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Considering radial basis 
function neural network 
for effective solution generation 
in metaheuristic algorithms
Erik Cuevas *, Cesar Rodolfo Ascencio‑Piña , Marco Pérez  & Bernardo Morales‑Castañeda 

In many engineering optimization problems, the number of function evaluations is severely limited 
by the time or cost constraints. These limitations present a significant challenge in the field of global 
optimization, because existing metaheuristic methods typically require a substantial number of 
function evaluations to find optimal solutions. This paper presents a new metaheuristic optimization 
algorithm that considers the information obtained by a radial basis function neural network (RBFNN) 
in terms of the objective function for guiding the search process. Initially, the algorithm uses the 
maximum design approach to strategically distribute a set of solutions across the entire search space. 
It then enters a cycle in which the RBFNN models the objective function values from the current 
solutions. The algorithm identifies and uses key neurons in the hidden layer that correspond to the 
highest objective function values to generate new solutions. The centroids and standard deviations 
of these neurons guide the sampling process, which continues until the desired number of solutions 
is reached. By focusing on the areas of the search space that yield high objective function values, the 
algorithm avoids exhaustive solution evaluations and significantly reduces the number of function 
evaluations. The effectiveness of the method is demonstrated through a comparison with popular 
metaheuristic algorithms across several test functions, where it consistently outperforms existing 
techniques, delivers higher-quality solutions, and improves convergence rates.

Keywords  Metaheuristic optimization, Radial basis function neural networks (RBFNN), Objective function 
analysis, Solution space exploration

Optimization1 is the mathematical discipline focused on finding the best solution to a problem from a set of 
available alternatives, guided by a specific set of criteria or objectives. It involves selecting the most effective 
option among various possibilities with the aim of achieving the maximum efficiency, minimum cost, or other 
desired outcomes. This process is integral to decision-making across a wide range of fields, including engineer-
ing, economics, finance, logistics, and more. At its core, optimization seeks to identify the optimal conditions or 
variables that satisfy given constraints, maximizing or minimizing a target function.

In the past, classical optimization methods2, such as gradient descent and linear programming, were sufficient 
to tackle the limited set of optimization challenges available, given the modest computational resources that were 
then available. These traditional techniques are applicable only when the problem is convex and derivable, which 
ensures that solutions can be found within the mathematical constraints upon which these methods are based3. 
However, with the significant advancements in computational power, the scope and complexity of problems that 
can be optimized have expanded. This development has led to the emergence of complex issues that fall outside 
the applicability of classical methods due to their inherent limitations and the specific requirements of these 
new challenges4. As a result, there is a need to develop more advanced and flexible optimization strategies that 
can navigate the complex landscapes of modern optimization problems.

A metaheuristic method5 is an advanced optimization strategy designed to solve complex problems that are 
beyond the reach of classical optimization techniques. Unlike classical methods, which often require specific 
conditions like convexity and differentiability to guarantee finding an optimal solution, metaheuristics do not rely 
on such strict mathematical properties6. These methods provide flexible, heuristic solutions to a wide range of 
optimization problems, often using iterative processes to explore and exploit the search space. Most metaheuristic 
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methods draw inspiration from metaphors7, often rooted in natural phenomena or biological processes, to guide 
their search strategies for optimization solutions. These algorithms mimic the underlying principles of nature, 
such as evolution, social behavior, and physical processes, to explore complex solution spaces8. Some metaheuris-
tic algorithms are inspired by Darwin’s theory of evolution, aligning with the concepts of natural selection and 
adaptation9,10. These algorithms, known as evolutionary algorithms (EAs), include prominent examples like the 
genetic algorithm (GA) developed by Holland11, bird mating optimizer (BMO) by Askarzadeh12, evolution-based 
strategies (ES) by Schwefel13, and improved multi-operator differential evolution (IMODE) introduced by Sallam 
et al.14. Additionally, there are algorithms based on swarm intelligence (SI), which emulate the collective intel-
ligence behaviors observed in certain insects and animals critical for their survival15. Well-known SI algorithms 
include the artificial bee colony (ABC) by Karaboga and Basturk16, ant colony optimization (ACO) by Dorigo 
and Di Caro17, particle swarm optimization (PSO) by Eberhart and Kennedy18, tuna swarm optimization (TSO) 
by Xie et al.19, and integrations of particle filter (PF) with PSO by Pozna et al.20. Beyond biological inspirations, 
some metaheuristics draw from physical phenomena, attempting to replicate natural laws like gravity, electro-
magnetism, and inertia21. Examples of these physics-based algorithms include the gravitational search algorithm 
(GSA) by Rashedi, Nezamabadi-pour, and Saryazdi22, water evaporation optimization (WEO) by Kaveh and 
Bakhshpoori23, and the Black Hole (BH) algorithm by Hatamlou24. This diversity of inspirations showcases the 
breadth of approaches in metaheuristic algorithm development, from biological evolution and social behaviors 
to the principles governing physical phenomena.

Most metaheuristic methods operate primarily using the information provided by the best solution found 
in each iteration to guide their strategy25. This characteristic is a defining aspect of these algorithms. Although 
these methods produce several solutions that could provide information about the shape and structure of the 
objective function, their use is completely discarded26. The lack of information from the objective function’s 
landscape can lead to increased search times, as these methods may need to generate and assess an exhaustive 
number of solutions to thoroughly explore the search space27. They navigate through the solution space iteratively, 
making decisions and adjustments based solely on the performance of the current best solution. This approach 
means that the algorithms generate potential solutions without any preliminary indication of their quality or 
effectiveness. The information of each produced solution only becomes apparent after it has been evaluated 
against the objective function28. While this strategy allows for flexibility and the ability to tackle a wide range 
of problems, it can also result in less efficient search processes, especially when dealing with complex or high-
dimensional optimization challenges. The need to extensively sample the search space with scarce information 
to identify promising regions often translates into higher computational costs and longer times to find optimal 
or near-optimal solutions. Given the limitations of traditional metaheuristic methods in efficiently exploring 
the search space, there’s a significant demand for algorithms that can intelligently guide the search process by 
utilizing information from the objective function obtained during the generation of solutions. Incorporating 
this information can substantially enhance the search efficiency, as it enables the algorithm to focus on more 
promising regions of the search space.

A radial basis function neural network (RBFNN)29 is an artificial neural network structured into three layers: 
an input layer, a hidden layer equipped with radial basis functions, and an output layer. The hidden layer’s activa-
tion functions are radial basis functions, which are unique mathematical functions determined by the distance 
between the input data points and certain center points. These center points, along with their corresponding 
weights, are optimized during the training process, enabling the RBFNN to accurately approximate complex 
functions and unravel intricate patterns within the data. A notable feature of RBFNNs is their transparency30,31; 
once trained, each neuron in the hidden layer corresponds to a specific region of the data space, indicating its 
sensitivity and contribution to the model’s output. This attribute allows for a clear understanding of how differ-
ent regions of the data space influence the output, effectively distinguishing between areas that are likely to yield 
higher output values from those that are not. Such insights can be invaluable for an optimization algorithm, 
guiding it to prioritize sampling from regions of the space that are more promising, thereby enhancing the effi-
ciency and effectiveness of the search process.

Maximum designs32 are experimental design techniques focused on ensuring comprehensive coverage across 
the full spectrum of possible experimental conditions or factors. The primary goal is to maximize the spread 
of experimental points throughout the design space, thus facilitating a thorough exploration of all potential 
interactions among the decision variables. These techniques utilize an iterative process where, in each iteration, 
the position of an experimental point is altered by randomly varying its decision variables33. This modifica-
tion is evaluated against a specific criterion that measures the distribution of points. If the new configuration 
improves this distribution, the change is accepted; otherwise, it’s rejected, and the experimental point reverts to 
its original position. This cycle repeats until the distribution of all points meets a predetermined threshold of 
desired dispersion. Consequently, this method ensures that the experimental points are optimally distributed 
across the design space, allowing for a comprehensive understanding of the process’s responses to all variations 
in the decision variables. While maximum designs have been widely applied in experimental design, their use 
as an initialization method in metaheuristic algorithms remains almost unexplored.

Expensive optimization34,35 is a field widely observed in engineering practice, characterized by the use of 
computationally intensive execution of computational models to calculate the quality of candidate solutions. 
Owing to significant time requirements, only a limited number of function evaluations can typically be utilized 
for expensive optimization. This limitation significantly restricts the application of many optimization algorithms, 
including popular evolutionary and metaheuristic algorithms, which generally require a large number of func-
tion evaluations to achieve satisfactory solutions36. Consequently, there is a need for more efficient optimiza-
tion methods that can deliver high-quality results with fewer evaluations, making them suitable for expensive 
optimization scenarios.
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This paper introduces a novel metaheuristic optimization algorithm that utilizes the capabilities of a radial 
basis function neural network (RBFNN) to guide the search process. The algorithm starts by employing the 
maximum design approach to initialize a set of solutions that are strategically positioned to cover the entire 
search space comprehensively. Subsequently, the algorithm enters a cyclical phase. In each cycle, the RBFNN 
is trained to model the objective function values based on the current set of solutions. The algorithm identifies 
the neurons in the hidden layer corresponding to the highest values of the objective function and utilizes the 
parameters of these crucial neurons, such as their centroids and standard deviations, to generate new solutions 
by sampling in the order of importance until the typical number of solutions is reached. As the algorithm focuses 
on the promising regions of the search space that generate a high value of the objective function, it avoids the 
exhaustive evaluation of solutions and enables a more informed exploration of the search space. The proposed 
method’s efficiency was assessed by comparing it with several popular metaheuristic algorithms on a set of 30 test 
functions. The results showed that the new approach outperformed the existing techniques, achieving superior-
quality solutions and better convergence rates.

The rest of this research paper is divided into several sections. Section “Radial basis functions neural network 
(RBFNN)” delves into the attributes and features of the Radial Basis Function Neural Network (RBFNN). Sec-
tion “Maximum designs” covers the Maximum Designs Method and its attributes in exploring the search space. 
Section “Proposed algorithm” outlines the suggested methodology. Section “Experimental results” presents the 
experimental outcomes. Section “The proposed RBFNN-A method in expensive optimization” conduct a com-
plexity time analysis from the proposed method. Lastly, Section “Conclusions” the conclusions are presented.

Radial basis functions neural network (RBFNN)
Structure and operation of a RBFNN
A Radial Basis Function Neural Network (RBFNN)29 is a specific type of artificial neural network that stands out 
due to its distinct architecture. It has three layers: an input layer, a hidden layer with radial basis functions, and 
an output layer (as illustrated in Fig. 1). The input layer represents the input variables of the network, with each 
node corresponding to a specific feature or dimension of the input data. The hidden layer of an RBFNN is where 
the network’s unique characteristics lie, comprising radial basis functions (RBFs) associated with individual 
neurons. Each neuron is defined by a center point and a radial basis function that quantifies its influence based 
on the distance from the center. The RBFs exhibit local receptive regions, meaning they are sensitive primarily 
to data points located near their respective centers. This characteristic enables the network to capture particular 
patterns or features in the input data. The output layer typically consists of a linear combination of the hidden 
layer outputs, transforming the information extracted by the RBFs into the network’s final output.

In Fig. 1, a schematic representation of a generic Radial Basis Function Neural Network (RBFNN) is depicted. 
As with any neural network, the objective is to model the mapping Y = f (X) by considering a set D of training 
data (X(n),Y(n)) , where n is one of the elements of D . The network comprises of p neurons in the input layer, 
m neurons in the hidden layer, and an output layer with r neurons. Thus, the output k, denoted as yk(n) , which 
is generated based on the input pattern X(n) =

{

x1(n), . . . , xp(n)
}

 , can be expressed and modeled as follows:

(1)yk(n) =
∑m

i=1
wikφi(n), where k = 1,2, . . . , r

Figure 1.   Architecture of a radial-based network.
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In Eq. (1), the term wik signifies the weight attached to the hidden neuron i with respect to the output neuron 
k , while φi(n) denotes the activation levels of the hidden neurons ( i = 1, . . . ,m ) that correspond to the input 
X(n) . The activation value of each hidden neuron i , denoted as φi(n) , is determined by the following equation:

In Eq. (2), φ(·)  is referred to as the radial basis function, while Ci =
(

ci1, . . . , cip
)

 represents the centers of 
the radial basis function. Additionally, σi =

(

σi1, . . . , σip
)

 denotes the deviation or width, and ‖∙‖ represents the 
Euclidean distance between the input data X(n) and the center Ci.

The activation value of a neuron in the hidden layer is determined by the proximity of the input data X(n) to 
the center Ci . In general, a radial basis function φ(·) attains a value close to its maximum when the input X(n) is 
in close proximity to the center Ci of the neuron; conversely, it assumes a minimum value when X(n) is far from 
the center. There are several functions that exhibit these characteristics. However, one of the most commonly 
used is the Gaussian function. Under these conditions, the activation value of a neuron i in the hidden layer can 
be calculated as follows:

A key attribute of the radial basis function neural network (RBFNN) is its inherently interpretable struc-
ture, especially evident in the hidden layer. During the training process, the RBFNN adjusts the center points 
and shapes of the radial basis functions, allowing it to adeptly approximate complex nonlinear relationships 
present in the data. This adjustability is crucial, as it enables the network to effectively model intricate patterns 
and dependencies between variables. The transparency of this process is a significant advantage; it allows for a 
clear understanding of how the network processes information. By observing the parameters in the radial basis 
functions and their influence on the network’s output, it becomes possible to determine the specific associations 
and dependencies between the input and output data. This level of interpretability is particularly valuable in 
applications where understanding the underlying decision-making process of the model is as important as the 
accuracy of its predictions.

Training of a RBFNN
The training process of a Radial Basis Function Neural Network (RBFNN) consists of two stages37 that facili-
tate the network’s ability to approximate complex functions with precision. Initially, an unsupervised phase is 
employed wherein the centers Ci and widths di of the radial basis functions (RBFs) in the hidden layer are initial-
ized using the k-means clustering method ( i = 1, . . . ,m).

The supervised learning phase is the next step in the network’s training process. During this phase, input data 
points are provided to the network, and the radial basis functions (RBFs) compute their output values. These 
outputs are then compared to the target values from the training dataset, and a common optimization technique, 
such as gradient descent, is employed to adjust the weights connecting the hidden layer ( i = 1, . . . ,m ) and output 
layer ( k = 1, . . . , r ) neurons so that the error between the computed and target outputs is minimized.

