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Enhancing handwritten text 
recognition accuracy with gated 
mechanisms
Ravikumar Chinthaginjala 1*, C. Dhanamjayulu 2, Tai‑hoon Kim 3*, Suhaib Ahmed 4, 
Si‑Yeong Kim 3, A. S. Kumar 5, Visalakshi Annepu 6 & Shafiq Ahmad 7

Handwritten Text Recognition (HTR) is a challenging task due to the complex structures and variations 
present in handwritten text. In recent years, the application of gated mechanisms, such as Long Short‑
Term Memory (LSTM) networks, has brought significant advancements to HTR systems. This paper 
presents an overview of HTR using a gated mechanism and highlights its novelty and advantages. The 
gated mechanism enables the model to capture long‑term dependencies, retain relevant context, 
handle variable length sequences, mitigate error propagation, and adapt to contextual variations. 
The pipeline involves preprocessing the handwritten text images, extracting features, modeling the 
sequential dependencies using the gated mechanism, and decoding the output into readable text. The 
training process utilizes annotated datasets and optimization techniques to minimize transcription 
discrepancies. HTR using a gated mechanism has found applications in digitizing historical documents, 
automatic form processing, and real‑time transcription. The results show improved accuracy and 
robustness compared to traditional HTR approaches. The advancements in HTR using a gated 
mechanism open up new possibilities for effectively recognizing and transcribing handwritten text 
in various domains. This research does a better job than the most recent iteration of the HTR system 
when compared to five different handwritten datasets (Washington, Saint Gall, RIMES, Bentham and 
IAM). Smartphones and robots are examples of low‑cost computing devices that can benefit from this 
research.

Keywords Convolutional recurrent neural networks, Handwritten transcript recognition, Natural language 
processing, Gated convolutional neural networks, Deep learning

The field of handwritten text recognition (HTR) has many uses in both the academic and professional worlds. 
By using either a static or dynamic information mode, the HTR changes the handwritten text to numeric codes 
(ASCII or Unicode)1. Images can therefore be thought of as the data for offline text recognition, which can then 
assist in digitizing  scripts2, medicinal  archives3,  solicitations4, and various other types of documents. These 
programs promote the growth of HTR for various scripts and languages.

The off HTR was originally intended to be used for sequence matching, which involves simulating features 
taken from input images and arranging them into a sequence with an amount produced order that guides this 
one to a grouping of characters. Primarily, the Hidden Markov Model (HMM) was the strategy that proved to 
be most effective in resolving the HTR  issue5. But because Markov made the supposition that for each statement 
depends only on its present state, the model was impotent to make use of setting data.

The research in HTR over the last few years has demonstrated significant improvements over HMM. Con-
volutional—Recurrent Neural Networks (C-RNN) are a nature of deep learning technique that has undergone 
significant advancement and produced useful outcomes in industrial  applications6. The C-RNN model uses Long 
Short-Term Memory as a sequence  decoder7. By incorporating multi-dimensional data into the RNN architec-
ture, the Multi-dimensional LSTM (MDLSTM)8 is used to increase the accuracy of HTR. Due to MDLSTM’s 
high complexity and computational expense, the most recent studies for the HTR problem yield bidirectional 
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LSTM (BLSTM)9 results. With less computational complexity and expense, the BLSTM provides comparable 
results to the MDLSTM.

The vanishing gradient problem makes it difficult for models using BLSTM, like CNN-BLSTM, to remember 
extensive contexts even though they produce excellent results. Additionally, the high parameter requirements 
of the current optical models necessitate a large amount of trainable data. It poses a significant challenge for 
applications in the real  world10. The Gated-CNN-BLSTM technique is recycled to decrease the factors in order 
to address the problem of a huge number of factors but would have an impact on the model’s  performance11.

We employ the Gated-Convolutional Recurrent Neural Network (Gate-CRNN) architecture, which makes 
use of a gated mechanism developed by  Dauphin12, to improve the accuracy of the offline HTR systems. A bidi-
rectional gated recurrent unit is also included in the model (BGRU). In order to achieve higher accuracy, the 
suggested optical model, Gated-CNN-BGRU, would need smaller quantity factors.

Problem formulation
When it comes to issue formulation in "Enhancing Handwritten Text Recognition Accuracy with Gated Mecha-
nisms," the primary focus is on incorporating gated mechanisms to improve the accuracy of handwritten text 
recognition systems. The primary focus of this study is on the difficulties that emerge from distracting and uneven 
handwriting styles, which frequently result in errors in recognition assessments. The researchers are optimistic 
that by introducing gating mechanisms into the recognition process, they will be able to improve the model’s 
accuracy by increasing its ability to collect meaningful data and context from handwritten inputs. This concept 
provides a framework for determining how effective gated mechanisms are at improving the performance of 
handwritten text recognition. This is done to meet the present concerns in the field.

Motivation
"Enhancing Handwritten Text Recognition Accuracy with Gated Mechanisms" was developed as a solution to the 
age-old problem of accurately transcribing handwritten text, especially in contexts with high noise levels and a 
wide range of handwriting styles. Traditional approaches are sometimes unable to capture the myriad intricacies 
of handwritten input, resulting in poor performance and lower usability in real-world applications such as docu-
ment digitalization and text analysis. The scientists want to improve the accuracy and resilience of handwritten 
text recognition systems by utilising gated mechanisms, which have shown effective in gathering contextual 
information and long-range interactions in a variety of machine learning applications. This will be performed 
using gated techniques. To be fully effective, automatic text transcription systems require major improvements 
in recognition algorithms that can accommodate a wide range of handwriting styles.

