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Estimation methods based 
on ranked set sampling 
for the power logarithmic 
distribution
Najwan Alsadat 1, Amal S. Hassan 2, Mohammed Elgarhy 3,4, Arne Johannssen 5* & 
Ahmed M. Gemeay 6

The sample strategy employed in statistical parameter estimation issues has a major impact on the 
accuracy of the parameter estimates. Ranked set sampling (RSS) is a highly helpful technique for 
gathering data when it is difficult or impossible to quantify the units in a population. A bounded power 
logarithmic distribution (PLD) has been proposed recently, and it may be used to describe many 
real-world bounded data sets. In the current work, the three parameters of the PLD are estimated 
using the RSS technique. A number of conventional estimators using maximum likelihood, minimum 
spacing absolute log-distance, minimum spacing square distance, Anderson-Darling, minimum 
spacing absolute distance, maximum product of spacings, least squares, Cramer-von-Mises, minimum 
spacing square log distance, and minimum spacing Linex distance are investigated. The different 
estimates via RSS are compared with their simple random sampling (SRS) counterparts. We found that 
the maximum product spacing estimate appears to be the best option based on our simulation results 
for the SRS and RSS data sets. Estimates generated from SRS data sets are less efficient than those 
derived from RSS data sets. The usefulness of the RSS estimators is also investigated by means of 
a real data example.

Keywords Power logarithmic distribution, Ranked set sampling, Minimum spacing Linex distance, 
Minimum spacing square log distance, Average squared absolute error

In many domains, data analysis has been made simpler, and the margin of error has decreased with the discovery 
of new probability distributions. New unit distributions are typically created by converting certain well-known 
continuous distributions, which are more adaptable than the originals, without the need to include extra param-
eters. A number of distributions has been developed for the purpose of modeling data sets in numerous field, such 
as finance, risk management, engineering, actuarial sciences, biology, and economics. These distributions include 
the unit-Birnbaum-Saunders  distribution1, the unit Weibull  distribution2, the unit Gompertz  distribution3, the 
unit-inverse Gaussian  distribution4, the unit Burr-XII  distribution5, the unit-Chen  distribution6, the unit half-
logistic geometric  distribution7, the unit exponentiated Frechet  distribution8, the unit exponentiated Lomax 
 distribution9, the unit inverse exponentiated Weibull  distribution10, the unit power Burr X  distribution11, among 
others.

The power logarithmic distribution (PLD), which combines logarithmic and power function distributions, 
was introduced by Abd El-Bar et al.12. They mentioned that, compared to the power function distribution, the 
PLD is more flexible. The probability density function (PDF) of the PLD, with shape parameter a > 0 and scale 
parameters b > 0 and c > 0 , is given by:
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where ω ≡ (a, b, c) is the set of parameters. The cumulative distribution function (CDF) of the PLD is:

According to PDF (1), the distributions mentioned below are considered as submodels of the PLD:

• For c = 0 , the PDF (1) provides the power function distribution with parameter a.
• For a = 0 , the PDF (1) provides the logarithmic distribution with parameters b and c.
• For a+ 1 = ϑ and c = 1 , the PDF (1) provides the Log-Lindley distribution with parameters ϑ and b.
• For a+ 1 = ϑ , b = 0 , and c = 1 , the PDF (1) provides the transformed gamma distribution with parameter 

ϑ.

The hazard rate function (HF) of the PLD is:

The PDF and HF plots of the PLD are represented in Fig. 1. From Fig. 1, we can see that the PDF plot takes vari-
ous shapes, such as growing, decreasing, constant, skewed to the right or left, and upside-down bathtub-shaped. 
The HF plots can be increasing, U-shaped, bathtub or j-shaped.

The study of economical sampling techniques is one of the major and fascinating areas of statistics. The field’s 
motivation stems from its exceptional ability to streamline the process of gathering data, particularly in situa-
tions when gathering relevant data is costly or time-consuming. In order to obtain accurate and cost-effective 
findings, researchers have developed a variety of sampling techniques over the past few decades. Ranked set 
sampling (RSS) is a useful technique for attaining observational economy in terms of the precision attained 
per sample unit. In the beginning,  McIntyre13 presented the idea of RSS as a method for improving the sample 
mean’s accuracy as a population mean estimate. Ranking can be done without actually quantifying the observa-
tions by using expert opinion, visual examination, or any other method. Takahasi and  Wakimoto14 provided the 
mathematical framework for RSS. Dell and  Clutter15 demonstrated that, even in the presence of ranking errors, 
RSS outperforms simple random sampling (SRS). The RSS is extensively used in the fields of environmental 
 monitoring16,  entomology17, engineering  applications18,  forestry19, and information  theory20.