The process of training the network is repeated iteratively on the training dataset to ensure that it converges 
to a satisfactory approximation of the target function. Properly trained, the radial basis functions of the RBFNN 
are positioned and shaped to capture the essential patterns and relationships within the data, thereby enabling 
the network to generalize well to unseen data points. Once the RBFNN has been trained, it can be applied to 
perform a variety of tasks, including function approximation, pattern recognition, and regression, with a high 
degree of accuracy and transparency. The key advantage of the RBFNN is its ability to approximate complex 
nonlinear relationships between inputs and outputs, making it a powerful tool for data analysis and modeling.

Maximum designs
Maximum designs32,33 represent a class of experimental design techniques dedicated to achieving extensive 
coverage throughout the entire range of potential experimental conditions or factors. The central aim of these 
techniques is to distribute experimental points as widely as possible across the design space. This broad disper-
sion is crucial for enabling a comprehensive exploration of the experiment’s landscape, ensuring that all potential 
interactions between decision variables are thoroughly investigated. By maximizing the spread of these points, 
maximum designs ensure that no area of the design space is overlooked, allowing for a complete and detailed 
understanding of how different factors interact and influence the outcomes. This approach is particularly impor-
tant in experiments where capturing the full complexity of the system or process under study is essential for 
drawing accurate and reliable conclusions.

This section is divided into two parts. The first part explains the index used by the maximum designs method 
to measure data dispersion. The second part analyzes the maximum designs method in detail.

Evaluation of dispersion
To assess how well a set of N elements {x1, . . . , xN } is distributed within its space, the determinant of a covari-
ance function Co matrix serves as a critical index. A covariance function captures the variance between pairs 
of variables indicating their level of differentiation. The covariance matrix C is an N × N matrix, encapsulating 
the relationships between all N elements within the set. Each element coi,j within matrix Co is defined as follows:

(2)φi(n) = φ

(

� X(n)− Ci �

σi

)

(3)
φi(n) = exp

(

−
�X(n)−Ci�

2

2σ2i

)
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The relation between xi and xj is represented by the value coi,j . When xi and xj are close, the value of coi,j is 
nearly one, but it decreases to zero as they move further apart. Once the matrix Co is calculated, the value of 
the determinant |Co| represents the degree of dispersion of {x1, . . . , xN } . A high value of |Co| is high indicates a 
higher dispersion of the data.

The method of maximum designs
In Maximum designs, the central objective is to adjust the positions of a set of N points {x1, . . . , xN } within a d
-dimensional space 

(

xi =
{

xi,1, . . . , xi,d
}

, i ∈ 1, . . . ,N
)

 to maximize the coverage of the design space S , defined 
by the range of minimum ( minj ) and maximum ( maxj ) values of each decision variable j where j ∈ 1, .., d . Ini-
tially, this technique involves randomly positioning the set of N points within the search space S . Following this, 
an iterative process is employed. In each iteration t  , the position of one of the points xi is altered by randomly 
changing its decision variables producing the new position xni  . After implementing this change, a crucial evalu-
ation step follows. This evaluation determines whether the dispersion of the new configuration 

∣

∣Co(xni )
∣

∣ (that 
includes the modified point xni  ) is higher than the original dispersion |Co(xi)| . If the new configuration improves 
this distribution 

(∣

∣Co(xni )
∣

∣ > |Co(xi)|
)

 , the change xni  is accepted; otherwise, it’s rejected, and the point reverts to 
its original position xi . This cycle repeats until the distribution of all points meets a predetermined threshold of 
desired dispersion. This iterative cycle is continued until one of two criteria is met: either a predefined number 
of iterations iterini has been completed or the set of N points has achieved a specified level of dispersion |Co| in 
its last configuration.

Figure 2 provides a clear example of how the method of maximum designs operates in practice. Figure 2a, we 
observe an initial configuration of 50 points in two dimensions x1 and x2 considering a space defined within [0,1]. 
These points are deliberately clustered around the center of the space, a setup designed to highlight the impact 
of the method. In Fig. 2b, the outcome after 100 iterations is depicted. Here, the final arrangement of points is 
showcased, demonstrating how the method achieves comprehensive and efficient coverage of the space. This 
transformation from a centralized cluster to a well-distributed set of points across the entire space underscores 
the effectiveness of the maximum designs method in optimizing the spread of points for better exploration and 
analysis of the given area.

Proposed algorithm
This study introduces a novel metaheuristic optimization algorithm that incorporates the information derived 
from a radial basis function neural network (RBFNN) as a means of informing the search process. The aim 
of the proposed method is to identify the optimal solution for a nonlinear objective function f  , which can be 
described as follows:

where the function is referred as f : Rd → R ,  within a search space represented by S 
(

x ∈ R
d |mini ≤ xi ≤ maxi , i = 1, . . . , d

)

 , which is bounded by lower ( mini ) and upper ( maxi ) limits for each 
dimension. Our proposed approach consists of six essential components: (4.1) initialization, (4.2) training of the 
Radial Basis Function Neural Network (RBFNN) and (4.3) generation of solutions. Each of these elements plays 
a critical role in the effectiveness of our optimization strategy. In the subsequent subsections, we will provide a 

(4)coi,j = exp
(

−�xi − xj�
2
)

(5)
Maximizef (x) = (x1, x2, . . . , xd) ∈ R

d

Subject to x ∈ S
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Figure 2.   Example of how the method of maximum designs operates in practice. (a) Initial configuration of 50 
points in two dimensions x1 and x2 . (b) The outcome after 100 iterations.
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detailed explanation of each component, highlighting their significance and how they collectively contribute to 
the success of our approach. At the end of this section, in subsection “Computational procedure”, a summary of 
the computational procedure of the complete method is given.

Initialization
Our methodology incorporates the information obtained from the neural network’s training to develop the 
search strategy. For this reason, it is essential to have an initial comprehensive and representative sample set that 
encompasses the entire search space. This process is achieved through the utilization of the maximum design 
method (as outlined in Section “Maximum designs”). The initialization stage represents the initial operation of 
the algorithm, with the aim of establishing an initial population consisting of N elements ( P = {x1, . . . , xN } ). 
Each solution xi in the population represents a specific combination of decision variables 

{

x, ..., xi,d
}

 , which 
assumes an initial value for the optimization process. In our approach, the initial positions of each element 
xi are determined by the maximum design method. The method has been configured to consider 1000 itera-
tions ( iterini = 1000 ), which guarantees that all the positions of the candidate solutions thoroughly explore the 
search space S . It is important to note that the computational cost of initialization is performed only once in the 
optimization process.

Training the RBFNN
Given a set {x1, . . . , xN } of N points sourced from the input space S—either as initial configuration or as results 
from prior iterations—the next step involves evaluating these points against the objective function f  . This evalu-
ation yields N training pairs, each linking a position xi to its respective outcome f (xi) produced by the objective 
function. This collection of pairs forms the dataset on which the neural network is trained, aiming to closely 
approximate the objective function f  . Through this training, the network learns to correlate input positions 
with their corresponding function values. This capability allows the network to grasp the intricate patterns and 
relationships present in the data. Consequently, this understanding significantly improves the network’s predic-
tion accuracy, thereby enhancing its role in steering the optimization process towards more effective solutions.

In the training phase, the neural network is structured to include d neurons in the input layer, correlating to 
each decision variable. The hidden layer contains M units. This layer is important for understanding the complex 
relationships within the data. A singular output neuron is assigned for generating the network’s predictions of 
the objective function f  . The training follows the procedures detailed in Section “Radial basis functions neural 
network (RBFNN)”, employing a structured methodology to ready the network for its optimization role. This 
arrangement guarantees that the neural network is in harmony with the problem’s specific attributes, facilitating 
its capacity to accurately learn and predict the objective function. Such an alignment is essential, as it equips the 
network to significantly influence the optimization process, steering it toward favorable results.

The performance of a Radial Basis Function Neural Network (RBFNN) is significantly influenced by the 
number of neurons, M , in its hidden layer. Having a higher number of neurons enhances the network’s ability 
to precisely approximate complex functions, capturing intricate details. However, this advantage comes with the 
risk of overfitting to the training data, which can undermine the network’s ability to perform well on unseen data. 
On the other hand, a smaller number of neurons simplifies the model and reduces computational demands but 
may compromise the quality of function approximation due to insufficient complexity. Determining the optimal 
number of neurons in the hidden layer is a delicate balance that depends on the scope of the search space. Achiev-
ing this balance is essential for maximizing RBFNN performance, ensuring the network can accurately model 
the data patterns without unnecessary complexity. Our methodology for selecting the appropriated number of 
neurons in the hidden layer follows the model considered in Eq. (6), tailored to align with these considerations.

In our Radial Basis Function Neural Network (RBFNN) model, the selection of the number of hidden neurons 
M , is influenced by both the dimensions d of the data and the quantity of training data available N . The complex-
ity inherent in the data, which guides the determination of the optimal number of hidden neurons, is directly 
affected by these two factors. As the dimensionality of the data increases, a correspondingly larger number of 
hidden neurons may be required to effectively capture and replicate the patterns present. High dimensional data, 
in particular, demands a more substantial neuron count in the hidden layer to ensure the network can accu-
rately learn and represent the underlying relationships. Utilizing the approach defined in Eq. (6), we calibrate 
the number of neurons in the hidden layer to achieve a balance. This balance is crucial for providing a robust 
approximation of the objective function, ensuring generalization while avoiding the problem of overfitting. This 
methodology ensures that our RBFNN model can adapt to the complexity and scale of the data it is trained on, 
offering an optimal level of performance.

After finalizing the network architecture, the next step is to carry out the training process as outlined in Sec-
tion “Radial basis functions neural network (RBFNN)”. Conducted over 100 iterations, this phase arms the neural 
network with the ability to closely represent the objective function. With this information, the neural network 
can be used to explore the search space. Upon the completion of the training, the network finds the network 
parameters to establish significant associations between the input space data points and their related outputs. 
The result of this training introduces two crucial aspects into the network’s framework: A) an in-depth insight 
into certain areas within the input space that impact the output significantly, and B) a clear evaluation of how 
these areas contribute to the outcome. These integral components enable the network to uncover the complex 
dynamics between variables, offering a refined analysis of the data. This enhancement paves the way for devising 
precise and powerful optimization strategies, significantly boosting the network’s functionality.

(6)M =
10 · d

N
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The influence of regions of the input space on particular outputs is defined by the outputs of the radial basis 
functions φi , where each function is associated with a neuron i in the hidden layer. These functions act as spe-
cialized filters, with each one exhibiting distinct sensitivity to certain areas of the input space. When a radial 
basis function’s output nears one for a specific input, this indicates that the input lies within a region to which 
the function is highly responsive. On the other hand, a function output close to zero suggests that the input falls 
outside the function’s sensitive region. This capability of the network to discriminate and evaluate the relevance 
of various parts of the input space is crucial. It enables the network to deeply grasp the intricate dynamics 
present in the data. As a result, the network can enhance the precision of its predictions and the efficacy of its 
optimization approaches, leveraging this nuanced understanding to navigate the complexities of the input space 
more effectively.

The weights connecting the neurons in the hidden layer to the output neuron also play a pivotal role in 
highlighting the importance of specific regions within the input space for determining the final output. A high 
and positive weight, denoted by wi , indicates that the region of the input space associated with the radial basis 
function φi significantly influences the generation of high values or peaks in the network’s output. Conversely, 
a high but negative weight wi suggests that the region delineated by φi is instrumental in producing low values 
or valleys in the output. These weightings are crucial for the network’s ability to prioritize different areas within 
the input space, effectively mapping the complex interplay between inputs and outputs. By understanding these 
relationships, the network enhances its ability to deliver accurate predictions and make informed optimization 
decisions, leveraging the nuanced insights provided by the weight assignments to navigate the optimization 
landscape more effectively.

Figure 3 demonstrates how the neural network’s structure, post-training, captures essential details about 
the function it seeks to approximate. In the depicted scenario, the network aims to model a function f, utiliz-
ing a dataset composed of points ( x, J(x) ), where x encompasses two decision variables, x1 and x2 . The figure 
highlights the pivotal role of the centroids of the hidden layer’s neurons ( M = 3 ) in determining the locations 
of the function’s peaks and valleys after approximation. Notably, the most significant peak is at position C3 , 
coinciding with the highest weight w3 = 2 of a positive value, whereas the valley is at position C3 , linked to the 
sole negative weight w3 = −1 . The standard deviations, σ1 , σ2 , and σ3 , are crucial for understanding how the 
function f  is distributed around key positions C1 , C2 , and C3 within the network. Remarkably, these standard 
deviations are uniform across both dimensions, x1 and x2 , indicating a consistent spread. The larger values of σ1 
and σ2 ( σ1 = σ2 = 0.8 ) suggest a broader, more gentle distribution, whereas the smaller value of σ3 ( σ3 = 0.5 ) 
indicates a sharper peak around C3 . This variance in dispersion values underlines the network’s ability to dif-
ferentiate and detail the function’s local behaviors and characteristics, offering profound insights into the objec-
tive function’s nature. Such detailed understanding is crucial for refining optimization strategies and making 
informed decisions.

-3 -2 -1 0 1 2 3
x1

-3
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0

1
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x 2

Figure 3.   Post-training parameters of the neural network. It captures the essential elements about the function 
it seeks to approximate.
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Production of the new solutions
In our methodology, at each iteration k , we create N new solutions by extracting information from the preced-
ing N solutions used to train the neural network. To generate the N new solutions, we first identify the b most 
significant solutions from the current population. The knee point technique38,39 is employed to determine the 
number and identity of the most significant solutions. From these b solutions, the N new solutions are generated. 
To perform this process, one of the b solutions is randomly selected. Assuming that solution i has been chosen, 
the next step is to determine which hidden layer neural network this solution belongs to. The neural network 
responsible for this solution will be the one that yields a higher value, as it is more closely related to its centroid. 
Assuming that solution i  belongs to the region corresponding to neuron j , the new solution is generated by 
sampling a Gaussian function with the parameters of the radial basis function corresponding to neuron j . This 
process is repeated until N new solutions are generated. All these operations will be described in the following 
paragraphs.

Identification of the most significant solutions
The knee point38,39 is used in this work to identify the number b of significant solutions among a set N of solutions. 
In system engineering, the knee point refers to a critical position in a performance curve or trade-off analysis in 
which the value of the elements changes significantly. This point is used to identify the optimal balance between 
different factors, such as value versus significance, in the design and development of systems. Beyond the knee 
point, the values of the elements strongly diminished until they were categorized as insignificant compared with 
first elements. Identifying this point helps decision makers select the most effective and efficient option among 
various alternatives.