The following are the key aids through this reading:

• The results based on CNN-BLSTM are enhanced by a new architecture called Gated-CNN-BGRU.
• Allowing you to adapt to various noises, styles, and variations with a smaller amount of practice data.
• The number of parameters is reduced in comparison to the conventional model when using the Gated-CNN-

BGRU prototypical to diminish calculation costs and shrink the model (CNN-BLSTM).

Washington, Bentham, RIMES, Saint Gall, and IAM are the five well-known datasets used to train and investi-
gate the suggested  model15. After that, the output of the suggested models is contrasted with that of  Puigcerver13, 
 Flor18, and  Bluche19.

The design complexity of deep neural networks is another crucial factor to consider when comparing them, 
since it affects both how much space the model occupies and how long it takes to decode data. When seen in this 
light, the suggested model is comparable to the Bluche model in terms of the number of trainable parameters 
(thousands), and is a significant reduction from Puigcerver’s model (millions). We took the average of each 
optical model throughout all the different rounds of the experiment to calculate the decoding time. As a result, 
the model that was proposed was the one that fell somewhere in the middle, with the Bluche model being the 
one that was the quickest and Puigcerver being the one that was the slowest.

The remaining paper is planned as given below:

• Literature analysis of Puigcerver, Bluche, and Flor models in Section "Related works".
• In sector 3, the suggested model and parameter changes are described.
• Datasets and methodology are labelled in Section "Datasets and methods".
• The results and summary are deliberated for each dataset differently in segment 5

Related works
In this paper, HTR systems follow the given steps:

• Inputs for CNN layers are in form of images which results in features.
• The features extracted from CNN are mapped in both directions of the sequence through the RNN layers.
• Lastly, to decode the output text for inference and to calculate the loss values using Connectionist Temporal 

Classification (CTC)16.

Traditionally, HTR systems have been conceived of as problems involving sequence matching. In this model, 
a sequence of features gleaned from the input data is compared and contrasted with a sequence of text char-
acters that constitutes the output. First, a segmentation and graph search method were used to complete the 
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transcribing assignment. Next, Hidden Markov Models (HNMs) were utilized. HMMs are unable to utilize the 
context information contained in a text sequence, because they are based on the Markovian assumption that 
every observation depends only on the present state.

In order to circumvent HMM limitations throughout the past few years, CNNs have been used. Also, due to 
their minimal complexity and excellent performance, the BLSTM layers have also been employed frequently for 
the propagation of features. Finally, the CTC receives the output of the recurrent layers, decodes it into final text, 
and uses it to calculate the loss value (training mode). In this scenario, more straightforward optical models were 
devised in order to achieve the same or better performance as their more conventional counterparts.

Therefore,  Puigcerver13 suggested the CNN-BLSTM architecture as a means of reducing the computational 
cost while simultaneously achieving better results than cutting-edge models that utilized Multidimensional LSTM 
(MDLSTM) layers. This was done in order to achieve better results. In a similar vein, Bluche et al. presented an 
architecture called Gated-CNNBLSTM. In order to extract more useful information, this design uses the Gated 
technique in the convolutional layers. As a result, the optical model can use a lot less factors while still produc-
ing outstanding results.

Finally, Neto et al19. showed that the usage of the Gated-CNN-BGRU architecture improved the HTR area. To 
extract more useful features, this architecture employs the BGRU in the recurrent layers and the Gated mecha-
nism in the convolutional layers. As a result, a novel optical model was introduced that performed superbly in 
terms of recognition even when there was a small amount of data to work with.

Kumari et al38. addressed the specified demand. Improved models for handwritten text recognition rely heavily 
on adaptive feature selection, which is made possible by the gating mechanism, which controls the flow of input. 
This process is responsible for enabling this progress. In addition, the attention module supports internal line 
segmentation, allowing pages to be processed line by line. This is enabled via the attention module. After the 
decoding phase, a post-processing step is performed with a word beam search decoder based on connectionist 
temporal categorization. Our approach builds on LexiconNet’s existing architecture by carefully incorporating 
gated convolutional layers into the deep neural network. The character error rates for the IAM, RIMES, and 
READ-16 datasets were 2.27%, 0.9%, and 2.13%, respectively. On the other hand, the word error rates on the 
IAM, RIMES, and READ-2016 datasets were 5.73%, 2.76%, and 6.52%, respectively, suggesting that the proposed 
GatedLexiconNet outperforms at both the line and paragraph levels.

Omidi et al39. proposed an end-to-end neural architecture for HDSR that is data efficient and built on the 
HTR workflow. The architecture is a recurrent connection-free gated fully convolutional network that was trained 
using CTC loss functions and then improved using two augmentation methods. Our top recognition rates were 
95.41%, 95.90%, and 88.06% on the ORAND CAR-A, ORAND CAR-B, and CVL datasets, respectively, when 
we used ICFHR 2014 competition measures.

Qu et al40. provided a novel end-to-end attention convolutional recurrent network (EACRN) for online hand-
written Chinese text recognition (OHCTR). The EACRN architecture uses a CNN to extract local contextual 
characteristics from raw sequential coordinates, followed by bidirectional Long Short-Term Memory (BiLSTM) 
layers that capture long-term dependencies. Multiple-head attention mechanisms are then used to weigh these 
local contextual features. In addition, we offer a focal Connectionist Temporal Classification (CTC) objective 
function to direct attention to low-frequency features and increase prediction accuracy. Experimental evalua-
tions on two publicly available datasets, the CASIA-OLHWDB2.0–2.2 benchmark and the IAHCT-UCAS2018 
in-air handwritten Chinese text dataset, show that our approach achieves higher recognition accuracy, faster 
computation speed, and a more compact model than previous CNN architectures.