The following is a description of the RSS design: Initially, s2 randomly selected units are taken from the 
population and divided into s groups of s units each. Without using any measures, the s units in each set are 
ranked. The unit that ranks lowest among the first s units is selected for actual quantification. The unit that 
ranks second lowest among the second set of s units is measured. The procedure is carried out again until the 
largest unit is determined from the sth group of s units. Hence, X(h)h =

(
X(1)1,X(2)2, . . . ,X(s)s

)
 , h = 1, . . . , s , 

represents the one-cycle RSS. The process can be repeated l times to produce a sample of size s· = sl if a larger 
number of samples is needed. The l- cycle RSS is represented as X(h)hv =

(
X(1)11,X(2)22, . . . ,X(s)sl

)
 , h = 1, . . . , s 

and v = 1, . . . , l . In the present work, we write Xhv instead of X(h)hv .  Wolfe21 mentioned that set sizes (s) larger 

(1)f (x;ω) =
(a+ 1)2xa(b− c ln(x))

b+ c + ab
, 0 < x < 1,

(2)F(x) =
xa+1[c + (a+ 1)(b− c ln(x))]

b+ c + ab
, 0 < x < 1.

h(x;ω) =
(a+ 1)2(b− c ln(x))

x
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3.
0

PD
F

a = 0.05 b = 0.1 c = 0.1
a = 0.5 b = 0.3 c = 0.4
a = 3.0 b = 0.1 c = 5.0
a = 4.0 b = 0.001 c = 20.0
a = 6.0 b = 0.4 c = 12.0

0
1

2
3

4
5

6

x

H
F

a = 0.01 b = 0.01 c = 5.0
a = 0.003 b = 0.02 c = 0.1
a = 0.001 b = 5.0 c = 8.0
a = 2.0 b = 0.9 c = 0.5
a = 0.5 b = 0.3 c = 0.4

1.00.0 0.2 0.4 0.6 0.8

x

1.00.0 0.2 0.4 0.6 0.8

2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

Figure 1.  Plots of PDF and HF for the PLD.
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than five would undoubtedly result in an excessive number of ranking errors and so could not likely consider-
ably increase the efficacy of the RSS. Suppose that Xhv represents the order statistics of the hth sample, with 
h = 1, . . . , s in the vth cycle. Assuming perfect ranking, the PDF of Xhv , is given by

The issue of RSS-based estimation for a variety of parametric models has been the subject of several studies 
recently. The location-scale family distributions’ parameter estimator was examined by  Stokes22.  Bhoj23 inves-
tigated the scale and location parameter estimates for the extreme value distribution. Abu-Dayyeh et al.24 used 
SRS, RSS and a modification of RSS to investigate various estimators for the location and scale parameters of 
the logistic distribution. Under RSS, median RSS (MRSS), and multistage MRSS in case of imperfect ranking, 
Lesitha and  Yageen25 investigated the scale parameter of a log-logistic distribution. Inference of the log-logistic 
distribution parameters, based on moving extremes RSS, was discussed by He et al.26. Using RSS and SRS, Yousef 
and Al-Subh27 obtained the maximum likelihood estimators (MLEs), moment estimators, and regression estima-
tors of the Gumbel distribution parameters. Regarding SRS, RSS, MRSS, and extreme RSS (ERSS), Qian et al.28 
derived a number of estimators for the Pareto distribution parameters in the case where one parameter is known 
and both are unknown. The MLEs for the generalized Rayleigh distribution parameters were derived by Esemen 
and  Gurler29, using SRS, RSS, MRSS and ERSS. In the framework of SRS, RSS, MRSS, and ERSS, Samuh et al.30 
presented the MLEs of the parameters pertaining to the new Weibull-Pareto distribution. Yang et al.31 explored 
the Fisher information matrix of the log-extended exponential-geometric distribution parameters based on 
SRS, RSS, MRSS, and ERSS. Al-Omari et al.32 investigated the generalized quasi-Lindley distribution parameters 
using the following estimators: MLEs, maximum product of spacings (MXPS) estimators, weighted least squares 
estimators, least squares estimators (LSEs), Cramer-von-Mises (CRM) estimators, and Anderson-Darling (AD) 
estimators based on RSS. Further, Al-Omari et al.33 considered similar procedures discussed as in Al-Omari 
et al.32 to examine estimators of the x-gamma distribution. Under stratified RSS, Bhushan and  Kumar34 examined 
the effectiveness of combined and separate log type class population mean estimators. The suggested estimators’ 
mean square error and bias expressions were determined. The efficiency criteria were provided and a theoreti-
cal comparison between the proposed and current estimators was conducted. For more recent studies,  see35–42.

The statistical literature proposes different estimation techniques since parameter estimation is important 
in real-world applications. Parameter estimation frequently involves the use of conventional estimation tech-
niques like the LSE and MLE approaches. Both of them have advantages and disadvantages, but the most often 
used estimation technique is the ML method. The parameters of the PLD may be estimated using eight other 
methods of estimation in addition to the widely used MLE and LSE. These eight methods are AD, minimum 
spacing absolute distance (SPAD), MXPS, minimum spacing absolute log distance (SPALoD), minimum spacing 
square distance (MSSD), CRM, minimum spacing square log distance (MSSLD), and minimum spacing Linex 
distance (MSLND). It is difficult to compare the theoretical performance of different techniques, hence, extensive 
simulation studies are carried out under various sample sizes and parameter values to assess the performance 
of different estimators. Using a simulation scheme, the various PLD estimators based on the RSS design are 
then contrasted with those offered by the SRS approach. In this regard, six evaluation criteria are employed to 
assess the effectiveness of the estimating techniques. As far as the authors are aware, no attempt has been made 
to compare all of these estimators under RSS for the PLD. This fact served as the novelty and motivation for this 
study as we compare all of these estimators under RSS for the PLD.