To identify the knee point among the N  solutions, we begin by organizing these solutions in descending 
order based on their performance against the objective function. In this arrangement, solution x1 is the one 
yielding the highest value f (x1) , indicating optimal performance, while solution xN is at the other end, offering 
the least desirable outcome f (xN ) . Following this organization, we construct two sequences. The first sequence, 
labeled s1 , incorporates the objective function values generated by each solution 

(

s1 =
{

f (x1), . . . , f (xN )
})

 . The 
second sequence, named s2 , consists of the indices corresponding to each solution’s position in the ordered list 
(s2 = {1, . . . ,N}) . The subsequent phase involves normalizing these sequences to ensure their values range from 
0 to 1. This normalization is achieved by dividing the sequences by their respective maximum values, resulting 
in s1 being scaled by f (x1) , the highest objective function value, and s2 being divided by N , the total number of 
solutions.

Taking into account the values of s1 and s2 , we can define the objective function J that connects the data from 
s2 in terms of the significance of s1 . The structure of J is modeled as follows:

This objective function J , consisting of values J1, . . . , JN , has a size of N , and one of its key features is that 
it possesses only one global minimum value. This minimum value signifies the knee point KP , which is deter-
mined as KP = min(J) . Figure 4 shows the estimation of KP . In the example, a set of eleven points ( N = 11 ) that 
associates the normalized variables s1 and s2 is assumed. In Fig. 4, the point KP divides the graph into two parts, 
the first 4 points represent the most significant solutions {x1, x2, x3, x4} ( b = 4 ), while the other 7 {x5, . . . , x11} 
present the insignificant solutions. In our approach the 4 solutions will be used as the significant ones to produce 
the 11 new solutions.

Generation of solutions
The generation of a new set of N solutions begins by identifying the b most significant solutions. These b solu-
tions {x1, . . . , xb} are then utilized as the basis for the subsequent set of N new solutions. The generation process 
begins with the random selection of one solution from the identified b significant solutions. If the solution i is 

(6)J = s1 + s2
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Figure 4.   Estimation of KP considering a set of eleven points ( N = 11).



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16806  | https://doi.org/10.1038/s41598-024-67778-0

www.nature.com/scientificreports/

selected. The next step is to determine the specific hidden layer neural network to which this solution is most 
closely associated. This is determined by identifying the neuron that produces the highest output value for solu-
tion i , indicating a closer proximity to its corresponding centroid. If it is determined that solution i falls within 
the domain influenced by neuron j , then the new solution is created considering the parameters associates to 
this neuron. Under these conditions, the new solution xnew is produced by sampling from a normal distribution 
considering the following model:

where Cj and σj ( σj =
(

σj1, . . . , σjd
)

 ) represent the centroid and standard deviation of the radial basis func-
tion associated with neuron j . The process of generating a new solution is repeated until N new solutions are 
generated.

Figure 5 presents a visual illustration of the sampling process, showing the specific regions within the input 
space that each neuron in the hidden layer is responsive to. These designated areas are targeted during the sam-
pling phase, utilizing the parameters that correspond to the radial basis functions associated with each neuron. 
This graphical representation effectively highlights how the neural network’s structure facilitates the identification 
and sampling of distinct areas, based on the neurons’ sensitivity to particular segments of the input space. By 
employing the parameters of the radial basis functions, the process ensures that samples are drawn from regions 
most relevant to the neurons’ activation patterns, offering insight into the network’s method of approximating 
and exploring the input space through its hidden layer dynamics.

Computational procedure
The computational methodology of our approach is encapsulated in Algorithm 1, presented as pseudocode. 
Initially, the algorithm involves setting up input parameters, including the population size N , the number of ini-
tialization iterations iterini , and the number of evolution iterations itermax . Following this setup, the population 
is initialized within the search space boundaries using the maximum designs method (line 2). The algorithm then 
enters a cycle (line 3) that repeats until the predefined number of iterations has been met ( itermax ). The cycle 
commences with training the radial basis function network with the current N elements (line 4). Subsequent to 
this training phase, the algorithm identifies the b most significant solutions out of the N , utilizing the knee-point 
method for selection (line 5). The generation of the next set of N solutions is based on these b significant solutions 
(line 6), necessitating the alignment of each significant solution with the neuron in the hidden layer to which it 
is most closely related. Leveraging this alignment, new solutions are crafted by sampling a normal distribution 
with parameters derived from the associated neuron. This iterative process culminates in the generation of N 
new solutions. Upon completion of the cycle, the algorithm deems the best-performing solution as the answer to 
the optimization challenge, effectively iterating through initialization, training, selection, and generation phases 
to arrive at an optimal solution.

(7)xnew = N(Cj , σj)

Figure 5.   Illustration of the particular areas within the input space that each neuron in the hidden layer 
responds to during the sampling process.
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Algorithm 1. Pseudocode of the proposed method.

Experimental results
This section details a suite of experiments designed to evaluate the efficacy of our approach, herein referred to 
as RBFNN-A (RBFNN approach). For a comprehensive evaluation of our algorithm’s performance, several ele-
ments were considered. First, a set of 29 functions traditionally used to evaluate the accuracy and efficiency of 
metaheuristic methods was included. These functions were chosen to maintain compatibility with other previ-
ous studies and are listed in Table A of the Appendix. Second, the CEC 2022 test function set, which includes 
12 functions with varying levels of complexity, was utilized. This set allows for the consideration of composite 
and hybrid functions, providing a robust test for the algorithm’s capabilities. These functions are detailed in 
Table B of the Appendix. Finally, a set of engineering problems was used in the comparisons to demonstrate 
the method’s effectiveness on practical problems commonly encountered in practice. A description of these 
engineering problems is provided in Table C of the Appendix. This multi-faceted approach ensures a thorough 
and relevant assessment of our algorithm.

To facilitate a comprehensive evaluation of our proposed approach’s effectiveness, we’ve incorporated a range 
of well-established metaheuristic algorithms into our analysis. These selected algorithms span from traditional 
to more contemporary optimization techniques, thereby covering a wide spectrum of methodologies. The com-
parative analysis includes several notable algorithms such as the Artificial Bee Colony (ABC)16, Crow Search 
Algorithm (CSA)40, Differential Evolution (DE)41, Estimation of Distribution Algorithm (EDA)42, Moth-Flame 
Optimization (MFO)43, Harmony Search (HS)44, Simulated Annealing (SA)45, and State of Matter Search (SMS)46. 
To ensure a fair and consistent comparison across all methods, we have adhered to the parameter settings rec-
ommended by the original creators of each algorithm, as cited in their respective publications. By aligning each 
algorithm’s configuration with the suggestions of its authors, we aim to present each method in its best light, 
ensuring that the performance metrics reflect the optimal capabilities as intended by their developers. This 
approach underscores the integrity of the comparison, offering a clear and unbiased assessment of how our 
proposed method stacks up against established benchmarks in the field.

This section is divided into four sections, each of which is carefully structured. The first section “Assessment of 
performance in relation to its parameters” deals with the evaluation of the performance of the proposed method 
in terms of its own parameters. The second section, section “Performance comparison considering the 29 func-
tions from table A”, begins with a comprehensive performance analysis that compares the proposed method 
to established metaheuristic algorithms considering the 29 functions of Table A. This comparison is intended 
to highlight the unique strengths and efficiency of the proposed approach. In subsection “Engineering design 
problems”, the performance of all metaheuristic methods is analyzed through the set of function of CEC 2022 
from Table B. Finally, in Section “Convergence analysis”, we analyze the performance of metaheuristic algorithms 
when they attempt to solve the engineering problems described in Table C of the Appendix.

Assessment of performance in relation to its parameters
The two parameters, the number of elements N  and the number of hidden neural neurons M , significantly 
influence the expected performance of the proposed optimization algorithm. In this sub-section, we analyze 
how the algorithm behaves under different settings of these parameters. To keep the analysis straightforward, we 
consider only a subset of functions such as f2, f5, f13, f20 and f25 , which include both unimodal and multimodal 
functions. The description of these function is shown in Table A of the Appendix. During simulations, all func-
tions are evaluated with a dimension n = 50 . Initially, the parameters N and M are set to their default values, with 
N = 50 and M = 10 . Our analysis then examines the impact of each parameter independently, keeping the other 
parameter fixed at its default value. To reduce the stochastic effects inherent to the algorithm, each benchmark 
function is executed independently 10 times. The termination criterion for the optimization process is set to a 
maximum of 1000 iterations ( itermax = 1000 ). This systematic approach ensures a thorough evaluation of how 
N and M affect the performance of the proposed algorithm.

In the first stage, the behavior of the proposed algorithm is analyzed by considering different values for N . In 
this analysis, the values of N vary from 10 to 100, while the value of M remains fixed at 10 . The results, recorded 
in Table 1, are presented in terms of the Average Best Fitness values (AB). The Average Best Fitness Value (AB) 
represents the lowest fitness value achieved by each method, reflecting the quality of the solutions generated. 
Notably, lower values indicate superior performance. From Table 1, it is evident that the proposed algorithm 
maintains better performance on all functions when N ≥ 50 . Conversely, when N < 50 , the performance of 
the algorithm is inconsistent, generally producing suboptimal results. This analysis highlights the importance 
of adequately setting the parameter N to ensure the algorithm’s robustness and effectiveness.
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In the second stage, the performance of the proposed algorithm is evaluated by considering different number 
of hidden neurons M . In this experiment, the values of M are varied from 2 to 20, while the value of N remains 
fixed at 50. The statistical results obtained by the proposed method using different values of M are presented 
in Table 2. From Table 2, it is clear that our optimization algorithm performs best when M ≥ 10 , consistently 
obtaining superior results across all functions. Conversely, when M < 10 , the performance of the algorithm 
declines significantly, resulting in suboptimal outcomes.

In general, the experimental results shown in Tables 1 and 2 suggest that a proper combination of the param-
eter values N  and M can significantly improve the performance of the proposed method and the quality of 
the solutions. From this experiment, we can conclude that the optimal parameter set consists of M ≥ 10M 
and N ≥ 50N . Consequently, to avoid unnecessary computational load while maintaining high performance, 
the values of M and N were set to their minimum effective values, M = 10 and N = 50 . This finding not only 
enhances the efficiency of the computational process but also validates the practical application of Eq. (6), which 
has been proposed in several studies in the literature for the training of radial basis neural networks. This valida-
tion demonstrates the robustness and reliability of the proposed algorithm within the tested parameter range.

Performance comparison considering the 29 functions from table A
For a broad evaluation, we utilized a diverse set of 29 benchmark functions, encompassing types such as uni-
modal, multimodal, and hybrid, with their mathematical representations provided in Table A of the Appendix. 
These functions were chosen to maintain compatibility with other previous studies. From Table A, f (x∗) repre-
sents the optimal function value obtained at the position x∗ , and S denotes the defined lower and upper bounds 
of the search space. This structured approach aims to offer a detailed insight into the RBFNN-A’s capabilities, 
highlighting its strengths and areas of robustness across a variety of challenging functions.

In our comparative analysis of various algorithms, we concentrate on analyzing the fitness values produced by 
each method, attempting to minimize these values throughout the optimization process. The optimization efforts 
are regulated by a predefined stopping criterion of a maximum of 1000 iterations ( maxiter = 1000 ). Addition-
ally, the analysis scrutinizes the algorithms’ performances at different dimensional scales, notably at 50 and 100 
dimensions, to evaluate the scalability of our proposed approach. For consistency, each metaheuristic algorithm 
is configured with a population size of 50 individuals, which dictates the number of candidate solutions explored 
in each iteration. Considering the inherent stochastic nature of these algorithms, we conduct 30 independent 
runs for each benchmark function to achieve a robust evaluation. These multiple iterations are crucial for under-
standing the impact of randomness and variability on the performance of the algorithms, thereby enriching the 
statistical analysis and insights. This meticulous methodology facilitates a detailed and nuanced comparison of 
the algorithms’ efficiency across various operational scenarios and constraints.

The outcomes of each algorithm are thoroughly detailed in Tables 2 and 3, which provide essential numerical 
data for evaluating the performance of each approach for 50 and 100 dimensions, respectively. These measure-
ments include the average best fitness values AB, the median fitness values MD, and the standard deviation SD of 
the fitness values. The averaged Best Fitness Value (AB) signifies the lowest fitness value achieved by each method, 
reflecting the quality of the solutions it generates. Notably, lower values here indicate superior performance. Fur-
thermore, the Median Fitness values (MD) is the median fitness value computed over all runs for each method, 
providing an overall perspective on the algorithm’s performance and consistency. This average is calculated 
from 30 separate runs to minimize the effect of randomness inherent in these algorithms. Lastly, the Standard 
Deviation (SD) quantifies the variability in the fitness values across the 30 executions for each method, with a 
lower standard deviation indicating more consistent and dependable performance. To aid in rapid identification 

Table 1.   Experimental outcomes achieved by the proposed algorithm with varying values of N.

f/N 10 20 30 40 50 60 70 80 90 100

f2 AB 2.25E+04 1.72E+03 2.21E+02 3.01E+01 2.68E+01 2.41E+01 2.30E+01 2.28E+01 2.28E+01 2.27E+01

f5 AB 2.73E+03 2.41E+02 3.36E+01 7.03E+00 4.68E+00 4.62E+00 4.61E+00 4.60E+00 4.60E+00 4.61E+00

f13 AB 6.21E+02 4.32E+02 2.01E+02 8.01E+01 3.97E+01 3.95E+01 3.93E+01 3.90E+01 3.91E+01 3.92E+01

f20 AB 5.22E+04 3.34E+03 1.32E+03 12.72E+02 9.81E+02 9.78E+02 9.76E+02 9.74E+02 9.75E+02 9.73E+02

f25 AB 6.62E+04 2.12E+04 5.71E+03 2.89E+02 1.63E+02 1.60E+02 1.58E+02 1.52E+02 1.55E+02 1.53E+02

Table 2.   Experimental outcomes achieved by the proposed algorithm with varying values of M.

