-GT 
have been observed in the majority of the eastern areas in the Northwest China. Conversely, the vast majority 
of areas in Qinghai exhibited a clear upward trend in  RNDVI-GT. Overall,  RNDVI-GP and  RNDVI-GT have exhibited 
a declining trend in approximately 81% and 71% of the total forest area in northwest China, respectively. In 
the grassland,  RNDVI-GP showed a balanced distribution between positive and negative trends in terms of area, 
whereas  RNDVI-GT displayed a predominant upward trend covering approximately 56% of the total grassland 
area. As for the barren land, the areas occupied by the positive and negative trends in  RNDVI-GP or  RNDVI-GT were 
roughly equivalent.

Figure 4.  Changes in  RNDVI-GP and  RNDVI-GT at a 13-year sliding window. Here  RNDVI-GP (or  RNDVI-GT) is the 
partial correlation coefficient between Growing Season NDVI and precipitation (or temperature), and is 
calculated using a 13-year sliding window during 1982–2015. All variables are detrended. The blue (or red) line 
represents the changes in  RNDVI-GP (or  RNDVI-GT), and the shaded portion represents the confidence interval. 
Three types of climate data (Interp, CRU and ERA5) are used, corresponding to three columns. The first to 
fourth lines correspond to the following areas respectively: all vegetation areas except cropland, forest, grassland, 
and barren land (As the parts with NDVI < 0.1 are removed, the barren areas here represent sparse vegetation). 
The symbol of *, ** and *** in the upper right of the value of r indicate the significant trend at P < 0.1, P < 0.05 
and P < 0.01 respectively.
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Discussion
This study utilizes various interannual sliding windows to compute the partial correlation coefficients between 
NDVI and temperature or precipitation, aiming to analyze the variations in the vegetation-climate relationship. 
While outcomes across different sliding windows are generally consistent, certain windows produce markedly 
different results. For instance, the association between grassland NDVI and temperature weakens under a 9-year 
sliding window, contrary to other windows (Fig. S3). Hence, this study considers results as robust conclusions 
only when a majority (defined as over two-thirds) of the sliding windows exhibit the same trend. Based on this 
criterion, no obvious temporal changes are observed in the relationship between vegetation and temperature 
or precipitation in barren land (Fig. 4 and Figs. S3–6). Prior research on the changes in the vegetation-climate 
correlation often relied on a single sliding window or a binary division of the study period for comparative 
 analysis12,56, leading to somewhat uncertain conclusions. In contrast, our research methodology effectively 
addresses such uncertainty.

It has been proposed that the reduced sensitivity of tree growth to temperature may be attributed to the 
potential impact of increased drought stress, which can modify the response of plant growth to temperature 
 changes53,57. Decreases in soil water content and increases in atmospheric aridity resulting from drought can 
impede vegetation growth by affecting plant  photosynthesis56,58. Therefore, this study investigated the roles of 
vapor pressure deficit (VPD) and soil water volume (SWV), as mechanisms that regulate the relationship between 
NDVI and temperature or precipitation. In Northwest China, particularly in forested regions, there was a general 
trend of increasing VPD and decreasing SWV from 1982 to 2015, except for Qinghai (Fig. S1c,d), indicating 
heightened drought severity in the region. The spatial distribution patterns of VPD and SWV trends closely 
resemble those of  RNDVI-GP and  RNDVI-GT trends (Fig. 5 and Fig. S1c,d). To further understand the functioning of 
these mechanisms, we present the trends of  RNDVI-GP and  RNDVI-GT plotted within the phase space of the trends in 
VPD and SWV using different sliding windows in Fig. 6 and Figs. S11–14. We observed that the VPD trend of 
0.02 hPa/yr serves as a dividing line for the trends in SWV in Northwest China. When the VPD trend is less than 
0.02 hPa/yr, the SWV trend exhibits variability, with regions showing a positive trend in SWV often exhibiting a 
negative trend in  RNDVI-GP, potentially indicating lower vegetation growth sensitivity to water availability under 
humid  conditions51,52. Conversely, regions with a negative trend in SWV tend to demonstrate frequent negative 
trends in  RNDVI-GT, supporting the hypothesis that increased drought may diminish the temperature sensitivity 
of  vegetation57. Furthermore, when the VPD trend exceeds 0.02 hPa/yr, the SWV trend tends to be negative. As 
the negative SWV trend intensifies, both  RNDVI-GP and  RNDVI-GT trends also become more negative, leading to the 

Figure 5.  Spatial distribution of trends in  RNDVI-GP and  RNDVI-GT at a 13-year sliding window. Here,  RNDVI-GP is 
the partial correlation coefficient between Growing Season NDVI and precipitation from Interp (a), CRU (c), 
and ERA5 (e);  RNDVI-GT is the partial correlation coefficient between Growing Season NDVI and temperature 
from Interp (b), CRU (d), and ERA5 (f). They are calculated using a 13-year sliding window during 1982–2015. 
The areas with an average annual NDVI of less than 0.1 were removed. All variables are detrended. The dots 
indicate the regions with significant trend in  RNDVI-GP (or  RNDVI-GT) (P < 0.05).
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occurrence of maximum negative trends of  RNDVI-GT and  RNDVI-GP simultaneously in the forest (Figs. 5 and S1d). 
The alignment of  RNDVI-GP and  RNDVI-GT trends with the gradient of SWV trends suggests that this mechanism 
may play a crucial role in altering the relationship between vegetation and precipitation (or temperature).

Conclusions
This study aimed to investigate the interannual variations in the relationship between various types of vegeta-
tion (forest, grassland and barren land) and climate factors (precipitation and temperature) in Northwest China, 
and assessed the impact of drought on this relationship by examining the roles of VPD and SWV. Three sets 
of meteorological data and NDVI data were utilized for this analysis. Results revealed a significant decline in 
 RNDVI-GP (the relationship between Growing Season NDVI and precipitation) across all vegetation in Northwest 
China, while  RNDVI-GT (the relationship between Growing Season NDVI and temperature) showed an insignifi-
cant increase. The trends of  RNDVI-GP and  RNDVI-GT varied significantly among different vegetation types. Specifi-
cally, in the forest, both  RNDVI-GP and  RNDVI-GT exhibited a notable downward trend (P < 0.05). In the grassland, 
the  RNDVI-GP displayed a decline trend with lower significance compared to the forest (P < 0.1), while  RNDVI-GT 
exhibited a non-significant increasing trend. Sparse vegetation in the barren land did not show any clear tem-
poral changes in  RNDVI-GP or  RNDVI-GT. The study found that fluctuations in  RNDVI-GP and  RNDVI-GT closely aligned 
with variations in drought conditions in Northwest China. In regions where VPD trends were below 0.02 hpa/
yr, primarily characterized by grasslands, an increase in SWV tended to lead to a decrease in  RNDVI-GP but an 
increase in  RNDVI-GT. However, when the VPD trend exceeded 0.02 hPa/yr, a more negative trend in SWV resulted 
in more negative trends in both  RNDVI-GP and  RNDVI-GT.

Data availability
GIMMS NDVI data are available in http:// data. tpdc. ac. cn/ zh- hans/ data/ 1cad1 a63- ca8d- 431a- b2b2- 45d99 16d86 
0d/?q= GIMMS. The land cover data with a spatial resolution of 0.05° was obtained from GLASS-GLC and it’s 
available at https:// doi. org/ 10. 1594/ PANGA EA. 913496. All the analyses are made using Python, and the code 
are available from the corresponding author on reasonable request.
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