The following sections provide a rough outline of the article. The various estimation methods for the PLD 
under RSS are provided in “Estimation methods based on RSS”. Several PLD estimators under SRS are given 
in “Estimation methods based on SRS”. The Monte Carlo simulation analysis that compares the effectiveness of 
the RSS-based estimators is examined in “Numerical simulation”. In “Real data analysis”, data analysis on milk 
production is conducted to demonstrate the practical applicability of the recommended estimate techniques. 
Some closing thoughts are included in “Concluding remarks”.

Estimation methods based on RSS
This section discusses ten different estimators for the PLD based on RSS. The suggested estimators are the MLE, 
AD estimator (ADE), CRM estimator (CRME), MXPS estimator (MXPSE), LSE, SPAD estimator (SPADE), 
SPALoD estimator (SPALoDE), MSSD estimator (MSSDE), MSSLD estimator (MSSLDE), and MSLND estima-
tor (MSLNDE).

Maximum likelihood method
In the following, the MLEs âML of a, b̂ML of b, and ĉML of c for the PLD are obtained based on RSS. To get these 
estimators let Xhv = {Xhv , h = 1, . . . , s, v = 1, . . . , l} be an RSS of size s· = sl with PDF (1) and CDF (2), where 
l is cycles count and s is the set size. The likelihood function (LF) of the PLD is obtained by inserting Eqs. (1) 
and (2) into Eq. (3) as follows:

where �(xvh,ω) = (a+ 1)(b− c ln(xvh)). The log-LF of the PLD, denoted by LRSS, is as follows:

(3)f (xhv) =
s!

(h− 1)!(s − h)!
[F(xhv)]

h−1[1− F(xhv)]
s−hf (xhv), xhv ∈ R.

L(ω) ∝

l∏

v=1

s∏

h=1

[
xa+1
vh [c +�(xvh,ω)]

b+ c + ab

]h−1[
1−

xa+1
vh [c +�(xvh,ω)]

b+ c + ab

]s−h
(a+ 1)2xavh�(xvh,ω)

b+ c + ab
,
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The MLEs âML, b̂ML, ĉML of a, b, c are obtained by maximizing (4) with respect to a, b, and c, as follows:

and

where �′
a(xvh,ω) =

∂�a(xvh ,ω)
∂a = (b− c ln(xvh)).

We can get the MLEs âML, b̂ML, ĉML of a, b, c by setting Eqs. (5)–(7) equal to zero and solving them simultane-
ously. Note that nonlinear optimization techniques such as the quasi-Newton algorithm are often more effective 
for solving these equations.

Anderson–Darling method
The class of minimal distance approaches includes the AD method. In this subsection, the ADEs of a, b, c, say 
âAD , b̂AD , ĉAD of the PLD are obtained using RSS.

Suppose that X(1:s·),X(2:s·), . . . ,X(s·:s·) are ordered RSS items taken from the PLD with sample size s· = sl, 
where s is set size and l is the cycle number. The ADEs âAD, b̂AD, ĉAD of a, b, and c are derived by minimizing 
the function

where F̄(.|ω) is the survival function. Alternatively, the ADEs âAD, b̂AD , and ĉAD of the PLD can be obtained by 
solving the subsequent non-linear equations in place of Eq. (8):

and

(4)

LRSS ∝

l∑

v=1

s∑

h=1

{
(h− 1)(a+ 1) log xvh + (h− 1) log [c +�(xvh,ω)]

}
− s·h log(b+ c + ab)+ 2s· log(a+ 1)

+
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v=1

s∑

h=1

log�(xvh,ω)+ a

l∑
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s∑

h=1

log(xvh)+

l∑
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s∑
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(s − h) log

[
1−

xa+1
vh [c +�(xvh,ω)]
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]
.

(5)

∂LRSS

∂a
=
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s∑
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log(xvh)+

�′
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]
−

s·hb
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+

2s·

a+ 1

+

l∑
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s∑

h=1

�′
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+

l∑
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where

and

Also, ζ1
(
x(s·−i+1:s·)|ω

)
, ζ2

(
x(s·−i+1:s·)|ω

)
, and ζ3

(
x(s·−i+1:s·)|ω

)
 have the same expressions as (9), (10) and (11) 

by replacing the ordered sample x(i:s·) by the ordered sample x(s·−i+1:s·).

Cramer–von-Mises method
The CRM method is a member of the minimal distance method class. This subsection provides the CRME of 
the parameter a, denoted by âCR , the CRME of parameter b, denoted by b̂CR , and the CRME of parameter c, 
denoted by ĉCR , of the PLD using RSS.