f/M 2 4 6 8 10 12 14 16 18 20

f2 AB 4.23E+06 2.87E+02 2.42E+02 3.22E+01 2.67E+01 2.40E+01 2.38E+01 2.30E+01 2.27E+01 2.28E+01

f5 AB 3.21E+04 4.11E+02 2.22E+01 6.23E+00 4.66E+00 4.65E+00 4.63E+00 4.62E+00 4.61E+00 4.59E+00

f13 AB 3.45E+03 5.32E+02 3.38E+02 7.21E+01 3.97E+01 3.96E+01 3.95E+01 3.94E+01 3.92E+01 3.91E+01

f20 AB 7.03E+06 4.15E+03 3.23E+03 10.21E+02 9.80E+02 9.79E+02 9.75E+02 9.73E+02 9.74E+02 9.70E+02

f25 AB 8.71E+05 3.42E+03 2.78E+03 1.89E+02 1.65E+02 1.61E+02 1.59E+02 1.55E+02 1.53E+02 1.54E+02
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f ABC CAB CSA DE EDA HS MFO SA SMS RBFNN-A

AB 8.84E+00 2.00E+01 1.81E+01 7.62E+00 2.06E+01 1.53E+01 1.66E+01 2.06E+01 2.14E+01 3.19E+00

f1 MD 8.80E+00 2.00E+01 1.82E+01 6.98E+00 2.06E+01 1.55E+01 1.86E+01 2.06E+01 2.14E+01 3.20E+00

SD 9.70E −01 7.23E−15 2.87E−01 1.42E+00 1.14E−01 6.58E−01 5.05E+00 1.91E−01 4.46E−02 7.87E−02

AB 3.52E+05 2.72E+07 8.06E+05 4.11E+04 5.85E+06 2.59E+05 1.47E+05 9.18E+06 1.63E+07 2.66E+01

f2 MD 3.43E+05 2.74E+07 8.05E+05 2.80E+04 5.76E+06 2.55E+05 3.21E+02 8.66E+06 1.62E+07 2.68E+01

SD 1.15E+05 2.16E+06 9.68E+04 3.85E+04 6.44E+05 4.39E+04 3.72E+05 2.20E+06 1.02E+06 2.16E+00

AB 9.01E+00 3.79E+03 3.74E+02 1.85E+01 1.11E+03 1.66E+02 3.92E+01 1.49E+03 1.99E+03 1.88E+00

f3 MD 9.12E+00 3.88E+03 3.88E+02 1.59E+01 1.12E+03 1.65E+02 7.45E−02 1.46E+03 2.00E+03 1.91E+00

SD 1.37E+00 2.06E+02 3.45E+01 9.97E+00 6.73E+01 1.81E+01 5.13E+01 2.25E+02 7.42E+01 7.83E−02

AB 1.38E+00 3.38E+01 5.09E−01 1.23E−02 6.59E+00 1.47E−01 7.72E−02 8.63E+00 2.42E+01 6.85E−09

f4 MD 1.36E+00 3.44E+01 5.14E−01 6.45E−03 6.33E+00 1.50E−01 1.93E−14 8.70E+00 2.40E+01 7.03E−09

SD 4.45E−01 5.09E+00 1.37E−01 2.35E−02 1.33E+00 3.06E−02 2.94E−01 2.51E+00 2.23E+00 1.78E−09

AB 1.28E+02 1.27E+03 1.31E+02 6.51E+00 4.07E+02 5.06E+01 6.30E+01 5.43E+02 9.44E+02 4.67E+00

f5 MD 1.30E+02 1.29E+03 1.33E+02 6.12E+00 4.11E+02 5.21E+01 5.56E+01 5.34E+02 9.30E+02 4.68E+00

SD 2.42E+01 1.51E+02 1.46E+01 3.06E+00 4.60E+01 5.34E+00 2.42E+01 7.75E+01 6.78E+01 5.92E−02

AB 2.21E+08 6.83E+09 1.23E+08 2.01E+06 1.15E+09 5.00E+07 1.71E+07 1.80E+09 3.37E+09 4.40E+07

f6 MD 2.00E+08 6.85E+09 1.20E+08 1.71E+06 1.20E+09 5.00E+07 1.45E+02 1.83E+09 3.36E+09 4.41E+07

SD 7.70E+07 6.03E+08 1.67E+07 1.22E+06 1.53E+08 8.10E+06 6.49E+07 4.25E+08 2.39E+08 1.16E+06

AB 2.88E+08 1.17E+10 2.29E+08 6.38E+06 2.14E+09 8.25E+07 1.56E+02 3.38E+09 5.62E+09 2.71E+06

f7 MD 2.87E+08 1.16E+10 2.22E+08 4.73E+06 2.15E+09 8.29E+07 1.57E+02 3.33E+09 5.55E+09 2.74E+06

SD 1.08E+08 9.37E+08 4.62E+07 8.17E+06 2.65E+08 1.77E+07 7.81E+00 6.50E+08 3.64E+08 1.25E+05

AB 3.10E+01 2.30E+02 8.55E+01 3.43E+01 1.34E+02 5.10E+01 4.13E+01 1.46E+02 1.83E+02 4.43E+01

f8 MD 3.10E+01 2.30E+02 8.60E+01 3.40E+01 1.35E+02 5.10E+01 4.05E+01 1.47E+02 1.83E+02 4.50E+01

SD 6.43E−01 0.00E+00 2.43E+00 2.43E+00 4.74E+00 1.95E+00 8.04E+00 1.07E+01 3.13E+00 1.20E+00

AB 6.95E+03 2.28E+04 5.66E+03 2.97E+02 3.42E+04 2.98E+03 3.91E+03 6.97E+03 2.08E+05 2.78E+02

f9 MD 6.72E+03 2.26E+04 5.48E+03 2.33E+02 3.35E+04 2.98E+03 3.56E+03 5.19E+03 2.06E+05 2.76E+02

SD 1.81E+03 1.46E+03 1.01E+03 2.74E+02 6.99E+03 4.48E+02 2.88E+03 6.24E+03 2.23E+04 8.43E+00

AB 4.37E+10 2.28E+12 5.73E+10 2.20E+09 3.73E+11 2.20E+10 2.08E+09 5.84E+11 9.35E+11 2.11E+05

f10 MD 3.86E+10 2.30E+12 5.81E+10 2.20E+09 3.78E+11 2.17E+10 3.89E+00 5.71E+11 9.19E+11 2.23E+05

SD 1.66E+10 9.85E+10 1.02E+10 1.43E+09 3.23E+10 2.90E+09 1.14E+10 1.02E+11 6.79E+10 4.59E+04

AB 5.38E+01 1.79E+03 7.66E+01 2.00E+01 3.82E+02 4.21E+01 3.38E+01 6.16E+02 1.06E+03 1.90E+01

f11 MD 5.22E+01 1.69E+03 7.65E+01 1.97E+01 3.84E+02 4.26E+01 2.83E+01 6.16E+02 1.06E+03 1.90E+01

SD 1.01E+01 2.19E+02 8.98E+00 1.79E+00 5.62E+01 3.20E+00 1.80E+01 1.52E+02 6.92E+01 5.86E−01

AB 8.63E+04 2.18E+06 4.82E+04 1.17E+03 4.84E+05 1.63E+04 1.93E+04 7.35E+05 1.44E+06 1.58E+02

f12 MD 8.94E+04 2.16E+06 4.84E+04 1.03E+03 4.97E+05 1.61E+04 7.14E−03 7.48E+05 1.44E+06 1.59E+02

SD 2.84E+04 2.78E+05 1.01E+04 8.48E+02 5.53E+04 3.03E+03 4.53E+04 1.48E+05 1.27E+05 6.34E+00

AB 5.05E+02 1.40E+03 4.88E+02 3.95E+01 7.73E+02 2.49E+02 2.80E+02 7.04E+02 1.10E+03 4.88E+01

f13 MD 5.09E+02 1.45E+03 4.89E+02 3.74E+01 7.70E+02 2.52E+02 2.72E+02 7.21E+02 1.10E+03 4.95E+01

SD 2.31E+01 6.57E+01 1.96E+01 7.91E+00 2.88E+01 1.48E+01 6.52E+01 8.34E+01 3.62E+01 3.96E+00

AB 1.55E+05 4.39E+06 7.05E+05 2.12E+04 3.37E+06 1.24E+05 2.79E+05 1.13E+06 9.84E+06 3.45E+05

f14 MD 1.45E+05 4.41E+06 6.78E+05 1.83E+04 3.40E+06 1.30E+05 2.84E+05 1.12E+06 9.79E+06 3.45E+05

SD 5.23E+04 1.06E+05 1.29E+05 1.44E+04 4.51E+05 1.98E+04 1.85E+05 3.12E+05 6.23E+05 5.02E+03

AB 8.53E+01 8.92E+01 6.02E+01 4.35E+01 9.17E+01 5.67E+01 7.85E+01 9.55E+01 1.00E+02 3.03E+00

f15 MD 8.53E+01 8.92E+01 6.10E+01 4.33E+01 9.22E+01 5.71E+01 8.00E+01 9.60E+01 1.00E+02 3.02E+00

SD 3.40E+00 1.02E+00 2.65E+00 5.97E+00 2.11E+00 1.71E+00 5.79E+00 2.16E+00 0.00E+00 1.45E−01

AB 5.81E+54 9.49E+93 4.48E+53 1.15E+02 2.75E+73 3.68E+04 8.47E+02 2.52E+03 1.67E+86 5.47E+01

f16 MD 1.40E+51 4.16E+93 5.31E+52 1.07E+02 1.54E+71 7.63E+02 8.00E+02 2.53E+03 2.10E+85 5.51E+01

SD 2.87E+55 1.43E+94 8.60E+53 6.94E+01 1.13E+74 1.08E+05 3.25E+02 1.90E+02 3.55E+86 3.22E+00

AB 8.71E+02 3.97E+05 4.17E+04 3.03E+03 1.19E+05 1.86E+04 5.67E+03 1.59E+05 2.21E+05 1.08E+02

f17 MD 8.74E+02 3.96E+05 4.18E+04 2.62E+03 1.18E+05 1.85E+04 5.00E+03 1.58E+05 2.21E+05 1.10E+02

SD 1.66E+02 1.33E+04 3.07E+03 1.66E+03 7.85E+03 1.63E+03 6.79E+03 1.37E+04 1.01E+04 8.70E+00

AB −9.00E+02 9.43E+02 −1.11E+03 −1.81E+03 −6.78E+02 −1.67E+03 −1.70E+03 −3.48E+02 5.69E+02 −1.07E+01

f18 MD −8.91E+02 9.87E+02 −1.10E+03 −1.81E+03 −6.70E+02 −1.67E+03 −1.70E+03 −3.75E+02 5.43E+02 −1.04E+01

SD 7.15E+01 4.53E+02 3.85E+01 3.16E+01 8.17E+01 2.68E+01 5.23E+01 1.79E+02 1.58E+02 1.01E+00

AB 1.04E+07 1.11E+07 2.15E+07 1.58E+06 6.75E+07 1.33E+07 3.10E+06 1.04E+08 1.58E+08 5.18E+04

f19 MD 1.01E+07 5.72E+06 2.15E+07 1.59E+06 6.82E+07 1.34E+07 2.25E+06 1.04E+08 1.58E+08 5.23E+04

Continued
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of the most efficient algorithms, the entries in these tables that represent the best performance are highlighted 
in boldface, emphasizing the methods that yield the lowest fitness values.

The optimization outcomes for all 28 functions at 50 dimensions, detailed in Table 3, highlight the RBFNN-
A algorithm’s superior performance across a broad spectrum of cases, specifically for functions f1 , f2 , f3 , f4 , f5 , 
f9 , f10 , f11 , f12 , f15 , f16 , f17 , f19 , f20 , f21 , f22 , f23 , f25 , f26 , f27 , and f28 . This demonstrates a notable enhancement 
in the proposed algorithm’s efficiency over traditional metaheuristic approaches. Nevertheless, the algorithm 
did not achieve optimal results for functions f6 , f7 , f8 , f13 , f14 , f18 , f24 , and f29 . In direct comparison with the 
Crow Search Algorithm (CSA), the RBFNN-A notably outperforms on functions f1 , f2 , and f4 with significant 
differences in the average best solution (AB) values, such as 1.49E+01, 8.05E+05, and 5.08E−01, respectively. 
Moreover, against functions f3 , f5 , and f10 , RBFNN-A still shows superior efficacy, albeit with smaller mar-
gins when compared to CSA. Similarly, against the Differential Evolution (DE) algorithm, RBFNN-A exhibits 
enhanced performance on the aforementioned functions, with a marked difference in AB values; for instance, 
a 1.66E+01 difference for function f3 . By using the information of promising regions within the search space, 
which are effectively delineated by the hidden neurons in the proposed algorithm, a significant enhancement in 
search efficiency is achieved. This advanced feature enables the algorithm to discern and prioritize areas of the 
search space that are most likely to yield high-quality solutions, thereby streamlining the path towards discover-
ing optimal or near-optimal solutions. Such an approach stands in stark contrast to traditional metaheuristic 
strategies, which predominantly hinge on the information derived from the best-performing element within 
the population. Consequently, this nuanced method of leveraging insights from the broader search landscape, 
rather than focusing narrowly on the peak performers, facilitates a more informed and strategic exploration. 
This, in turn, fosters faster convergence rates by effectively bypassing less promising regions and concentrating 
computational efforts on areas with the highest potential for success.