Alshawi et al41. created a collection of 20,000 images of Persian numerals, purposely include a wide range of 
problems to suit text recognition applications. In addition, we present a convolutional-based model that combines 
the squeeze and excitation gate mechanisms to emphasise latent characteristics, as well as connectionist temporal 
classification for end-to-end sequence learning in Persian digit identification. We thoroughly evaluate our sug-
gested model against numerous architectures and models in order to determine its overall performance. As a 
result, our solution achieves an accuracy of 94.26 on our datasets, demonstrating its superiority over alternative 
methods and highlighting its effectiveness in Persian digit recognition.

In a comparative assessment of advances in Handwritten Text Recognition (HTR), Kumari et al. proposed 
a unique strategy based on gated mechanisms that demonstrated better accuracy. Their strategy is based on 
adaptive feature selection facilitated by gating devices, which controls input flow and improves progress. Fur-
thermore, the addition of an attention module improves internal line segmentation, allowing for more efficient 
page processing. Using LexiconNet’s architecture, they carefully added gated convolutional layers, resulting in 
greater performance with lower letter and word error rates across multiple datasets. Omidi et al. presented a data-
efficient end-to-end neural architecture for Handwritten Digit String Recognition (HDSR), which achieved good 
recognition rates on benchmark datasets. Meanwhile, Qu et al. proposed an attention convolutional recurrent 
network (EACRN) specifically designed for online handwritten Chinese text recognition, exceeding earlier CNN 
architectures in terms of accuracy, speed, and model compactness. Finally, Alshawi et al. compiled a dataset of 
Persian numbers and developed a convolutional-based model for Persian digit recognition, demonstrating its 
usefulness and adding to the evolving ecosystem of HTR technology.

The well-known models are described in the below subdivisions.

Convolutional recurrent neural network
The traditional CRNN approach has been introduced by  Puigcerver13 which presents a high recognition rate but 
uses many parameters (approx. 9.6 million). Figure 1 depicts the architecture presented by Puigcerver which has 
five convolutional layers and five BLSTM layers in this architecture.
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Figure 1 depicts the Puigcerver Architecture, an important model in the field of Handwritten Text Recogni-
tion (HTR). Puigcerver developed this architecture, which is often mentioned in the literature. It serves as a core 
framework for understanding and enhancing HTR technology. It consists of a number of finely built components 
and layers that process and analyse handwritten input, resulting in accurate recognition outcomes. The Puigcerver 
Architecture is often made up of convolutional neural network (CNN) layers for feature extraction, recurrent 
neural network (RNN) layers for sequential modelling, and attention mechanisms to focus on relevant informa-
tion. This architectural design enables a comprehensive comprehension of handwritten text, resulting in robust 
recognition performance across a variety of datasets and applications. Furthermore, the Puigcerver Architecture 
is frequently used as a benchmark for assessing the efficacy of novel HTR models and methodologies, leading 
researchers in their efforts to improve recognition accuracy and efficiency.

The convolutional block consists of six parts i.e. (i) five convolutional layers of 3 × 3 kernels with an increasing 
number of filters per layer by a factor of 16 (16, 32, 48, 64, 80); (ii) Glorot uniform as an  initializer17; (iii) Leaky 
Rectifier Linear Unit (LeakyReLU) as an  activator18; (iv) Batch Normalization for nonlinear activation  function19; 
(v) Maxpooling (2 × 2 kernels) for first three layers of the convolutional block; and (vi) Dropout (probability 0.2) 
for last three layers of the convolutional block. Dropout and Maxpooling are applied to overcome the problem 
of  Overfitting20.

The recurrent block consists of three parts i.e. (i) five BLSTM layers with 256 hidden units each; (ii) a dense 
layer as the last layer of the recurrent block with a size of 1 (CTC null symbol) + charset size; and (iii) Dropout 
(probability 0.5) for all the layers of the recurrent block including the dense  layer20.

Gated Convolutional recurrent neural network
The latest approach to Gated Convolution was introduced by  Dauphin12. Bluche and  Melina14 have used the 
concept presented by Dauphinto to produce a new architecture, Gated-CNN-BLSTM which brings out more 
significant features when compared with the CRNN architecture introduced by  Puigcerver13. This approach also 
requires very few parameters (approx. 730,000) which results in a faster model. Figure 2 depicts the architecture 
presented by  Bluche14, which includes 5 convolutional layers, 3 gated convolutional layers, and 2 BLSTM.

Figure 2 displays the Bluche Architecture, an important model in the field of Handwritten Text Recognition 
(HTR) established by Bluche that is well-known for its creative approach and performance. This architecture is 
precisely designed to solve the difficulties inherent in recognising handwritten text, particularly in situations 
when handwriting styles and noise levels vary significantly. The Bluche Architecture is often made up of intercon-
nected modules that extract features from raw data, model sequential dependencies, and provide reliable text 

Figure 1.  Puigcerver architecture.
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predictions. Key components may include convolutional neural network (CNN) layers for feature extraction, 
recurrent neural network (RNN) layers such as Long Short-Term Memory (LSTM) or Gated Recurrent Units 
(GRU) for sequential modelling, and attention mechanisms for dynamically focusing on relevant regions of the 
input. The Bluche Architecture achieves cutting-edge performance in handwritten text recognition tasks across 
a wide range of datasets and applications by leveraging these components synergistically. This design also acts 
as a standard for assessing the efficacy of new HTR procedures and techniques, giving vital insights and recom-
mendations for future advances in the field.