Let X(1:s·),X(2:s·), . . . ,X(s·:s·) are ordered RSS items taken from the PLD with sample size s· = sl, where s is set 
size and l is the cycle number. The CRMEs âCR, b̂CR, ĉCR of a, b, and c are derived by minimizing the function

Rather than using Eq. (12), these estimators can be obtained by solving the non-linear equations

and

where ζ1
(
x(i:s·)|ω

)
, ζ2

(
x(i:s·)|ω

)
, and ζ3

(
x(i:s·)|ω

)
 are given in Eqs. (9), (10), and (11).

Maximum product of spacings method
This subsection provides the MXPSE of the parameter a, denoted by âMP , the MXPSE of parameter b, denoted 
by b̂MP , and the MXPSE of parameter c, denoted by ĉMP , of the PLD using RSS.

Let X(1:s·),X(2:s·), . . . ,X(s·:s·) are ordered RSS items from the PLD with sample size s· = sl, where s is set size 
and l is the cycle number. The uniform spacings are defined as the differences

where F
(
x(0:s·)|ω

)
= 0, F

(
x(s·+1:s·)|ω

)
= 1, such that 

s·+1∑
i=1

Di(ω) = 1.

The MXPSEs âMP, b̂MP, ĉMP of a, b, and c are found by maximizing the geometric mean of the spacing, which 
is obtained by maximizing the following function

The MXPSEs âMP, b̂MP, ĉMP are provided by solving numerically the equations
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and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).

Least squares method
Here, the LSE of the parameter a, denoted by âLS , the LSE of parameter b, denoted by b̂LS , and the LSE of param-
eter c, denoted by ĉLS , of the PLD are covered using RSS.

Suppose that X(1:s·),X(2:s·), . . . ,X(s·:s·) are ordered RSS items from the PLD with sample size s· = sl, where s is 
set size and l is the cycle number. The LSEs âLS, b̂LS and ĉLS , are obtained after minimizing the function

with respect to a, b, and c. The LSEs âLS, b̂LS , and ĉLS can be produced by solving the following non-linear 
equations

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in (9), (10), and (11).

Minimum spacing absolute distance
In the following, we obtain the SPADE of the parameter a, denoted by âSPA , the SPADE of parameter b, denoted 
by b̂SPA , and the SPADE of parameter c, denoted by ĉSPA , of the PLD using RSS.

Suppose that X(1:s·),X(2:s·), . . . ,X(s·:s·) are ordered RSS items from the PLD with sample size s· = sl, where s is 
set size and l is the cycle number. The SPADEs âSPA, b̂SPA , and ĉSPA are obtained after minimizing the following 
function with respect to a, b, and c:

The SPADEs âSPA, b̂SPA , and ĉSPA are obtained by solving the nonlinear equations

and

numerically, where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).
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Minimum spacing absolute-log distance
This subsection provides the SPALoDE of the unknown parameter a, represented by âLD , the SPALoDE of the 
unknown parameter b, represented by b̂LD , and the SPALoDE of the unknown parameter c, represented by ĉLD 
of the PLD based on the RSS method.

Let X(1:s·),X(2:s·), . . . ,X(s·:s·) are ordered RSS items from the PLD with sample size s· = sl, where s is set size 
and l is the cycle number. The SPALoDEs âLD, b̂LD , and ĉLD are obtained after minimizing the following function 
with respect to a, b, and c:

The following nonlinear equations can be numerically solved to obtain âLD, b̂LD , and ĉLD rather of using Eq. (15),

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).

Minimum spacing square distance
In this subsection we are concerned with the MSSDE of parameter a, represented by âSD , the MSSDE of parameter 
b, represented by b̂SD , and the MSSDE of the parameter c, represented by ĉSD of the PLD based on RSS.

Let X(1:s·),X(2:s·), . . . ,X(s·:s·) are ordered RSS items from the PLD with sample size s· = sl, where s is set size 
and l is the cycle number. The MSSDEs âSD, b̂SD , and ĉSD are obtained after minimizing the following function 
with respect to a, b, and c:

The following nonlinear equations can be numerically solved to obtain âSD, b̂SD , and ĉSD rather of using Eq. (16),

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).

Minimum spacing square-log distance
Here, the MSSLDE of parameter a, represented by âSLo , the MSSLDE of parameter b, represented by b̂SLo , and 
the MSSLDE of the parameter c, represented by ĉSLo of the PLD are determined based on RSS.

Let X(1:s·),X(2:s·), . . . ,X(s·:s·) are ordered RSS items from the PLD with sample size s· = sl, where s is set size 
and l is the cycle number. The MSSLDEs âSLo, b̂SLo , and ĉSLo are obtained after minimizing the following func-
tion with respect to a, b, and c:

The following nonlinear equations can be numerically solved to obtain âSLo , b̂SLo , and ĉSLo rather of using Eq. (17),
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and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).