The analysis of 28 functions at 100 dimensions, as detailed in Table 4, reveals that our algorithm, RBFNN-
A, surpasses most competing methods, exhibiting a consistent performance in solving optimization chal-
lenges. Despite not achieving top results in eight instances, its overall performance and the potential as a robust 
metaheuristic solution are clearly demonstrated, especially when considering the average best outcomes. These 
results further establish RBFNN-A’s efficacy as an instrumental approach for complex optimization issues in 

f ABC CAB CSA DE EDA HS MFO SA SMS RBFNN-A

SD 2.91E+06 1.25E+07 1.89E+06 5.43E+05 7.21E+06 1.42E+06 2.53E+06 1.99E+07 1.04E+07 7.07E+03

AB 7.16E+03 4.28E+06 4.28E+05 2.72E+04 1.26E+06 1.58E+05 1.27E+05 1.75E+06 2.54E+06 9.75E+02

f20 MD 7.34E+03 4.29E+06 4.33E+05 2.57E+04 1.25E+06 1.59E+05 7.09E+04 1.71E+06 2.50E+06 9.79E+02

SD 1.33E+03 1.45E+05 3.33E+04 1.17E+04 8.29E+04 1.64E+04 1.23E+05 2.32E+05 1.55E+05 1.07E+02

AB 4.01E+05 3.41E+08 2.74E+07 1.58E+06 9.06E+07 8.45E+06 8.40E+06 1.31E+08 2.05E+08 6.74E+04

f21 MD 3.63E+05 3.42E+08 2.79E+07 1.31E+06 9.04E+07 8.50E+06 6.15E+06 1.28E+08 2.05E+08 6.71E+04

SD 9.86E+04 5.53E+06 3.25E+06 1.02E+06 8.06E+06 9.32E+05 7.12E+06 2.04E+07 1.21E+07 6.94E+03

AB 2.21E+00 9.27E+02 1.05E+02 7.70E+00 3.17E+02 5.10E+01 1.84E+01 4.02E+02 5.83E+02 2.51E−01

f22 MD 2.17E+00 9.19E+02 1.05E+02 7.43E+00 3.18E+02 5.24E+01 1.31E+01 4.05E+02 5.79E+02 2.50E−01

SD 4.68E−01 6.09E+01 7.48E+00 3.16E+00 2.09E+01 5.10E+00 2.08E+01 4.92E+01 2.55E+01 2.23E−02

AB 1.66E+02 9.40E+04 9.15E+03 6.58E+02 2.88E+04 3.77E+03 3.27E+03 3.86E+04 5.78E+04 2.24E+01

f23 MD 1.66E+02 9.36E+04 9.15E+03 6.44E+02 2.91E+04 3.81E+03 2.75E+03 3.68E+04 5.78E+04 2.27E+01

SD 3.45E+01 4.45E+03 1.08E+03 2.65E+02 2.17E+03 4.45E+02 2.92E+03 5.72E+03 2.43E+03 2.44E+00

AB 2.42E−01 5.13E+00 8.05E−03 3.83E−04 9.87E−01 9.23E−05 6.74E−21 2.21E+00 3.29E+01 1.31E−07

f24 MD 2.06E−01 4.92E+00 7.88E−03 1.39E−05 9.51E−01 9.24E−05 5.18E−23 1.88E+00 3.20E+01 8.40E−08

SD 1.58E−01 1.34E+00 4.07E−03 1.68E−03 2.70E−01 3.84E−05 2.72E−20 1.15E+00 1.70E+00 1.52E−07

AB 4.52E+05 4.32E+46 6.70E+04 2.64E+03 5.04E+22 1.77E+04 6.42E+04 1.74E+05 2.22E+35 1.52E+02

f25 MD 3.29E+05 2.14E+43 5.69E+04 2.16E+03 1.31E+21 1.81E+04 6.02E+04 1.70E+05 9.40E+34 1.52E+02

SD 3.35E+05 2.36E+47 3.68E+04 1.54E+03 1.05E+23 1.74E+03 4.49E+04 2.48E+04 3.28E+35 1.36E+01

AB 6.74E+02 5.78E+03 1.45E+03 2.52E+02 3.65E+03 8.98E+02 4.86E+02 4.69E+03 7.01E+03 1.01E+02

f26 MD 6.74E+02 5.83E+03 1.45E+03 2.37E+02 3.71E+03 8.96E+02 4.53E+02 4.60E+03 6.99E+03 1.01E+02

SD 4.31E+01 1.72E+02 1.02E+02 6.24E+01 2.49E+02 6.17E+01 2.96E+02 5.27E+02 3.45E+02 3.96E+00

AB 3.17E+08 1.26E+10 2.31E+08 4.98E+06 2.03E+09 7.79E+07 1.37E+07 3.43E+09 5.75E+09 2.69E+02

f27 MD 3.04E+08 1.27E+10 2.43E+08 3.81E+06 2.06E+09 7.89E+07 2.32E+02 3.38E+09 5.57E+09 2.74E+02

SD 1.09E+08 8.04E+08 4.68E+07 4.30E+06 3.22E+08 2.33E+07 7.49E+07 7.55E+08 4.72E+08 4.11E+01

AB 4.08E+05 3.70E+46 8.83E+03 1.89E+02 2.33E+22 9.07E+02 1.81E+03 5.24E+03 6.47E+35 1.08E+02

f28 MD 4.24E+04 2.72E+43 2.57E+03 1.81E+02 1.11E+20 9.02E+02 1.68E+03 5.23E+03 1.22E+35 1.09E+02

SD 7.69E+05 2.02E+47 1.46E+04 6.52E+01 8.19E+22 4.84E+01 9.10E+02 7.77E+02 1.61E+36 4.38E+00

AB 6.74E+03 4.26E+06 4.24E+05 2.61E+04 1.26E+06 1.58E+05 8.59E+04 1.72E+06 2.50E+06 1.98E+06

f29 MD 6.99E+03 4.30E+06 4.35E+05 2.62E+04 1.23E+06 1.58E+05 6.44E+04 1.73E+06 2.53E+06 1.98E+06

SD 1.37E+03 1.91E+05 4.86E+04 1.11E+04 1.14E+05 1.51E+04 7.54E+04 2.00E+05 1.04E+05 8.59E+03

Table 3.   Results of all methods in 50 dimensions.
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f ABC CAB CSA DE EDA HS MFO SA SMS RBFNN-A