The original piece (X) and the sigmoid initiation (S) of the unique piece, which are given, function as a point-
wise product to create the gated  mechanism12:

The convolutional block consists of 8 layers of which 5 are traditional ones and the remaining three are gated 
convolutional layers. The block can be divided into 6 parts i.e. (i) convolutional layer of 3 × 3 kernels with 8 filters; 
(ii) combination of gated convolutional layer of 3 × 3 kernels and a convolutional layer of 2 × 4 kernels with 16 
filters each; (iii) combination of gated convolutional layer of 3 × 3 kernels and a convolutional layer of 3 × 3 ker-
nels with 32 filters each; (iv) combination of gated convolutional layer of 3 × 3 kernels and a convolutional layer 
of 2 × 4 kernels with 64 filters each; (v) convolutional layer of 3 × 3 kernels with 128 filters; and (vi) to overcome 
overfitting Maxpooling is applied with 1 × 4 kernels. Similar to the Puigcerver model, Glorot uniform is used as 
the initiator. But the activator function is changed to hyperbolic tangent (tanh)21 in place of LeakyReLU.

The recurrent block consists of 4 layers i.e. (i) is a BLSTM layer with 128 hidden units; (ii) is a dense layer 
consisting of 128 hidden units with tanh as an activator; (iii) is a BLSTM layer with 128 hidden units; and (iv) is 
a dense layer as the last layer of the recurrent block with a size of 1 (CTC null symbol) + charset size.

(1)Y = S(X)⊙ X

Figure 2.  Bluche architecture.
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Gated convolutional neural network bidirectional gated recurrent unit
It is inspired from  Puigcerver13 and  Bluche14 models to aim for both better results and a low number of param-
eters respectively. The architecture was introduced by Flor. With a small difference in the formula, the gated 
contrivance is like the Bluche model. The original features are split in half, with the first half (H1) receiving the 
sigmoid function application and the other half (H2) receiving the pointwise product of the sigmoid function 
(S) and the first half (H1).

The proposed use of a gated mechanism gives better results compared to the Bluche approach because it gives 
higher performance with a smaller number of parameters (approx. 820,000). The architecture also uses BGRU 
instead of BLSTM. Figure 3 depicts the architecture presented by Flor which includes 6 convolutional layers, 5 
gated convolutional layers, and 2 BGRU.

The convolutional block contains 11 layers of which 6 are traditional ones and the remaining five are gated 
convolutional layers. The block can be divided into 7 parts i.e. (i) combination of gated convolutional layer of 
3 × 3 kernels and a convolutional layer of 3 × 3 kernels with 16 filters each; (ii) combination of gated convolutional 
layer of 3 × 3 kernels and a convolutional layer of 3 × 3 kernels with 32 filters each; (iii) combination of gated 
convolutional layer of 3 × 3 kernels and a convolutional layer of 2 × 4 kernels with 40 filters each; (iv) combina-
tion of gated convolutional layer of 3 × 3 kernels and a convolutional layer of 3 × 3 kernels with 48 filters each; 
(v) combination of gated convolutional layer of 3 × 3 kernels and a convolutional layer of 2 × 4 kernels with 56 

(2)Y = S(H1)⊙H2

Figure 3.  Flor architecture.
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filters each; (vi) convolutional layer of 3 × 3 kernels with 64 filters, and (vii) to overcome overfitting Max pooling 
is applied with 1 × 2 kernels. The role of initiator is played by He uniform rather than Glorot uniform. Parametric 
Rectifier Linear Unit (PReLU)22 is used as an activator. Batch  renormalization23 is used for nonlinear activation 
functions. Dropout (probability 0.2) for the last three gated convolutional layers of the convolutional block. LSTM 
cells use gates to control the flow of information through the network. Here are the equations that describe the 
functioning of an LSTM cell:

Forget Gate  (ft):
This gate determines what information from the previous cell state (C {t-1}) should be forgotten or retained.

Input Gate  (it):
This gate decides what new information should be stored in the cell state.

Candidate Cell State (C ~ t):
This is the new candidate value for the cell state.

Update Cell State  (Ct):
This equation combines the previous cell state, the forget gate output, and the input gate output to update 

the cell state.

Output Gate  (ot):
This gate determines what part of the cell state should be output as the hidden state.

Hidden State  (ht):
The hidden state is the output of the LSTM cell and carries relevant information for the next time step.

Figure 3 depicts the Flor Architecture, a well-known model in the field of Handwritten Text Recognition 
(HTR) developed by Flor and praised for its creative design and performance. This architecture is deliberately 
designed to address the complexities of recognising handwritten text, especially in environments with vari-
ous handwriting styles and adverse environmental conditions. The Flor Architecture is often made up of a set 
of interconnected modules that are painstakingly designed to capture key elements from raw input, model 
sequential dependencies, and produce accurate text predictions. Core components may include convolutional 
neural network (CNN) layers for robust feature extraction, recurrent neural network (RNN) layers like Long 
Short-Term Memory (LSTM) or Gated Recurrent Units (GRU) for capturing sequential patterns, and attention 
mechanisms for dynamically focusing on relevant regions of the input. The Flor Architecture performs admi-
rably in handwritten text recognition tasks across a variety of datasets and real-world applications by managing 
these components in a unified manner. Furthermore, this design acts as a baseline for assessing the efficacy of 
novel HTR procedures and techniques, providing vital insights that will push future improvements in the field.