Minimum spacing Linex distance
This subsection provies the MSLNDE of parameter a, say âSLx , the MSLNDE of parameter b, say b̂SLx , and the 
MSLNDE of the parameter c, say ĉSLx of the PLD based on RSS.

Let X(1:s·),X(2:s·), . . . ,X(s·:s·) are ordered RSS items from the PLD with sample size s· = sl, where s is set size 
and l is the cycle number. The MSLNDEs âSLx, b̂SLx , and ĉSLx are yielded after minimizing the following function 
with respect to a, b, and c:

The following nonlinear equations can be numerically solved to obtain âSLx , b̂SLx , and ĉSLx rather of using Eq. (18),

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in (9), (10), and (11).

Estimation methods based on SRS
This section provides the MLE, ADE, CRME, MXPS, LSE, SPADE, SPALoDE, MSSDE, MSSLDE, and MSLNDE 
for the parameters a, b and c for the PLD based on SRS.

Maximum likelihood estimators
Here, the MLEs ãML of a, b̃ML of b, and c̃ML of c for the PLD are obtained based on SRS. To get these estimators, 
suppose that x1, x2, . . . , xs· is an observed SRS of size s· from the PLD with PDF (1). The log-LF of a, b and c, is 
given by:

When differentiating ℓSRS with respect to a, b and c, we obtain the following equations:
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and

Using the statistical software Mathematica, the nonlinear equations (19)–(21) may be solved numerically 
after setting them equal to zero, to obtain the MLEs ãML, b̃ML, and c̃ML of a, b, and c, respectively.

Anderson–Darling estimators
In this subsection, the ADE of parameter a, say ãAD , ADE of parameter b, say b̃AD , and the ADE of parameter c, 
say c̃AD of the PLD are obtained using SRS.

Let X(1),X(2), . . . ,X(s·) be ordered items from SRS following PLD with sample size s· . Thus, the ADEs 
ãAD, b̃AD, c̃AD of a, b, and c are derived by minimizing the function

Alternatively, the ADEs of the PLD can be obtained by solving the subsequent non-linear equations in place of 
Eq. (22):

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11) with ordered sample x(j) and x(s·−j+1).

Cramer–von-Mises estimators
Here, we get the CRME of the parameter a, denoted by ãCR , the CRME of parameter b, denoted by b̃CR , and the 
CRME of parameter c, denoted by c̃CR , of the PLD are covered using SRS method.

Let X(1),X(2), . . . ,X(s·) are ordered SRS items taken from the PLD with sample size s· . The CRMEs ãCR , b̃CR , 
and c̃CR of a, b, and c are derived by minimizing the function

The following non-linear equations can be solved to get the CRMEs instead of using Eq. (23)

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11) with ordered sample x(j).

Maximum product of spacings estimators
This subsection presents the MXPSE of the PLD using SRS for parameter a, indicated by ãMP , the MXPSE of 
parameter b, indicated by b̃MP , and the MXPSE of parameter c, indicated by c̃MP.

Let X(1),X(2), . . . ,X(s·) are ordered SRS items taken from the PLD with sample size s· . The MXPSEs ãMP, b̃MP , 
and c̃MP of a, b, and c are found by maximizing the geometric mean of the spacing, which is obtained by 
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where D∗
j (ω) = F

(
x(j)|ω

)
− F

(
x(j−1)|ω

)
, j = 1, 2, . . . , s· + 1, F

(
x(0)|ω

)
= 0, F

(
x(s·+1)|ω

)
= 1, such that 

s·+1∑
j=1

D∗
j (ω) = 1. The MXPSEs ãMP, b̃MP, c̃MP are provided by numerically solving the equations

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).

Least squares estimators
Here, we use the SRS method to produce the LSE of the parameter a, denoted by ãLS , the LSE of parameter b, 
denoted by b̃LS , and the LSE of parameter c, denoted by c̃LS , of the PLD.

Let X(1),X(2), . . . ,X(s·) be ordered SRS items taken from the PLD with sample size s· . The LSEs ãLS, b̃LS , and 
c̃LS are obtained after minimizing the following function with respect to the unknown parameters a, b, and c:

Alternately, the LSEs ãLS, b̃LS , and c̃LS are acquired by minimizing the following equations:

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in (9), (10), and (11).

Minimum spacing absolute distance estimators
This subsection provides the SPADE of the unknown parameter a, represented by ãSPA , the SPADE of the 
unknown parameter b, represented by b̃SPA , and the SPADE of the unknown parameter c, represented by c̃SPA 
of the PLD based on the SRS method.

Let X(1),X(2), . . . ,X(s·) be ordered SRS items taken from the PLD with sample size s· . The SPADEs ãSPA, b̃SPA , 
and c̃SPA are obtained after minimizing the following function with respect to a, b, and c:

Alternately, the following nonlinear equations can be solved numerically to yield the SPADEs ãSPA, b̃SPA , and c̃SPA
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where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).

Minimum spacing absolute-log distance estimators
Here, we determine the SPALoDE of the unknown parameter a, represented by ãLD , the SPALoDE of the 
unknown parameter b, represented by b̃LD , and the SPALoDE of the unknown parameter c, represented by c̃LD 
of the PLD based on the SRS technique.