AB 2.07E+01 2.00E+01 1.88E+01 1.16E+01 2.08E+01 1.83E+01 1.93E+01 2.06E+01 2.13E+01 3.95E+00

f1 MD 2.07E+01 2.00E+01 1.87E+01 1.16E+01 2.08E+01 1.84E+01 1.92E+01 2.06E+01 2.13E+01 3.92E+00

SD 7.84E−02 7.23E−15 1.56E−01 1.02E+00 6.52E−02 1.65E−01 4.19E−01 2.17E−01 5.89E−02 1.13E+00

AB 2.58E+07 1.08E+08 5.03E+06 4.36E+05 2.68E+07 4.62E+06 1.68E+06 3.91E+07 5.75E+07 3.00E+02

f2 MD 2.56E+07 1.06E+08 5.07E+06 4.09E+05 2.71E+07 4.60E+06 1.38E+06 3.95E+07 5.70E+07 2.93E+02

SD 2.58E+06 1.04E+07 6.53E+05 1.70E+05 2.29E+06 3.88E+05 1.43E+06 6.70E+06 2.80E+06 7.26E+01

AB 2.19E+03 7.74E+03 9.56E+02 1.48E+02 2.40E+03 8.03E+02 1.69E+02 3.01E+03 3.67E+03 9.63E−01

f3 MD 2.22E+03 7.77E+03 9.59E+02 1.43E+02 2.42E+03 8.04E+02 1.82E+02 3.02E+03 3.66E+03 1.09E+00

SD 1.69E+02 2.67E+02 4.53E+01 5.08E+01 1.69E+02 4.04E+01 1.43E+02 2.50E+02 1.13E+02 3.69E−01

AB 1.78E+01 7.35E+01 2.02E+00 1.27E−01 1.79E+01 2.01E+00 6.32E−01 1.89E+01 4.20E+01 1.88E−07

f4 MD 1.78E+01 7.39E+01 2.02E+00 1.05E−01 1.83E+01 1.97E+00 1.12E−03 1.94E+01 4.11E+01 1.34E−07

SD 1.92E+00 9.72E+00 3.26E−01 7.46E−02 2.05E+00 2.76E−01 1.04E+00 4.59E+00 3.85E+00 1.66E−07

AB 8.60E+02 2.63E+03 3.53E+02 3.21E+01 9.62E+02 2.59E+02 1.59E+02 1.17E+03 1.75E+03 8.84E+00

f5 MD 8.63E+02 2.70E+03 3.53E+02 3.04E+01 9.64E+02 2.61E+02 1.46E+02 1.18E+03 1.73E+03 9.88E+00

SD 6.42E+01 2.82E+02 2.88E+01 8.61E+00 5.50E+01 1.84E+01 4.19E+01 1.33E+02 1.16E+02 3.00E+00

AB 2.89E+09 1.33E+10 4.52E+08 2.21E+07 2.83E+09 4.24E+08 7.27E+07 3.95E+09 5.92E+09 8.54E+07

f6 MD 2.90E+09 1.34E+10 4.60E+08 1.95E+07 2.87E+09 4.28E+08 3.41E+06 4.05E+09 5.80E+09 9.96E+07

SD 2.51E+08 1.17E+09 5.73E+07 9.43E+06 3.16E+08 3.86E+07 1.15E+08 4.11E+08 4.24E+08 2.60E+07

AB 5.09E+09 2.29E+10 8.15E+08 4.97E+07 5.02E+09 8.14E+08 1.56E+08 7.30E+09 1.01E+10 4.22E+06

f7 MD 5.11E+09 2.27E+10 8.16E+08 4.00E+07 4.93E+09 8.06E+08 8.19E+06 7.12E+09 1.01E+10 3.37E+06

SD 3.72E+08 1.66E+09 8.78E+07 3.34E+07 4.52E+08 9.84E+07 2.23E+08 1.11E+09 5.47E+08 3.22E+06

AB 1.80E+02 4.30E+02 1.58E+02 5.53E+01 2.54E+02 1.25E+02 6.25E+01 2.72E+02 3.25E+02 7.17E+01

f8 MD 1.81E+02 4.30E+02 1.60E+02 5.50E+01 2.54E+02 1.27E+02 6.40E+01 2.74E+02 3.26E+02 7.90E+01

SD 6.97E+00 7.30E−01 5.03E+00 4.22E+00 4.44E+00 3.49E+00 1.32E+01 1.56E+01 4.57E+00 1.94E+01

AB 7.86E+04 4.86E+04 1.96E+04 1.96E+03 9.54E+04 2.23E+04 9.07E+03 1.36E+04 3.48E+05 7.51E+02

f9 MD 8.33E+04 4.91E+04 1.96E+04 2.06E+03 9.89E+04 2.21E+04 9.37E+03 1.02E+04 3.46E+05 7.67E+02

SD 1.17E+04 2.86E+03 2.19E+03 8.64E+02 1.54E+04 2.04E+03 5.28E+03 1.56E+04 3.20E+04 1.17E+02

AB 8.73E+11 4.40E+12 1.92E+11 1.66E+10 8.80E+11 1.76E+11 2.38E+10 1.24E+12 1.67E+12 3.07E+05

f10 MD 8.66E+11 4.55E+12 1.97E+11 1.48E+10 9.08E+11 1.74E+11 1.13E+09 1.26E+12 1.67E+12 3.21E+05

SD 6.29E+10 3.19E+11 2.19E+10 5.79E+09 8.23E+10 1.25E+10 3.85E+10 1.70E+11 6.62E+10 3.13E+04

AB 1.87E+03 6.79E+03 3.92E+02 7.14E+01 1.87E+03 3.55E+02 2.14E+02 2.50E+03 3.86E+03 5.02E+01

f11 MD 1.87E+03 6.76E+03 3.92E+02 6.82E+01 1.85E+03 3.59E+02 1.92E+02 2.49E+03 3.87E+03 4.96E+01

SD 1.94E+02 8.96E+02 3.42E+01 1.27E+01 1.71E+02 3.04E+01 8.84E+01 3.69E+02 1.54E+02 3.10E+00

AB 1.17E+06 4.44E+06 1.88E+05 1.08E+04 1.17E+06 1.75E+05 4.36E+04 1.40E+06 2.51E+06 3.51E+02

f12 MD 1.18E+06 4.40E+06 1.88E+05 9.45E+03 1.18E+06 1.75E+05 1.28E+04 1.42E+06 2.50E+06 3.86E+02

SD 1.08E+05 5.50E+05 1.99E+04 6.26E+03 9.89E+04 1.87E+04 5.96E+04 3.01E+05 1.19E+05 9.73E+01

AB 1.59E+03 2.79E+03 1.12E+03 1.63E+02 1.63E+03 8.32E+02 6.69E+02 1.50E+03 2.08E+03 1.76E+02

f13 MD 1.59E+03 2.89E+03 1.12E+03 1.61E+02 1.63E+03 8.35E+02 6.70E+02 1.51E+03 2.08E+03 1.82E+02

SD 4.93E+01 1.27E+02 2.65E+01 2.67E+01 4.84E+01 2.55E+01 7.87E+01 1.52E+02 3.67E+01 4.30E+01

AB 7.36E+06 8.90E+06 2.23E+06 1.54E+05 8.10E+06 1.15E+06 1.04E+06 2.27E+06 1.85E+07 2.06E+05

f14 MD 7.48E+06 8.91E+06 2.29E+06 1.34E+05 8.23E+06 1.12E+06 8.27E+05 2.35E+06 1.84E+07 1.16E+05

SD 8.35E+05 8.73E+04 2.85E+05 6.69E+04 8.47E+05 1.12E+05 5.82E+05 6.12E+05 1.03E+06 2.43E+05

AB 9.55E+01 8.88E+01 7.16E+01 5.62E+01 9.56E+01 7.66E+01 9.18E+01 9.68E+01 1.00E+02 2.57E+00

f15 MD 9.57E+01 8.87E+01 7.20E+01 5.52E+01 9.57E+01 7.65E+01 9.15E+01 9.70E+01 1.00E+02 2.93E+00

SD 1.17E+00 1.06E+00 2.23E+00 5.60E+00 1.03E+00 9.97E−01 2.17E+00 1.09E+00 0.00E+00 7.70E−01

AB 2.88E+136 4.63E+185 9.14E+117 6.38E+02 2.67E+148 1.85E+66 1.80E+03 4.91E+03 1.31E+167 5.59E+08

f16 MD 1.34E+133 8.93E+184 6.22E+115 6.15E+02 8.93E+146 6.38E+62 1.65E+03 4.89E+03 1.75E+166 1.77E+02

SD 1.07E+137 6.55E+04 3.22E+118 1.41E+02 8.25E+148 7.76E+66 5.17E+02 3.60E+02 6.55E+04 1.97E+09

AB 2.40E+05 8.03E+05 1.06E+05 1.55E+04 2.69E+05 8.75E+04 2.09E+04 3.21E+05 4.06E+05 2.29E+02

f17 MD 2.38E+05 8.10E+05 1.08E+05 1.52E+04 2.71E+05 8.77E+04 2.05E+04 3.21E+05 4.05E+05 2.29E+02

SD 1.88E+04 2.46E+04 6.14E+03 4.78E+03 1.37E+04 5.05E+03 1.44E+04 2.30E+04 1.12E+04 1.97E+02

AB −1.13E+03 2.13E+03 −1.98E+03 −3.36E+03 −1.09E+03 −2.71E+03 −3.34E+03 −5.64E+02 7.38E+02 −2.17E+03

f18 MD −1.09E+03 2.20E+03 −1.97E+03 −3.35E+03 −1.04E+03 −2.71E+03 −3.37E+03 −5.35E+02 7.02E+02 −2.08E+03

SD 1.17E+02 1.04E+03 5.26E+01 1.03E+02 1.54E+02 3.82E+01 9.28E+01 3.35E+02 1.59E+02 9.47E+02

AB 2.06E+09 1.19E+09 9.40E+08 1.12E+08 2.45E+09 9.36E+08 1.79E+08 3.39E+09 4.54E+09 7.58E+01

f19 MD 2.07E+09 1.19E+09 9.52E+08 1.08E+08 2.46E+09 9.45E+08 1.46E+08 3.33E+09 4.51E+09 9.44E+01

Continued
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metaheuristic research. Specifically, RBFNN-A outperformed other algorithms in 21 out of 29 functions tested, 
notably excelling in functions f1 , f2 , f3 , f4 , f5 , f7 , f9 , f10 , f11 , f12 , f15 , f17 , f19 , f20 , f21 , f22 , f23 , f25 , f26 , f27 , and f28 . 
Its performance fell short in functions f6 , f8 , f13 , f14 , f16 , f18 , f24 , and f29 . In comparison with algorithms such as 
ABC, CAB, CSA, DE, EDA, HS, MFO, SA, and SMS, RBFNN-A demonstrated significant advantages, especially 
in the average best (AB) scores for the evaluated functions. For instance, in function f1 , RBFNN-A achieved an 
AB of 3.95, significantly better than the ABC algorithm, which scored 20.7, highlighting RBFNN-A’s superior 
performance. The innovative design of our proposed algorithm (RBFNN-A) plays a pivotal role in enhancing 
the optimization process by adeptly identifying the most promising regions within the search space, as deter-
mined by its hidden neurons. This capability is crucial for achieving an optimal balance between exploration 
and exploitation—two fundamental aspects of search strategies in optimization algorithms. Exploration involves 
venturing into new, uncharted areas of the search space to uncover potential solutions, while exploitation focuses 
on thoroughly investigating known, promising regions to refine existing solutions. By leveraging the predictive 
power of RBFNN-A to assess the potential of unexplored areas, our method intelligently decides when to embark 
on exploration to discover new possibilities and when to concentrate on exploitation to maximize the utility 
of already identified promising zones. This strategic balance ensures that computational resources are utilized 
efficiently, leading to a more effective and systematic approach to reaching optimal solutions.

Statistical analysis
Metaheuristic algorithms, characterized by their stochastic optimization processes, leverage randomness to 
navigate complex problem spaces in search of optimal solutions. Due to their inherent stochasticity, the per-
formance outcomes of these algorithms can fluctuate across various executions or datasets. To establish the 
statistical significance of the results yielded by different methods, the Wilcoxon signed-rank test47,48 is employed. 
This non-parametric statistical test is designed to assess whether the performance differences observed between 
two algorithms are statistically significant or merely the result of random variation. Unlike parametric tests, the 
Wilcoxon test does not assume a specific distribution for the data. Instead, it compares the relative rankings 
of paired observations—typically, the performance metrics of two algorithms tested against the same suite of 

f ABC CAB CSA DE EDA HS MFO SA SMS RBFNN-A

SD 1.81E+08 8.10E+07 7.15E+07 3.18E+07 1.52E+08 5.39E+07 8.20E+07 5.60E+08 3.00E+08 3.54E+02

AB 4.14E+06 1.67E+07 2.12E+06 2.76E+05 5.56E+06 1.62E+06 6.13E+05 7.00E+06 8.99E+06 6.53E+03

f20 MD 4.10E+06 1.68E+07 2.15E+06 2.74E+05 5.57E+06 1.63E+06 5.81E+05 6.91E+06 9.01E+06 7.58E+03

SD 3.95E+05 5.78E+05 1.41E+05 6.72E+04 2.95E+05 8.72E+04 3.43E+05 8.65E+05 2.90E+05 3.32E+03

AB 4.58E+08 2.68E+09 2.97E+08 3.45E+07 8.43E+08 1.99E+08 1.02E+08 1.08E+09 1.46E+09 7.34E+05

f21 MD 4.61E+08 2.69E+09 2.99E+08 3.15E+07 8.49E+08 2.00E+08 9.95E+07 1.07E+09 1.45E+09 6.86E+05

SD 4.09E+07 5.20E+07 2.76E+07 1.11E+07 5.85E+07 9.60E+06 5.38E+07 1.53E+08 6.97E+07 5.72E+05

AB 6.37E+02 1.89E+03 2.78E+02 4.30E+01 6.93E+02 2.29E+02 3.96E+01 8.34E+02 1.08E+03 1.03E+00

f22 MD 6.38E+02 1.90E+03 2.79E+02 4.32E+01 7.03E+02 2.30E+02 2.86E+01 8.37E+02 1.08E+03 1.03E+00

SD 5.18E+01 1.00E+02 1.59E+01 1.13E+01 3.90E+01 1.17E+01 2.88E+01 6.17E+01 2.82E+01 1.77E−01

AB 9.87E+04 3.67E+05 4.97E+04 6.73E+03 1.32E+05 3.68E+04 1.58E+04 1.57E+05 2.11E+05 1.80E+02

f23 MD 9.94E+04 3.69E+05 4.99E+04 6.84E+03 1.33E+05 3.72E+04 1.49E+04 1.54E+05 2.10E+05 1.85E+02

SD 6.61E+03 1.93E+04 2.48E+03 1.89E+03 6.60E+03 2.05E+03 6.19E+03 1.79E+04 8.18E+03 3.67E+01

AB 1.39E+00 5.29E+00 1.02E−02 1.65E−04 1.30E+00 9.74E−04 4.02E−07 2.55E+00 6.09E+01 5.56E−04

f24 MD 1.38E+00 5.22E+00 9.17E−03 3.79E−05 1.32E+00 9.71E−04 7.59E−10 2.70E+00 6.00E+01 1.67E−04

SD 2.99E−01 1.46E+00 5.99E−03 3.91E−04 3.58E−01 4.45E−04 1.41E−06 8.59E−01 2.47E+00 1.08E−03

AB 6.14E+35 7.49E+85 7.11E+18 1.67E+04 3.08E+48 8.66E+04 1.32E+05 3.28E+05 1.28E+67 4.32E+02

f25 MD 6.22E+32 2.62E+85 8.51E+15 1.70E+04 8.22E+45 8.75E+04 1.26E+05 3.36E+05 1.65E+66 5.53E+02

SD 2.61E+36 1.19E+86 3.38E+19 5.47E+03 8.83E+48 6.41E+03 6.07E+04 3.22E+04 2.37E+67 2.25E+02

AB 7.97E+03 1.15E+04 3.57E+03 8.98E+02 8.02E+03 3.25E+03 1.20E+03 9.30E+03 1.31E+04 2.51E+02

f26 MD 7.98E+03 1.15E+04 3.58E+03 8.79E+02 8.04E+03 3.26E+03 1.08E+03 9.23E+03 1.30E+04 2.76E+02

SD 3.73E+02 3.64E+02 1.71E+02 1.42E+02 4.58E+02 9.81E+01 3.65E+02 8.22E+02 6.35E+02 8.02E+01

AB 5.05E+09 2.68E+10 8.56E+08 4.96E+07 5.08E+09 8.12E+08 1.40E+08 7.11E+09 1.02E+10 2.34E+04

f27 MD 5.05E+09 2.69E+10 8.40E+08 4.95E+07 5.15E+09 8.06E+08 1.96E+06 7.30E+09 1.01E+10 1.45E+04

SD 3.27E+08 1.86E+09 1.10E+08 2.15E+07 5.57E+08 9.66E+07 2.47E+08 8.39E+08 5.37E+08 2.63E+04

AB 7.01E+36 4.23E+85 3.08E+17 8.40E+02 2.52E+48 3.32E+03 4.61E+03 1.09E+04 4.32E+68 2.47E+02

f28 MD 3.26E+32 4.55E+84 3.74E+16 8.06E+02 1.50E+46 3.34E+03 4.13E+03 1.07E+04 1.12E+67 2.83E+02

SD 2.34E+37 1.23E+86 7.85E+17 2.57E+02 6.07E+48 1.04E+02 2.07E+03 9.75E+02 1.37E+69 9.45E+01

AB 4,221,693.82 14,157,709.1 2,163,788.14 324,078.001 5,604,717.41 1,597,070.55 542,116.463 7,269,725.62 9,176,233.14 2,105,812.77

f29 MD 4,184,048.47 12,915,098.1 2,176,222.87 303,893.571 5,611,576.98 1,604,903.95 513,655.683 7,181,451.91 9,092,269 2,185,539.3

SD 371,495.514 2,082,531.12 151,172.042 92,292.3996 266,599.4 95,447.0432 231,551.264 737,656.571 428,782.825 389,281.087

Table 4.   Algorithm results with 100 dimensions.
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functions. By analyzing these ranks, the test calculates a p-value, reflecting the likelihood that the noted per-
formance discrepancies are due to chance. Should this p-value fall below a certain threshold, such as 0.05, the 
differences are considered statistically significant, indicating that one algorithm consistently outperforms or 
underperforms the other in a meaningful way.

In our study, the Wilcoxon signed-rank test is applied to the results listed in Table 5, which features the 
performance of various algorithms on functions evaluated at 100 dimensions. This table facilitates a statistical 
comparison between our proposed RBFNN-A method and other metaheuristic approaches, offering a robust 
statistical validation of the conducted experiments. For clarity, Table 5 employs specific symbols to denote the 
outcomes of the Wilcoxon test: the symbol ▲ signifies that RBFNN-A has outperformed a competing algorithm, 
▼ indicates instances where RBFNN-A was outperformed by another method, and ► denotes cases where no 
statistically significant difference was observed between RBFNN-A and another algorithm according to the 
Wilcoxon test. Analysis of Table 5 reveals that RBFNN-A demonstrates superior performance over competing 
algorithms across a wide array of functions, specifically f1 , f2 , f3 , f4 , f5 , f7 , f9 , f10 , f11 , f12 , f13 , f15 , f16 , f17 , f19 , 
f20 , f21 , f22 , f23 , f24 , f25 , f26 , f27 , and f28 . RBFNN-A showed no significant difference when compared with the 
MFO algorithm at f8 and faced challenges outperforming the ABC, CSA, EDA, HS, MFO, and SA algorithms at 
functions f18 and f29 , and the DE algorithm at f6 , f8 , f14 , f18 and f29 , highlighting the nuanced landscape of algo-
rithmic performance across different optimization challenges. Our approach has yielded substantial advantages 
in terms of scalability. By using the information encoded within the neural network, our algorithm is capable of 
effectively addressing larger and more complex problems. This is particularly beneficial in overcoming the curse 
of dimensionality, a prevalent challenge in high-dimensional optimization tasks. The neural network’s capacity to 
compactly represent and utilize intricate patterns and relationships within the data allows our method to navi-
gate these vast search spaces more efficiently. Our algorithm can identify relevant features and dynamics of the 
optimization problem by leveraging the neural network’s encoded knowledge, thus facilitating a more targeted 
and informed search process. As a result, our method is well-equipped to manage the complexities inherent 
in high-dimensional optimization problems, making it a reliable solution for a range of challenging scenarios.

Table 5.   Wilcoxon p-values obtained over 100-dimentional results.

RBFNN-A vs ABC CAB CSA DE EDA HS MFO SA SMS

f1 2.53E−11▲ 9.62E−13▲ 2.53E−11▲ 1.87E−03▲ 2.53E−11▲ 2.53E−11▲ 2.53E−11▲ 2.53E−11▲ 2.53E−11▲

f2 2.53E−11▲ 2.53E−11▲ 2.53E−11▲ 1.01E−06▲ 2.53E−11▲ 2.53E−11▲ 2.54E−09▲ 2.53E−11▲ 2.53E−11▲

f3 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 1.07E−07▲ 3.02E−11▲ 3.02E−11▲

f4 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f5 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f6 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▼ 3.02E−11▲ 3.02E−11▲ 1.95E−03▼ 3.02E−11▲ 3.02E−11▲

f7 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 6.63E−01▲ 3.02E−11▲ 3.02E−11▲

f8 2.64E−11▲ 1.48E−12▲ 2.63E−11▲ 2.03E−10▼ 2.63E−11▲ 2.52E−11▲ 5.72E−01► 2.66E−11▲ 2.63E−11▲

f9 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 6.77E−05▲ 3.02E−11▲

f10 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f11 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f12 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 6.77E−05▲ 3.02E−11▲ 3.02E−11▲

f13 3.02E−11▲ 2.11E−11▲ 3.02E−11▲ 1.29E−09▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f14 3.02E−11▲ 1.72E−12▲ 3.02E−11▲ 3.02E−11▼ 3.02E−11▲ 3.02E−11▲ 1.67E−01▲ 5.57E−10▲ 3.02E−11▲

f15 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 1.21E−12▲

f16 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f17 3.00E−11▲ 1.98E−11▲ 3.00E−11▲ 3.00E−11▲ 3.00E−11▲ 3.00E−11▲ 4.11E−08▲ 3.00E−11▲ 3.00E−11▲

f18 3.02E−11▼ 3.02E−11▲ 3.02E−11▼ 3.02E−11▼ 3.02E−11▼ 3.02E−11▼ 3.02E−11▼ 5.57E−10▼ 3.02E−11▲

f19 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f20 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f21 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f22 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f23 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f24 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 8.48E−09▲ 3.02E−11▲ 3.02E−11▲ 6.28E−06▲ 3.02E−11▲ 2.84E−11▲

f25 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f26 3.02E−11▲ 2.92E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f27 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f28 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲ 3.02E−11▲

f29 3.02E−11▼ 3.02E−11▲ 3.02E−11▼ 3.02E−11▼ 3.02E−11▼ 3.02E−11▼ 3.02E−11▼ 3.02E−11▼ 3.02E−11▲

▲ 27 29 27 24 27 27 25 27 29

► 0 0 0 0 0 0 1 0 0

▼ 2 0 2 5 2 2 3 2 0
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Convergence analysis
Convergence analysis49 is an examination that aims to evaluate how metaheuristic algorithms approach an opti-
mal solution to a given problem over time. The importance of convergence analysis lies in its ability to provide 
insights into the reliability, efficiency, and effectiveness of a metaheuristic algorithm. This analysis is crucial for 
algorithm selection and tuning in practical applications, as it helps to guarantee that the chosen metaheuristic 
will perform well on specific classes of problems, thereby saving computational resources and improving solu-
tion quality.