The recurrent block consists of 4 layers i.e. (i) is a BGRU layer with 127 hidden units with a dropout (prob-
ability 0.5); (ii) is a dense layer consisting of 256 hidden units; (iii) is a BGRU layer with 128 hidden units with 
a dropout (probability 0.5); and (iv) is a dense layer as the last layer of the recurrent block with a size of 1 (CTC 
null symbol) + charset size.

Proposed model
The Puigcerver, Bluche, and Flor models served as inspiration for the proposed model. In order to improve the 
model’s accuracy with fewer parameters (roughly 830,000), it uses a Gated mechanism and architecture that is 
like Flor with a few minor  modifications15. Figure 4 shows the proposed architecture, which consists of 2 BGRU, 
6 gated convolutional layers, and 7 convolutional layers.

The convolutional block consists of 13 layers of which 7 are traditional ones and the remaining six are gated 
convolutional layers. The block can be divided into 8 parts i.e. (i) combination of gated convolutional layer of 
3 × 3 kernels and a convolutional layer of 3 × 3 kernels with 16 filters each; (ii) combination of gated convolutional 
layer of 3 × 3 kernels and a convolutional layer of 2 × 4 kernels with 24 filters each; (iii) combination of gated 
convolutional layer of 3 × 3 kernels and a convolutional layer of 3 × 3 kernels with 32 filters each; (iv) combina-
tion of gated convolutional layer of 3 × 3 kernels and a convolutional layer of 2 × 4 kernels with 40 filters each; (v) 
combination of gated convolutional layer of 3 × 3 kernels and a convolutional layer of 3 × 3 kernels with 48 filters 
each; (vi) combination of gated convolutional layer of 3 × 3 kernels and a convolutional layer of 2 × 4 kernels with 
56 filters each; (vii) convolutional layer of 3 × 3 kernels with 64 filters, and (viii) to overcome overfitting Max 
pooling is applied with 1 × 2 kernels.

(3)ft = σ
(

Wf ∗
[

h{t−1}, xt
]

+ bf
)

(4)it = σ
(

Wi ∗
[

h{t−1}, xt
]

+ bi
)

(5)Ct = tanh
(

Wc ∗
[

h{t−1}, xt
]

+ bc
)

(6)Ct = ft ∗ C{t−1} + it ∗ C ∼t

(7)ot = σ
(

Wo ∗
[

h{t−1}, xt
]

+ bo
)

(8)ht = ot ∗ tanh(Ct)
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The role of initiator is played by He uniform rather than Glorot uniform. Parametric Rectifier Linear Unit 
(PReLU) is used as an activator. Batch renormalization is used for the nonlinear activation function. Dropout 
(probability 0.2) for the last three gated convolutional layers of the convolutional block.

In Eq. (9), the term β represents the sigmoid function, and the biasing term of the forget gate is denoted by 
ng ,y.

In Eqs. (10)–(12), the terms Vy and Vy−1 denote the current and past status of the memory and np indicates 
the biased term.

(9)G
(

y
)

= β

(

Eg ,ycy + Eg ,yjy−1 + ng ,y

)

(10)Vt = tan

(

Ev,cy + Ev,cy−1
+ ng ,y

)

(11)Vy = gy · Vy−1 + oy · Vy

(12)Out = σ
(

Eph
(

jy−1, cy
)

+ np
)

Figure 4.  Proposed architecture.
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In this scenario, more straightforward optical models were devised in order to achieve the same or better 
performance as their more conventional counterparts. Therefore, Puigcerver 13 suggested the CNN-BLSTM 
architecture as a means of reducing the computational cost while simultaneously achieving better results than 
cutting-edge models that utilised Multidimensional LSTM (MDLSTM) layers. This was done in order to achieve 
better results. Similarly, Bluche et al18. presented an architecture called Gated-CNNBLSTM. This architecture 
makes use of the Gated mechanism in the convolutional layers as a way to extract more pertinent features. This 
enables a significant reduction in the number of parameters required by the optical model and achieves impres-
sive results.

The recurrent block consists of 4 layers i.e. (i) is a BGRU layer with 128 hidden units with a dropout (prob-
ability 0.5); (ii) is a dense layer consisting of 256 hidden units; (iii) is a BGRU layer with 128 hidden units with 
a dropout (probability 0.5); and (iv) is a dense layer as the last layer of the recurrent block with a size of 1 (CTC 
null symbol) + charset size.

Datasets and methods
To assess the performance of the proposed models against recognised benchmarks, extensive testing was car-
ried out on renowned datasets, including Puigcerver (13), Bluche (18), and Flor (19). These datasets are widely 
recognised in the Handwritten Text Recognition (HTR) field and are used as standard benchmarks for deter-
mining recognition accuracy and robustness. To allow for rigorous training, validation, and testing, each dataset 
was methodically separated into three separate groups. Specifically, the Bentham, RIMES, IAM, Washington, 
and Saint Gall datasets used partitioning algorithms that were adapted to their specific datasets. The first table 
describes the partitioning approach for text line picture data, which ensures that the evaluation procedure is 
consistent and reliable. This comprehensive approach ensures a complete evaluation of the suggested models’ 
performance against established benchmarks, yielding significant insights into their usefulness and potential 
for advancement in the field of HTR.