Let X(1),X(2), . . . ,X(s·) are ordered SRS items taken from the PLD with sample size s· . The SPALoDEs ãLD, b̃LD , 
and c̃LD are obtained after minimizing the following function with respect to a, b, and c:

The following nonlinear equations can be numerically solved to obtain ãLD, b̃LD , and c̃LD rather of using Eq. (24),

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).

Minimum spacing square distance estimators
Here, we determine the MSSDE of the unknown parameter a, represented by ãSD , the MSSDE of the unknown 
parameter b, represented by b̃SD , and the MSSDE of the unknown parameter c, represented by c̃SD of the PLD 
based on SRS.

Let X(1),X(2), . . . ,X(s·) are ordered SRS items taken from the PLD with sample size s· . The MSSDEs ãSD, b̃SD , 
and c̃SD are obtained after minimizing the following function with respect to a, b, and c:

The following nonlinear equations can be numerically solved to obtain ãSD, b̃SD , and c̃SD rather of use Eq. (25),

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).

Minimum spacing square-log distance estimators
Here, the MSSLDE of parameter a, represented by ãSLo , the MSSLDE of parameter b, represented by b̃SLo , and 
the MSSLDE of parameter c, represented by c̃SLo of the PLD are determined based on SRS.

Let X(1),X(2), . . . ,X(s·) are ordered SRS items taken from the PLD with sample size s· . The MSSLDEs ãSLo, b̃SLo , 
and c̃SLo are obtained after minimizing the following function with respect to a, b, and c:
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The following nonlinear equations can be numerically solved to obtain ãSLo, b̃SLo , and c̃SLo rather of using Eq. (26),

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).

Minimum spacing Linex distance estimators
This subsection provides the MSLNDE of parameter a, say ãSLx , the MSLNDE of parameter b, say b̃SLx , and the 
MSLNDE of parameter c, say c̃SLx of the PLD based on SRS.

Let X(1),X(2), . . . ,X(s·) are ordered SRS items taken from the PLD with sample size s· . The MSLNDEs ãSLx, b̃SLx , 
and c̃SLx are obtained after minimizing the following function with respect to a, b, and c:

The following nonlinear equations can be numerically solved to obtain âSLx, b̂SLx , and ̂cSLx rather of using Eq. (27),

and

where ζ1(.|ω), ζ2(.|ω), and ζ3(.|ω) are given in Eqs. (9), (10), and (11).

Numerical simulation
The variety of estimation techniques described in this study is examined in this section. By creating random data 
sets produced from the proposed model, the effectiveness of these methods in identifying model parameters is 
evaluated. After that, these data sets go through ranking processes, and the estimation techniques are used to 
identify which one is the best. The simulation operates on the assumption of a flawless ranking, as elaborated 
below:

• We compute the corresponding sample sizes s· = sl , resulting in s· = sl = 30, 75, 150, 250, 400 . This allows 
us to create an RSS from the suggested model with a fixed set size of s = 5 and changing cycle numbers 
l = 6, 15, 30, 50, 80.

• We generate SRS from the suggested model using the specified sample sizes s· = 15, 50, 120, 200, 300, 450.
• Using the actual parameter values (a, b, c), we derive a set of estimates for each sample size.
• To assess the efficacy of the estimation methods, six metrics are utilized, comprising:

• The average of absolute bias (BIAS), computed by the formula: |Bias(ω̂ωω)| = 1
H

∑H
i=1 |ω̂ωω −ωωω|.

• The mean squared error (MSE), determined as follows: MSE = 1
H

∑H
i=1(ω̂ωω −ωωω)2.

• The mean absolute relative error (MRE), evaluated using the expression: MRE = 1
H
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i=1 |ω̂ωω −ωωω|/ωωω.
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• The average squared absolute error (ASAE), computed as: ASAE = 1
H

∑H
i=1

|x(i)−x̂(i)|
x(n)−x(1)

 , where x(i) denotes 
the ascending ordered observations, and ωωω = (a, b, c).

• The metrics delineated in the preceding step function as impartial standards for appraising the precision 
and dependability of the estimated parameters. Employing these assessment criteria facilitates a thorough 
evaluation of the efficacy of the estimation methods. This evaluative procedure yields significant insights into 
the effectiveness and suitability of these methods for the specific model in question.

• This approach can be repeated several times to provide a solid and trustworthy assessment of the estimation 
methods. By ensuring consistency and clarity in the performance findings, this repeated assessment improves 
our comprehension of how successful these strategies are in parameter estimation for the model.

• The assessment metrics related to RSS and SRS are shown in Suppl Tables 1–10 (see Suppl Appendix). These 
tables provide a thorough summary of the outcomes attained. The numbers in these tables represent the 
relative effectiveness of each strategy out of all the estimation techniques that were looked at. Reduced values 
indicate better performance than the examined estimation methods. These tables are crucial for evaluating 
the relative merits and efficacy of the various estimation methods.