In our study to evaluate the convergence of metaheuristic algorithms, we conducted an experiment where 
all participating algorithms were tasked with optimizing the same set of 29 functions concurrently. The primary 
metric for assessing each algorithm’s performance was the point they took to reach their best solution. However, 
instead of measuring this point in conventional iterations, we quantified it based on the number of function 
accesses required to achieve the optimal solution. This approach was chosen over counting iterations because 
metaheuristic algorithms vary widely in their design, with some algorithms inherently making more function 
accesses per iteration than others. This variance could skew the results if iterations were the sole metric. By 
focusing on function accesses, we ensure a more equitable and objective comparison, accurately reflecting each 
algorithm’s efficiency in finding the best solution without bias towards their operational intricacies.

Table 6 presents a comparative analysis of the number of function accesses required by different algorithms 
to achieve convergence on a set of functions, specifically considering problems with 50 dimensions. Notably, the 
proposed algorithm stands out for its efficiency, achieving convergence with markedly fewer function accesses 
than its competitors. This efficiency is attributed to the algorithm’s strategy of progressively narrowing down 
the search area within the function landscape, focusing on regions identified as most promising for locating 
the global solution. Through this iterative process, the algorithm systematically reduces the search space until 
no further promising regions remain to be explored or exploited, at which point convergence is achieved. The 
effectiveness of this approach is starkly illustrated in the comparison with the next best performing algorithm, 
the SMS, which required 81,461 function evaluations to reach convergence. In contrast, the proposed algorithm 
attained convergence with just approximately 1400 function accesses, highlighting its exceptional capability to 
navigate through complex optimization problems efficiently. This significant reduction in the number of required 
function evaluations not only demonstrates the proposed algorithm’s superior convergence efficiency but also 

Table 6.   Convergence results for functions in 50 dimensions.

Function ABC CAB CSA DE EDA HS MFO SA SMS RaBaNN

f1 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 100,882 1420

f2 99,953 100,012 100,001 100,000 100,000 100,000 100,000 100,000 86,997 1432

f3 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 83,542 1411

f4 99,953 100,012 100,001 100,000 100,000 100,000 100,000 100,000 87,721 1408

f5 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 84,916 1489

f6 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 87,800 1427

f7 99,956 100,012 100,001 100,000 100,000 100,000 100,000 100,000 93,939 1461

f8 99,951 100,012 100,001 100,000 100,000 100,000 100,000 100,000 93,698 1700

f9 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 91,802 1421

f10 99,954 100,012 100,001 100,000 100,000 100,000 100,000 100,000 84,062 1408

f11 99,952 100,012 100,001 100,000 100,000 100,000 100,000 100,000 82,940 1401

f12 99,952 100,012 100,001 100,000 100,000 100,000 100,000 100,000 91,604 1400

f13 99,952 100,012 100,001 100,000 100,000 100,000 100,000 100,000 86,934 1429

f14 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 91,098 1439

f15 99,951 100,012 100,001 100,000 100,000 100,000 100,000 100,000 81,954 1442

f16 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 92,599 1424

f17 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 90,482 1455

f18 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 91,298 1488

f19 99,961 100,012 100,001 100,000 100,000 100,000 100,000 100,000 81,461 1420

f20 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 83,539 1413

f21 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 94,094 1451

f22 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 91,234 1439

f23 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 86,697 1485

f24 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 85,063 1474

f25 99,956 100,012 100,001 100,000 100,000 100,000 100,000 100,000 93,761 1479

f26 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 91,642 1407

f27 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 91,039 1430

f28 99,955 100,012 100,001 100,000 100,000 100,000 100,000 100,000 90,105 1477

f29 99,950 100,012 100,001 100,000 100,000 100,000 100,000 100,000 91,416 1489
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positions it as a highly valuable tool for tackling high-dimensional optimization challenges across various sci-
entific and engineering fields.

Performance comparison considering the 12 CEC 2022 functions from table B
The CEC 202250 Special Session on Single Objective Optimization involves a diverse set of benchmark functions 
designed to test the performance of optimization algorithms across a range of challenges. These functions are 
specifically chosen to represent various difficulties encountered in real-world optimization problems. The func-
tions can be summarized as it is shown in Table B. The CEC 2022 functions include shifting and rotating basic 
functions, as well as combining several of them into a single function. These modifications create functions that 
are significantly more challenging to optimize than traditional functions. By incorporating shifts and rotations, 
the search space becomes more complex and less predictable, making it harder for optimization algorithms to 
find the global optimum. Additionally, the combination of multiple basic functions into composite and hybrid 
functions introduces further intricacies, as the algorithm must navigate varied landscapes within a single prob-
lem. This increased difficulty helps to more rigorously test the robustness, adaptability, and overall performance 
of optimization methods, ensuring they are capable of handling real-world optimization challenges.

In the optimization of the CEC 2022 functions, the standard test with the execution of the functions in 20 
dimensions was considered. To mitigate the random effects inherent to the stochastic nature of the methods, 
each function was executed 30 times for each metaheuristic algorithm. The results, presented in Table 7, show 
the numerical values obtained as the average of the best values (AB) across the 30 runs, along with the dispersion 
in terms of standard deviation (SD). This comprehensive testing approach ensures that the performance of each 
algorithm is reliably assessed, providing a clear comparison of their effectiveness and consistency in optimizing 
the challenging CEC 2022 functions.

According to the values in Table 7, it is clear that the proposed RBFNN-A method produces the best solutions 
in terms of accuracy (AB). The DE and ABC methods also perform well, whereas the other methods show poor 
performance. A more detailed analysis of the table reveals that, generally, the methods perform better on func-
tions F1 to F5 , which are basic unimodal and multimodal functions. In contrast, functions F6 to F12 pose greater 
challenges, as they represent combinations of several functions that generate higher complexity. It is in these 
more complex functions that the proposed algorithm’s performance stands out the most, significantly differing 
from the other methods and highlighting its superior capability in handling difficult optimization problems.

From Table 7, it is evident that the proposed method RBFNN-A is more robust in terms of standard deviation 
(SD), as it produces a smaller dispersion of solutions across the set of runs. To illustrate the distribution of the 
solutions more clearly, Fig. 6 shows the distributions for each metaheuristic algorithm on three selected functions: 
(a) F2 , (b) F8 and (c) F12 . These functions were chosen to represent different types of functions in the CEC 2022 

Table 7.   Numerical results for functions in 20 dimensions from the CEC 2022.

ABC CAB CSA DE EDA HS MFO SA SMS RBFNN-A

F1 AB 300.9 341.2 17,500.4 300 331.7 1321.2 3072.8 300.8 300.5 300

SD 2.12E−10 2.21E−14 1.53E+04 2.45E−10 7.12E−14 1.18E+03 9.11E+02 4.71E−14 3.16E−01 0

F2 AB 418.45 421.21 468.36 411.55 409.21 415.50 413.16 412.27 422.81 401.17

SD 20.8 17.4 80.2 22.7 10.12 15.2 11.32 18.1 17.6 4.12

F3 AB 616.31 610.87 634.81 616.72 632.21 652.32 630.74 672.54 647.11 600.30

SD 7.21E+00 4.32E−01 2.27E+01 7.59E+00 3.51E−04 9.28E−01 8.25E−08 2.03E−01 4.63E+00 4.90E−01

F4 AB 874.11 892.48 853.38 829.92 878.09 911.51 889.56 891.38 899.96 806.57

SD 8.7 7.21 31.83 9.58 10.21 11.45 11.92 8.19 10.19 7.30

F5 AB 926.31 970.56 1997.1 921.46 945.20 992.25 975.41 980.46 947.94 900

SD 6.01E+01 1.85E−01 1.58E+03 6.01E+01 4.16E−01 3.14E+01 2.37E−11 3.80E+00 5.84E+01 5.11

F6 AB 1889.7 4388.8 2521.9 1827.1 3865.6 3514.7 1932.5 2324.8 3465.2 1800.1

SD 1.72E+01 2.55E+03 1.22E+07 1.78E+01 1.62E+03 2.35E+03 5.92E+01 1.16E+03 2.12E+03 6.3

F7 AB 2043.6 2243.5 2100.9 2021.3 2522.1 2227.8 2405.7 2324.4 2128 2008

SD 13.8 19.80 60.8 17.9 20.4 11.5 11.90 16.30 9.10 8.21

F8 AB 2356.8 2524.4 2448.6 2248.6 2541.6 2322.6 2298.8 2318.1 2328.7 2205.8

SD 40.1 25.6 42.7 24.8 26.3 15.30 23.8 26.7 19.24 13.20

F9 AB 3002.8 2724.6 2634.4 2629.1 2733.0 2787.5 2528.2 2734.8 2638.8 2529.8

SD 50.32 54.30 59.7 43.32 36.7 30.9 10.2 56.5 44.73 10.7

F10 AB 2674.21 2759.3 2849.6 2595.3 2667.8 2756.2 2700.6 2611.4 2660.8 2500.2

SD 61.5 56.3 90.5 69.7 59.0 52.7 143.8 20.56 59.3 54.8

F11 AB 2731.5 2876.4 2990.4 2731.0 2840.4 2894.9 3321.1 2998.3 2947.3 2608.4

SD 116.4 147.5 329.2 126.1 110.4 171.7 208.38 159.56 179.4 60.42

F12 AB 2971.8 3073.3 3178.5 2891.7 2963.5 3065.4 3104.7 2964.2 3098.6 2860.6

SD 110.9 150.8 88.5 92.9 62.04 74.72 131.0 65.5 61.15 35.19
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set. Specifically, F2 is a basic multimodal function, F8 is a hybrid function, and F12 is a composite function. The 
figure demonstrates that the proposed method has the smallest distribution for each of these functions, indicat-
ing consistent performance, whereas the other methods exhibit varying degrees of dispersion. This highlights 
the robustness and reliability of the proposed method in producing stable and accurate solutions across different 
types of optimization problems.

To assess the performance of the methodologies examined in our study, we utilized the Friedman ranking 
test51. The Friedman ranking test is a non-parametric statistical test that is suitable for evaluating and ranking 
multiple techniques across different datasets or scenarios, particularly when the underlying data does not meet 
the normality assumption. This test offers a dependable alternative to parametric tests, such as ANOVA. In the 
Friedman test, each method is ranked based on its performance within each dataset, with the best-performing 
method receiving a rank of 1, the second-best a rank of 2, and so on. If two methods perform equally, they are 
assigned the average of the ranks they would occupy. Table 8 presents the findings of the Friedman analysis, 
which considers the AB numerical values from Table 7. Based on these results, the RBFNN-A method emerges 
as the top performer, trailed by DE and the ABC, while the other methods receive lower rankings, indicating 
suboptimal performance.

Engineering design problems
Validating the performance of a new metaheuristic method in engineering design problems is crucial for several 
reasons. First, engineering design problems often involve complex and nonlinear optimization tasks that require 
robust and efficient solution strategies. By testing a new metaheuristic method in these scenarios, researchers can 
assess its effectiveness, reliability, and performance under realistic conditions. Second, validation helps ensure 
that the new method can handle the specific constraints and requirements inherent in engineering problems. This 
process also highlights the method’s advantages over existing approaches, potentially leading to more innovative 
and optimized design solutions.

This subsection focuses on applying the proposed method to a range of interesting engineering design prob-
lems, including the Three-bar truss, Pressure vessel, and Welded-beam. The objective is to test the effectiveness 
of the proposed metaheuristic method compared to other techniques in these practical scenarios. By evaluating 
the performance of the methods on these diverse engineering challenges, we aim to demonstrate the robustness 

Figure 6.   Distributions for each metaheuristic algorithm on three selected functions: (a) F2 , (b) F8 and (c) F12.
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and applicability of the proposed approach in real-world situations. For detailed mathematical descriptions of 
each problem, readers are referred to Table B in the appendix.

In the analysis of engineering design problems, the same metaheuristic algorithms from the previous analysis 
(ABC, CAB, CSA, DE, EDA, HS, MFO, SA, SMS, and RBFNN-A) were employed. Each experiment was con-
ducted with a population of 50 individuals and a stopping criterion of 1000 iterations for every algorithm. Given 
the stochastic nature of metaheuristic algorithms, each engineering problem was independently executed 30 
times to ensure reliable results. The numerical outcomes for each engineering challenge are detailed, considering 
their specific decision variables, constraints, and fitness values. Additionally, the statistical evaluation includes 
the averaged best fitness values (AB) and the standard deviation (SD) to provide a comprehensive understanding 
of each algorithm’s performance. This thorough analysis ensures that the results are robust and that the effective-
ness of each algorithm in solving engineering design problems is accurately assessed.

Optimization problems in engineering often have constraints on their decision variables, explicitly defined by 
constraint functions. To handle these constraints, the constraint separation technique has been employed in the 
following experiments. This technique involves treating constraints independently from the objective function 
during the optimization process. With this methodology, each candidate solution generated by the metaheuristic 
algorithm is checked for feasibility by evaluating it against all constraints. Only those solutions that satisfy all the 
constraints are considered feasible and are passed on to the next phase of the optimization process. Conversely, 
infeasible solutions are discarded and replaced by new ones. This approach ensures that the optimization focuses 
solely on viable solutions, enhancing efficiency and effectiveness in finding the optimal solution.

A)	 Three-bar truss design problem

The Three-bar truss design problem52 involves a 2-dimensional search space, with the objective of minimizing 
the structure of a loaded three-bar truss. This truss structure is graphically depicted in Fig. 7. The optimization 
process is subject to three constraints, detailed in Table C in the appendix. The results of the optimization problem 
for the Three-Bar Truss are summarized in Table 9. These results demonstrate that the proposed method suc-
cessfully finds the optimal solution for this engineering problem. The method’s capability to effectively handle 
the constraints and complexities of this problem highlights its practical application and efficiency in solving 
tangible engineering challenges.

Table 8.   Friedman Test ranking results of the AB values form Table 5.

Algorithm Ranking Mean value

RBFNN-A 1 5.8293

DE 2 4.7012

ABC 3 4.5021

MFO 4 4.0022

EDA 5 3.8032

SA 6 3.7138

SMS 7 3.5012

CAB 8 3.2019

CSA 9 2.9721

HS 10 2.7541

Figure 7.   Three-bar truss design problem.
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B)	 Pressure vessel design problem

The Pressure Vessel Design problem53 is depicted in Fig. 8 and aims to minimize the total cost of material, 
forming, and welding, taking into account various design parameters such as the thickness of the shell ( Ts = x1 ), 
thickness of the head ( Th = x2 ), inner radius ( R = x3 ), and length of the shell ( L = x4 ). A detailed mathemati-
cal description of this problem can be found in Table C of the appendix. Table 10 summarizes the results of 
applying the proposed method to this design problem, which show that the RBNFF-A method, along with the 
DE and MFO methods, obtain the best solution to the problem, while the other methods had varying levels of 
performance.