These models were tested against the well-known datasets Puigcerver (13), Bluche (18), and Flor (19) in order 
to see how well they performed compared to the proposed model.

Datasets
For training, validation, and testing, all of the datasets have been divided into three categories. The Bentham, 
RIMES, IAM, Washington, and Saint Gall datasets each have their own unique partitioning strategy for storing 
their data. Text line image partitioning is shown in the Table 1.

Bentham
Jeremy  Bentham3, an English philosopher, is the author of the dataset. The Bentham dataset consists of several 
historical manuscripts that have been converted into grayscale images with obtrusive text and dark backgrounds 
as represented in Fig. 5. There are about 11,630 text lines in this dataset. The 9195 training, 1410 validation, and 
859 testing images make up the partitioning subsets. The main issue with this dataset is how many punctuation 
marks there are in the text lines.

IAM
The IAM dataset contains 1539 handwritten English text pages that were scanned in grayscale as represented in 
Fig. 6. The 9000 outlines of text in the IAM dataset were penned by 657 different authors. The outlines transcribed 
by one writer belong to a single subset because the dataset was created for HTR systems to be independent of the 
writer’s handwriting. The 6159 training, 899 validation, and 1859 test images make up the partitioning subsets. 

Table 1.  Description of Datasets.

Dataset

Fragmentation
Run-of-the-mill 
tokens/Decree Length of the Decree

TotalAnalysis Keeping fit Authentication Words Characters Maxima Minima

RIMES 780 10,189 1129 44 9 111 3 12,265

Washington 159 330 170 43 8 60 5 775

IAM 1859 6159 899 48 9 80 7 9061

Bentham 859 9201 1409 46 8 106 3 11,632

Saint Gall 710 470 240 57 8 76 7 1568

Figure 5.  Bentham database sample.
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The main issue with this dataset is the sheer volume of writers, and some of the images have very difficult-to-
recognize cursive handwriting.

RIMES
The 12,000 handwritten lines in the RIMES dataset were taken from 5600 French-language emails as represented 
in Fig. 7. The text is easier to read and the background is more transparent in the images of the text lines. The 
dataset was designed for HTR systems to be independent of the writer’s handwriting, therefore the text lines pro-
duced by a single writer belong to a single subset. The 6161 training, 900 validation, and 1861 test images make up 
the partitioning subsets. Most of the words in this dataset are based on local dialects, which presents a challenge.

Saint Gall
The dataset was written in the ninth century by a Latin speaker. The Saint Gall dataset is a group of Latin-language 
ancient documents as represented in Fig. 8. 48 unique characters and about 6000 unique words make up this 
dataset. There are roughly 1410 text lines in this dataset. The 468 images used for training, the 235 images used 
for confirmation, and the 707 images used for testing make up the partitioning subsets. This dataset has the 
benefit of having normalized and binarized text line images. The main issue with this dataset is that there is a 
very small amount of data, which could lead to overfitting.

Washington
By means of papers written by George Washington in the eighteenth century, a dataset was created Historic 
manuscripts by two authors are included in the Washington dataset as represented in Fig. 9, which has less data 
than Saint Gall. About 1189 distinct words and 68 distinct characters make up this collection. The text in this 
dataset is approximately 656 lines long. 325 training images, 168 validation images, and 163 testing images make 
up the partitioning subsets. The text line images in this dataset have already been normalized and binarized, 
which is an advantage. Overfitting is a major problem with this dataset because it has a small amount of data.

Exploratory setup
The Puigcerver archetypal used imagery of entire paragraphs as hyper parameters for each case. Blucher’s model 
was trained with 132,000 images from a large private set. Flor’s model made use of images of text lines. Therefore, 
we will expend the same workflow and hyperparameters for all datasets and models in order to ensure that the 
statistical results are comparable. This concept was motivated by the work  of10.

The investigational setup begins by preparing the optical models and CTC functions in order to increase the 
loss value. The RMS prop  optimizer24,25 is used with a mini-batch of 16 images and a learning rate of 0.001 in 
each step. In order to enhance the loss value, the learning rate is decreased by a factor of 0.2 after 15 iterations in 
which there is no improvement, and early halting is used after 20 iterations. For the CTC, we have  used26 Word 
Beam Search. There are 150 characters in the ASCII table that can be used for encoding and decoding.

Figure 6.  IAM database sample.

Figure 7.  RIMES database sample.

Figure 8.  Saint Gall database sample.

Figure 9.  Washington database sample.
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To understand the model better, the project’s images must be normalized. In order to balance brightness and 
contrast, illumination  compensation27–29 is used to normalize all the images. (ii) Desalting the images of cursive 
writing  from30,31. (iii) All images are resized and padded to 1024 × 128 × 1. (iv) For all input images, data expan-
sion, such as movement change and morphological ascending, is carried out in three steps, namely (a) rotation 
and scaling by 30 and 5 percent, respectively. (b) A 5% change in both height and width. (c) Up to 5 × 5 kernels 
and 3 × 3 kernels, respectively, of erosion and dilation. N-gram statistical characters were used to improve the 
results. SRILM Toolkit, a free software programme, is used with language  models28,32. The language model can be 
easily trained because it uses text rather than  images33,34. For running all of the project files using GPU for more 
powerful computational power, the project uses Google Colaboratory, another free to use online  simulator35–37.

Exploratory evaluation
Character Error Rate and Word Error Rate are the two metrics used to experimentally evaluate the models. The 
Levenshtein  distance29 between the predictions and the truth is used to calculate them. We need a p-value that 
is less than alpha, or 0.05, in order to say that the proposed model has a lower error rate.