• The MSE ratio of SRS to RSS is shown in Suppl Table 11, which facilitates the evaluation of the MSE perfor-
mance of different sampling techniques and provides information on their efficiency.

• Suppl Tables 12 and 13 for SRS and RSS (see Suppl Appendix), respectively, give comprehensive rankings, 
including partial and total ranks. These ranking tables thoroughly analyze each estimation technique’s relative 
efficacy and performance, facilitating a greater comprehension of its advantages and disadvantages.

After a meticulous examination of the simulation outcomes and the rankings depicted in the tables, several 
deductions emerge:

• Notably, our model estimates demonstrate consistency for both SRS and RSS data sets. This consistency 
implies that the estimates progressively approach to the true parameter values as the sample size expands.

• Every metric used shows a similar trend: a decline with increasing sample size. This trend implies that more 
accurate and precise parameter estimations are produced with larger sample numbers.

• Our simulation findings for the SRS and RSS data sets suggest that MXPSE is the best technique when assess-
ing the precision of our calculations.

• Estimates from RSS data sets show more efficiency than estimates from SRS data sets, as seen in Suppl 
Table 11. This result suggests that RSS is a more effective sampling technique, producing estimates with a 
lower MSE.

Real data analysis
This section emphasizes the usefulness of the suggested estimation techniques by thoroughly elaborating on a 
real data set. This analysis clarifies how these estimation methods may be applied to real data, demonstrating 
their usefulness and applicability in real-world research and decision-making scenarios. The data set under 
consideration features the total milk production during the initial birth of 107 cows from the SINDI. This data 
set was investigated by Abd El-Bar et al.12, and its values are as follows: 0.4365, 0.4260, 0.5140, 0.6907, 0.7471, 
0.2605, 0.6196, 0.8781, 0.4990, 0.6058, 0.6891, 0.5770, 0.5394, 0.1479, 0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 
0.7261, 0.3323, 0.0671, 0.2361, 0.4800, 0.5707, 0.7131, 0.5853, 0.6768, 0.5350, 0.4151, 0.6789, 0.4576, 0.3259, 
0.2303, 0.7687, 0.4371, 0.3383, 0.6114, 0.3480, 0.4564, 0.7804, 0.3406, 0.4823, 0.5912, 0.5744, 0.5481, 0.1131, 
0.7290, 0.0168, 0.5529, 0.4530, 0.3891, 0.4752, 0.3134, 0.3175, 0.1167, 0.6750, 0.5113, 0.5447, 0.4143, 0.5627, 
0.5150, 0.0776, 0.3945, 0.4553, 0.4470, 0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147, 0.3627, 0.3906, 0.4438, 
0.4612, 0.3188, 0.2160, 0.6707, 0.6220, 0.5629, 0.4675, 0.6844, 0.3413, 0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 
0.4111, 0.5349, 0.3751, 0.1546, 0.4517, 0.2681, 0.4049, 0.5553, 0.5878, 0.4741, 0.3598, 0.7629, 0.5941, 0.6174, 
0.6860, 0.0609, 0.6488, 0.2747.

Results of the descriptive analysis can be found in Table 1. A variety of graphical representations is shown in 
Fig. 2, including histograms, quantile-quantile (Q-Q) plots, violin plots, box plots, total time on test (TTT) plots, 
and kernel density plots. The probability-probability (P-P) plot, estimated CDF, estimated survival function, and 
a histogram with the estimated PDF, are given in Fig. 3. The SRS and RSS estimates obtained from the PLD are 
shown in Tables 2 and 3, respectively. Several goodness-of-fit statistics, namely from the Anderson–Darling test 
(AT), the Cramer–von-Mises test (WT), and the Kolmogorov–Smirnov test (KST), are used to assess the models, 
see Table 4. These values (the smaller, the better) demonstrate that RSS is better than SRS for various estimation 
techniques. Moreover, it is evident from Figs. 4 and 5 how well the models fit the data.

Table 1.  Descriptive statistics.

s
· Mean Median Skewness Kurtosis Range Minimum Maximum Sum

107 0.0168 0.4741 −0.3306 −0.3638 0.8613 0.0168 0.8781 50.1671
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Concluding remarks
The accuracy of parameter estimators is considerably influenced by the sampling technique used in statistical 
parameter estimation problems. In the current work, the parameter estimates of the PLD are examined using both 
SRS and RSS approaches. The various estimates obtained by RSS were contrasted with those obtained through 
SRS. Six metrics were used to evaluate the effectiveness of the estimation methods. Based on our simulation 
findings for the SRS and RSS data sets, the MXPS method seems to be the best choice in terms of accuracy of the 
estimates. For both the SRS and RSS data sets, our model estimates show consistency. It may be inferred from 
this consistency that as the sample size increases, the estimates gradually become closer to the actual parameter 
values. Compared to estimates obtained from RSS data sets, those created from SRS data sets are less efficient.
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Figure 2.  Some plots for the real data set.
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Data availability
Any data that supports the findings of this study is included in the article.
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Table 2.  Values for various estimators based on SRS for different values of s·.