C)	 Welded-beam design problem

Table 9.   Results produced by the Three-bar truss design problem.

Algorithms AB SD

ABC 1.7691e+02 4.9056e−09

CAB 1.7723e+02 2.4984e−13

CSA 1.7331e+02 7.1200e−02

DE 1.7598e+02 1.5000e−03

EDA 1.7891e+02 3.9600e−02

HS 1.7782e+02 1.0000e−04

MFO 1.7599e+02 6.5500e+04

SA 1.7793e+02 7.3500e−02

SMS 1.9531e+02 6.5500e−02

RBNFF-A 1.7593e+02 7.2201e−02

s

Figure 8.   Pressure vessel engineering design problem.

Table 10.   Results produced by the Pressure vessel design problem.

Algorithms AB SD

ABC 5.8925e+03 1.0230e+01

CAB 5.8972e+03 7.7689e+01

CSA 5.8912e+03 2.2354e+01

DE 5.8854e+03 1.7046e+02

EDA 5.8890e+03 1.3423e+02

HS 5.9990e+03 3.0013e+02

MFO 5.8856e+03 3.5213e+02

SA 8.8722e+03 4.0120e+02

SMS 5.9692e+03 1.6784e+02

RBNFF-A 5.8853e+03 0.2201e+01
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The Welded-Beam Design problem 54 focuses on minimizing manufacturing costs by optimizing four key 
design variables (see Fig. 9): width ( h = x1 ), length ( l = x2 ), depth ( t = x3 ), and thickness ( b = x4 ). Governed by 
seven constraints, this problem presents a complex scenario typical of real-world engineering challenges. Detailed 
specifications for the Welded-Beam design are elaborately listed in Table C of the Appendix. The effectiveness of 
various algorithms in solving this problem, including the proposed method, is documented in Table 11. Analysis 
of the data in this table reveals that the proposed method outperforms other well-known metaheuristic meth-
ods, achieving the best solution for this specific design problem. This result highlights not only the proposed 
methodology’s effectiveness but also confirms its practical applicability and superiority in tackling real-world 
engineering problems, particularly in cost-efficient design optimization.

Time complexity
In many engineering optimization problems, the cost of function evaluations is a major constraint that limits the 
number of evaluations available. This limitation poses a significant challenge to the field of global optimization, as 
conventional metaheuristic techniques typically require a substantial number of function evaluations to identify 
optimal solutions. Consequently, the high computational demand of these methods often exceeds what is feasible 
within the given resource constraints, necessitating the development of more efficient algorithms that can deliver 
high-quality results with fewer function evaluations. This underscores the need for innovative approaches that 
balance accuracy and efficiency in resource-constrained optimization scenarios.

In the proposed approach, the proposed RBFNN algorithm is trained to model the objective function values 
based on the current set of solutions. The algorithm identifies the neurons in the hidden layer that correspond 
to the highest objective function values. It then utilizes the parameters of these crucial neurons, such as their 
centroids and standard deviations, to generate new solutions by sampling in order of importance until the typical 
number of solutions is reached. By focusing on the promising regions of the search space that yield high objective 
function values, the algorithm avoids the need for exhaustive evaluation of all possible solutions. This strategy 
enables a more informed and efficient exploration of the search space. Consequently, the proposed method can 
find the global solution with a significantly reduced number of objective function evaluations.

To extend the analysis of the performance of all methods, a convergence test evaluating the number of func-
tion evaluations employed by the compared algorithms has been conducted. The purpose of this experiment is 
to assess the speed at which each method reaches the optimum in terms of function evaluations. The experi-
ment considers the performance of each algorithm across all functions ( f1 − f29 ) from Table A of the Appendix, 
each operated in 50 dimensions ( n ) with 50 individuals ( N ). Each algorithm is run on each function, recording 
the number of evaluations required to obtain the minimum function value within 1000 iterations. To mitigate 

Figure 9.   Welded-beam engineering design problem.

Table 11.   Results produced by the Welded-beam design problem.

Algorithms AB SD

ABC 1.7345e+00 1.0210

CAB 1.7530e+00 1.3452

CSA 1.7511e+00 1.0014

DE 2.8205e+00 1.2101

EDA 1.7481e+00 1.0781

HS 17023e+00 0.8947

MFO 1.7119e+00 0.8501

SA 1.9903e+00 1.0478

SMS 1.8954e+00 1.0078

RBNFF-A 1.6509e+00 0.5427
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random effects, each function is run 30 times. Figure 10a displays the average number of function evaluations 
across all functions and their 30 executions. The results in Fig. 10a show that all the metaheuristic methods 
maintain a number of function evaluations in the range of 35,000–50,000. In contrast, the proposed method 
demonstrates a significantly lower number of evaluations, ranging from 15,000 to 18,000. This indicates that 
the proposed method converges faster, producing the best results with fewer evaluations compared to the other 
methods.

All metaheuristic methods generate new solutions using a variety of heterogeneous processes, ranging from 
simple to complex, each with varying computational resource demands. The intrinsic stochastic components 
and intricate structures of metaheuristic algorithms make conventional complexity analysis impractical. To 
analyze the time efficiency of each method, an experiment was conducted. In this experiment, each method was 
executed on each function ( f1 − f29 ) listed in Table A of the Appendix. The time in seconds required to obtain 
the minimum value with respect to the objective function was recorded. To mitigate the effect of randomness, 
each function’s execution was repeated 30 times. Figure 10b displays the inverted time values, averaged over 
all functions and their 30 executions. This analysis provides a comparative understanding of the computational 
efficiency of each method, highlighting the differences in time performance across various algorithms.

The results in Fig. 10b show that all the metaheuristic methods maintain a processing time in the range of 
20–80 s. In contrast, the proposed method exhibits significantly higher processing times, ranging from 160 to 
180 s. This indicates that, although the proposed approach requires generating very few solutions to obtain the 
minimum value of the function, the processes used to generate these solutions consume a substantial amount 
of computational resources. Consequently, while the method is efficient in terms of the number of evaluations, 
it demands more computational time due to the complexity of its solution generation processes.

In the proposed approach, the process of training the radial basis neural network (RBFNN) is primarily 
responsible for the computational cost of the method. The computational complexity of training a RBFNN 
primarily depends on the number of training elements N  and the number of neurons M in the hidden layer. 
Specifically, the training process involves determining the parameters of the radial basis functions, such as the 
centers and widths, and the weights connecting the hidden layer to the output layer. The complexity typically 
scales with O(N ×M) . As the number of training elements N increases, the computational load also increases, 
because more data points need to be processed to adjust the network parameters accurately. Consequently, for 
large values of N , the training time can grow significantly, potentially leading to longer training times and higher 
computational resource demands. This relationship underscores the importance of optimizing the number of 
hidden neurons and employing efficient training algorithms to manage the computational burden effectively.

The proposed RBFNN‑A method in expensive optimization
In the industries, there is a growing emphasis on designing products using computer models. These models 
facilitate the exploration of alternative designs and significantly reduce the need for costly hardware prototypes. 
Often, these computational models require long execution times due to the complexity of the programmed 
codes that represent their causes and effects, such as finite element analysis and computational fluid dynamics. 
Improving the design of products or processes involves optimizing certain elements using these computation-
ally intensive models. This type of optimization is known as optimization of expensive problems or expensive 
optimization. In this context, one simulation equates to a single function evaluation in common optimization 
problems. Due to the high computational cost, only a limited number of function evaluations can typically be 
used for expensive optimization problems. This constraint limits the application of many optimization algorithms, 
such as classical evolutionary or metaheuristic algorithms, which usually require a large number of function 
evaluations to obtain a good solution.
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Figure 10.   Convergence graphs in terms of (a) number of function evaluations and (b) time spent during the 
execution.
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The proposed algorithm achieves optimal solutions by evaluating significantly fewer solutions compared to 
traditional metaheuristic algorithms. This efficiency makes our method particularly suitable for expensive opti-
mization problems, where the time required to evaluate the quality of a solution by the computational model far 
exceeds the processing time of our algorithm. To demonstrate the capabilities of our algorithm in such contexts, 
we applied it to the problem of optimal design of bearings in an omnidirectional propeller [Rar]. This example 
illustrates how our method can effectively optimize complex, high-cost problems, highlighting its practical value 
and superior performance in scenarios where traditional methods would be prohibitively time-consuming.

The all-direction propeller has been widely used in drilling platforms and ships that require high positioning 
accuracy. In the design of a propeller, enhancing its vibration-resisting properties is crucial for improving service 
performance. Power flow serves as a dynamic index that reflects the vibration effect of the propeller, making it an 
important optimization objective to minimize for achieving optimal dynamic performance. However, calculating 
the propeller power flow necessitates computationally expensive finite element analysis simulations, rendering 
the acquisition of power flow a black-box problem. This complexity underscores the need for efficient optimiza-
tion algorithms capable of handling such expensive evaluations to achieve the best design solutions. In general 
terms, the objective is to optimize the following problem:

where ki and ci represent the stiffness and damping coefficients of different bearings in the propeller, respectively. 
The ranges for these coefficients are denoted by kLi  to kUi  for stiffness and cLi  to cUi  for damping. Pj indicates the 
power flow at the selected evaluation point j in the propeller, and Z is the total number of evaluation points 
distributed across different bearings, set to 10 in this study. The terms fj(K , t) and vj(K , t) denote the force and 
velocity at the j-th evaluation point. The power flow is calculated as the sum of the product of force and speed 
over a cycle, as defined by Eq. (1). The finite element model (FEM) is employed to compute these elements. 
Evaluating completely each solution K in the computational model takes about 5 min. Further details on power 
flow calculation and its application in vibration control can be found in reference34.

Figure 11 presents the execution times in hours for each optimization method during the minimization 
process. These times represent the average durations obtained from 10 independent runs, ensuring that the 
effect of randomness is minimized. Each algorithm was executed with a population of 50 individuals (N). This 
averaging approach provides a reliable comparison of the computational efficiency of the different methods 
under consistent conditions.

The results presented in Fig. 11 demonstrate that the proposed RBFNN-A method solves the problem 
described in Eq. (1) in less than 10 h, whereas the other methods require slightly more than a day (24 h) to 
achieve the same objective. This significant reduction in optimization time highlights the efficiency of the pro-
posed method in handling expensive functions. Unlike classical metaheuristic methods, which need a larger 
number of candidate solutions to converge to the final solution, the RBFNN-A method achieves optimization 
with fewer evaluations and in a much shorter time frame. This efficiency makes it particularly advantageous for 
applications involving expensive computational models.

(7)

Minimize P(K) =

√

√

√

√

Z
∑

J=1

Pj(K)
2;K = [k1, k2, k3, k4.k5, c1, c2, c3, c4, c5]

Pj = ω/2π

ω
2π

∫
0
Re

(
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)

Re
(

vj(K , t)
)

dt

Subject to kLi ≤ ki ≤ kUi ; cLi ≤ ci ≤ cUi ; i = 1, . . . , 5.
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Figure 11.   Execution times in hours for each optimization method during the minimization process of the 
problem “optimal design of bearings in an omnidirectional propeller” defined in Ec. 1.
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Conclusions
This paper presents a novel optimization algorithm that employs the capabilities of a radial basis function neu-
ral network (RBFNN-A) to guide the search process. This algorithm begins by utilizing the maximum design 
approach to initialize a set of solutions that comprehensively cover the entire search space. Subsequently, the 
algorithm enters a cyclical phase, in which the RBFNN is trained to model the objective function values based on 
the current set of solutions. The algorithm identifies the neurons in the hidden layer corresponding to the highest 
values of the objective function and utilizes the parameters of these crucial neurons, such as their centroids and 
standard deviations, to generate new solutions by sampling in the order of importance until the typical number 
of solutions is reached. By focusing on the promising regions of the search space that generate a high value of 
the objective function, the algorithm avoids the exhaustive evaluation of solutions and enables a more informed 
exploration of the search space.

Our proposed algorithm has been evaluated by using a detailed array of numerical and statistical tests. To 
ensure a comprehensive assessment, we employed a wide-ranging collection of 29 benchmark functions that 
include unimodal, multimodal, and hybrid types. In assessing our method’s performance, we compared its results 
against those from a variety of established metaheuristic algorithms. This selection spans a broad spectrum 
of optimization approaches, from classic to cutting-edge techniques, thereby encapsulating a diverse range of 
methodologies. The comparative study features several prominent algorithms, including the Artificial Bee Colony 
(ABC), Crow Search Algorithm (CSA), Differential Evolution (DE), Estimation of Distribution Algorithm (EDA), 
Moth-Flame Optimization (MFO), Harmony Search (HS), Simulated Annealing (SA), and State of Matter Search 
(SMS). This array of competing algorithms allows for a nuanced understanding of our proposed method’s posi-
tion within the broader context of metaheuristic optimization techniques.

The experimental findings reveal that our proposed algorithm exhibits superior efficiency in exploring the 
search space and identifying high-quality solutions. This enhanced performance is attributed to the algorithm’s 
ability to recognize promising zones within the search space encoded in the RBFNN. By considering this knowl-
edge, the algorithm efficiently allocates a relatively small number of iterations to identify the optimal solution. 
This strategic focus on areas of the search space with high potential allows for a more directed and effective 
search process, significantly reducing the time and computational resources required to achieve optimal out-
comes. Consequently, the algorithm not only accelerates the optimization process but also improves the overall 
quality of the solutions found, distinguishing it from other approaches in its ability to swiftly navigate towards 
the most promising solutions.

The analysis of the computational time demonstrated that, although the proposed method is efficient in 
terms of the number of evaluations required, it demands more computational time due to the complexity of its 
solution generation processes. This indicates that the algorithm invests significant computational resources in 
generating high-quality solutions, resulting in longer processing times. Despite this, the method’s efficiency in 
finding accurate solutions with fewer evaluations underscores its effectiveness, even though it necessitates greater 
computational effort. This trade-off highlights the method’s robustness and precision at the cost of increased 
computational time.

Data availability
All experimental results have been included in the manuscript. The data can be made available upon reasonable 
request to the corresponding author. All experimental results have been included in the manuscript. The data 
can be made available upon reasonable request to the corresponding author.
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