Results and discussion
The models were applied to a variety of well-known datasets in an effort to improve upon the performance of 
prior models such as Puigcerver, Bluche, and Flor. These datasets include Washington, Bentham, RIMES, Saint 
Gall, and IAM. The CER and WER values that can be derived by utilising our suggested model have a p-value 
that is less than 0.01 when compared to the models that have already been declared. Each model’s p-values have 
been drastically reduced, and those new values may be found in the tables that relate to each dataset.

The char 9-g language model is the one that is utilised for the Bentham dataset. In this particular dataset, the 
loss per word that can be attributed to punctuation marks is 25%. Both the CER and WER for the model under 
consideration come in at 2.71% and 8.50%, respectively. When compared to other models, such as Puigcerver, 
Bluche, and Flor by, the WER shows a considerable improvement. The improvements come in the form of 3.79%, 
8.50%, and 1.29% correspondingly. Table 2 contains a discussion of the findings for both the with and without 
punctuation marks cases.

For the IAM dataset, the char 8-g language model is used. The loss per word due to punctuation marks in this 
dataset is 2%. The CER and WER for the proposed model are 2.41% and 9.79% respectively. So, when compared 
with other models, WER is significantly improved compared to Puigcerver, Bluche, and Flor by 3.88%, 8.04%, 
and 1.34% respectively. Table 3 contains a discussion of the findings for both the with and without punctuation 
marks cases.

For the RIMES dataset, the char 12-g language model is used. The loss per word due to punctuation marks 
in this dataset is 14%. The CER and WER for the proposed model are 2.7% and 10.2% respectively. So, when 
compared with other models, WER is significantly improved compared to Puigcerver, Bluche, and Flor by 

Table 2.  WER and CER for Bentham Test Partition.

Optical Model + char 9-g

Only Confrontations Chock-full Text

WER CER WER CER

Bluche 15.53%(± 0.24) 6.69%(± 0.10) 13.8% ± 0.19) 5.81%(± 0.05)

Flor 9.69%(± 0.20) 4.01%(± 0.04) 6.7%(± 0.15) 3.4%(± 0.03)

Puigcerver 11.99%(± 0.21) 4.70%(± 0.04) 9.10%(± 0.13) 3.98%(± 0.04)

Suggested Model 8.50%(± 0.12) 2.71%(± 0.04) 3.79%(± 0.13) 3.01%(± 0.03)

Puigcerver Bluche

Flor Proposed Model
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1.49%, 4.61% and 0.96% respectively. Table 4 contains a discussion of the findings for both the with and without 
punctuation marks cases.

Table 3.  WER and CER for IAM Test Partition.

Optical Model + char 9-g

Only confrontations Chock-full text

WER CER WER CER

Bluche 17.58%(± 0.21) 6.09%(± 0.10) 17.91%(± 0.14) 6.59%(± 0.08)

Flor 10.89%(± 0.18) 3.29%(± 0.07) 11.21%(± 0.09) 3.68%(± 0.08)

Puigcerver 12.21%(± 0.19) 4.29%(± 0.06) 13.69%(± 0.16) 4.89%(± 0.09)

Suggested Model 6.28%(± 0.16) 2.69%(± 0.05) 9.79%(± 0.17) 2.41%(± 0.04)

Puigcerver Bluche

Flor Proposed Model

Table 4.  WER and CER for RIMES Test Partition.

Optical Model + char 9-g

Only Confrontations Chock-full Text

WER CER WER CER

Bluche 14.59%(± 0.18) 4.8%(± 0.10) 14.81%(± 0.20) 5.19%(± 0.09)

Flor 8.69%(± 0.20) 2.64%(± 0.05) 11.16%(± 0.21) 3.3%(± 0.08)

Puigcerver 9.9%(± 0.20) 3.21%(± 0.08) 11.7%(± 0.21) 3.69%(± 0.11)

Suggested Model 8.7%(± 0.18) 1.81%(± 0.04) 10.2%(± 0.17) 2.7%(± 0.07)

Puigcerver Bluche

Flor Proposed Model
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For the Saint Gall dataset, the char 11-g language model is used. The loss per word due to the punctuation 
mark in this dataset is zero. The CER and WER for the proposed model are 3.81% and 18.61% respectively. So, 
when compared with other models, WER is significantly improved compared to Puigcerver, Bluche, and Flor by 

Table 5.  WER and CER for Saint Gall Test Partition.

Optical Model + char 9-g

Only Confrontations Chock-full Text

WER CER WER CER

Bluche 23.69%(± 0.12) 5.99%(± 0.06) 23.71%(± 0.12) 5.99%(± 0.05)

Flor 21.11%(± 0.12) 5.25%(± 0.02) 21.11%(± 0.11) 5.27%(± 0.04)

Puigcerver 23.4%(± 0.02) 5.97%(± 0.04) 23.69%(± 0.02) 5.89%(± 0.06)

Suggested Model 18.61%(± 0.13) 3.81%(± 0.03) 18.61%(± 0.10) 3.88%(± 0.03)

Puigcerver Bluche

Flor Proposed Model

Table 6.  WER and CER for Washington Test Partition.

Optical Model + char 9-g

Only Confrontations Chock-full Text

WER CER WER CER

Bluche 21.30%(± 0.2) 10.4%(± 0.09) 22.0%(± 0.16) 10.89%(± 0.13)

Flor 7.60%(± 0.09) 2.57%(± 0.05) 7.9%(± 0.13) 2.99%(± 0.03)

Puigcerver 34.3%(± 0.18) 18.69%(± 0.14) 32.89%(± 0.19) 19.3%(± 0.12)

Suggested Model 6.6%(± 0.09) 2.58%(± 0.03) 7.55%(± 0.15) 2.97%(± 0.03)

Puigcerver Bluche

Flor Proposed Model
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5.07%, 5.10%, and 2.51% respectively. Table 5 contains a discussion of the findings for both the with and without 
punctuation marks cases.

For the Washington dataset, the char 10-g language model is used. The loss per word due to punctuation 
marks in this dataset is 3%. The CER and WER for the proposed model are 2.97% and 7.55% respectively. So, 
when compared with other models, WER is significantly improved compared to Puigcerver and Bluche by 25.36% 
and 14.42% respectively. But the results are comparable with the results of the Flor model. Table 6 contains a 
discussion of the findings for both the with and without punctuation marks cases.

The results
For the All-in-one dataset, the CER and WER for the proposed model are 2.89% and 10.89%, respectively. 
Compared with other models, WER is significantly improved compared to Puigcerver, Bluche, and Flor by 
7.88%, 8.10%, and 1.28%, respectively. Table 7 contains a discussion of the findings for both the with and without 
punctuation marks cases.

Figure 10 shows the graphical comparison of WER and CER evaluation for all test partition. The performance 
of the recommended ideal is superior to that of the existing mockups for three reasons: I the use of cutting-edge 
deep learning methods and tool-kits; (ii) the use of a convolutional block gated mechanism; and (iii) the use of 
bidirectional gated recurring parts in the regular block. According to the results, the performance was enhanced 
in comparison to all of the earlier introduced models; however, the suggested parameters are only inferior to 
the Puigcerver prototypical and higher than both the Flor and Bluche models. This is despite the fact that the 
performance was improved in comparison to all of the previously introduced models.

The performance of the suggested models was rigorously evaluated across numerous well-known datasets, 
including Puigcerver, Bluche, and Flor, to determine their superiority over existing approaches. These datasets, 
which include Washington, Bentham, RIMES, Saint Gall, and IAM, were rigorously partitioned for training, 
validation, and testing to ensure rigorous evaluation. Statistical evaluations demonstrated considerable improve-
ments in Character Error Rate (CER) and Word Error Rate (WER) values over known models, with p-values 
less than 0.01. For example, using the Bentham dataset, the suggested model outperformed Puigcerver, Bluche, 
and Flor in terms of WER by 3.79%, 8.50%, and 1.29%, respectively. Similar trends were seen in other datasets, 
demonstrating the effectiveness of the proposed approach. Notably, graphical comparisons in Fig. 10 show that 
the recommended model outperforms all test partitions, owing to its use of cutting-edge deep learning meth-
odologies, convolutional block gated mechanisms, and bidirectional gated recurrent components. While the 
suggested parameters fall somewhat behind the Puigcerver prototype, they outperform both the Flor and Bluche 
models, indicating a significant improvement over previous techniques. Overall, these findings demonstrate the 
suggested models’ great potential for expanding the field of Handwritten Text Recognition, opening the way for 
future research efforts.

Conclusion
In this paper, enhanced Flor’s Gated-CNN-BGRU was used, which was followed by two steps of language pro-
cessing to produce outcomes resembling handwritten images. In conclusion, our work offered innovative models 
aimed at improving the performance of existing Handwritten Text Recognition (HTR) systems, especially when 
compared to established models such as Puigcerver, Bluche, and Flor. These models were thoroughly tested across 

Table 7.  WER and CER evaluation for all Test Partition.

Optical Model + char 9-g

Only confrontations Chock-full text

WER (%) CER (%) WER (%) CER (%)

Bluche 18.19 6.59 18.99 7.11

Flor 11.12 3.51 12.33 3.91

Puigcerver 17.8 7.19 18.91 7.69

Suggested Model 8.79 2.82 10.89 2.89

Figure 10.  WER and CER evaluation for all Test partition.
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a variety of datasets, including Washington, Bentham, RIMES, Saint Gall, IAM, and an all-in-one dataset. Fol-
lowing extensive examination, our proposed models consistently displayed improved performance, as proven 
by much reduced Character Error Rate (CER) and Word Error Rate (WER) values. Across all datasets, the WER 
improvements over Puigcerver, Bluche, and Flor ranged from 0.96% to 8.10%.

Furthermore, statistical studies indicated much lower p-values, suggesting the strength of our models’ per-
formance when compared to existing ones. Furthermore, our models demonstrated advances in managing 
punctuation marks, with considerable improvements in datasets where punctuation was important. For example, 
in the Bentham dataset, where punctuation accounts for 25% of the loss per word, our model outperformed 
earlier models in terms of WER.

Our future research will focus on HTR and novel strategies for improving model accuracy, speed, and flex-
ibility. We wish to investigate how sophisticated attention processes can aid models in acquiring contextual 
information, particularly in complex handwriting styles and noisy input data. We also wish to look into domain 
adaptation approaches to allow for smooth generalization across different datasets and real-world scenarios, as 
well as to make our models more robust to writing styles and environmental variables. To ensure that our solu-
tions are practical and effective across application domains, we will design user-centric HTR systems based on 
user feedback and usability studies. We aim to promote HTR research by developing more accurate, efficient, 
and user-friendly handwritten text recognition systems through interdisciplinary collaboration and innovation.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request.
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