s
· Est. ML AD CRM MXPS LS SPAD SPALoD MSSD MSSLD MSLND

20

â 1.43048 1.40753 1.43026 1.30113 1.424 0.904541 1.30113 0.0964535 1.30843 0.104748

b̂ 1.1654× 10
−9 0.394726 1.08697× 10

−
7 874.363 0.40385 0.151353 16.6021 14747.9 2.12035 3.88514

ĉ 1.20641 429831. 0.771405 90497.5 2.85× 10
8 2.29242 1718.37 0.590897 1.36352× 10

6 5.91478× 10
−7

40

â 1.31084 1.24601 1.25287 1.25454 1.25012 1.19105 1.25456 1.07241 1.36415 1.07274

b̂ 3.0246 2.3941 0.603904 0.157244 1.10931 0.100354 4.05452 2.98036 0.360713 1.75939× 10
−7

ĉ 5.70623× 10
7

4.91932× 10
6 2.3094× 10

7 16124.2 506978. 7565.71 2.36535× 10
6 146431 1.09889× 10

6 1.11529

60

â 1.08963 1.14461 1.20208 0.999184 1.20225 1.12833 1.01889 0.793657 1.06579 0.788221

b̂ 0.100069 0.04876 2.21269 3942.18 0.290438 0.100006 153509. 0.405077 0.12035 7.47944× 10
−8

ĉ 2.08944× 10
6 325788. 1.69354× 10

7 183870 2.58634× 10
7 1673.94 1.39044× 10

7
1.34382× 10

6 86613.8 1.57541

80

â 1.10546 0.841786 1.19126 1.06851 1.19085 1.25216 1.03718 1.58182 0.967496 1.58736

b 12675.6 203042. 5.74555 0.854431 8.10385 0.105775 260980. 9.00435 10.6876 18.8045

ĉ 2.17605× 10
13

1.31206× 10
6

1.05383× 10
8 750809 958042. 14745.1 1.71404× 10

7 63885.3 1.75025× 10
7 237949

100

â 1.1924 0.625184 1.26893 1.15834 1.26852 1.23451 1.16938 1.51738 1.06558 1.50024

b̂ 29.1788 16059.3 10.0274 135.732 15.1774 79027.5 361.761 33.0389 3.50684 224.215

ĉ 2.30892× 10
6 34917.3 454385. 27468.8 2.16066× 10

7
1.57814× 10

6 1.09782× 10
7

1.30206× 10
6 942615 68799

Table 3.  Values for various estimators based on RSS for different values of s·.

s
· Est. ML AD CRME MXPS LS SPAD SPALoD MSSD MSSLD MSLND

20

â 1.2925 1.26419 1.26081 1.30301 1.25372 1.73876 1.39382 1.38601 1.27469 1.37028

b̂ 10.2454 5.01094 159.927 2993. 7.79142 0.202211 11.8287 26.2623 1.78189× 10
−11 31.9842

ĉ 1.12491× 10
8

6.23194× 10
6

5.24807× 10
8 143179 5.20844× 10

7
6.30247× 10

6
4.45607× 10

6
4.79981× 10

9 0.488326 11204

40

â 1.46389 1.45031 1.45664 1.45613 1.45443 0.850463 1.15967 1.311 1.34815 1.30923

b̂ 24.5555 13.3833 17.8271 12.4957 20.3694 7082.3 22.2325 342.471 1.02178× 10
−
9 11.9198

ĉ 1.11217× 10
9 3.92682× 10

7 329849 1.27894× 10
6 5.75129× 10

7 23558.6 1.78613× 10
7

1.91837× 10
9 1.54045 80517.9

60

â 1.35325 1.34632 1.38406 1.19084 1.3831 1.12833 1.02833 1.44385 1.06983 1.4409

b̂ 1.24509 0.010936 1.3848 1258.93 16.3061 0.100006 0.100001 8.92162× 10
−9 0.100107 1.16053× 10

−8

ĉ 1.25147× 10
8 384756. 1.34145× 10

6 63057.2 3.3309× 10
7 0.937451 0.964921 0.459674 0.979211 0.353558

80

â 1.18551 1.1801 1.20608 1.13977 1.20551 1.25214 0.999928 1.31201 0.978852 0.201663

b̂ 15.8075 15.0351 21.3578 8.12685 2.67734 12.3202 8.96797 7.56202 3.65314× 10
−12

3.93703× 10
6

ĉ 3.85208× 10
9 6.8484× 10

7
1.90074× 10

6 691676 170598 342311 4842.94 705700 0.904663 2.57847× 10
6

100

â 1.23088 1.22766 1.30393 1.07103 1.30323 0.236196 0.0571355 1.79332 0.754801 1.79397

b̂ 3.17858× 10
−10

2.89103× 10
−15

3.58314× 10
−17

5.61519× 10
−9 13.5738 13.3967 3705.6 7.67335× 10

−100.164378 1.13057× 10
−9

ĉ 1.32351× 10
6 3.9386 0.581916 0.428129 530667. 2.01181 232.269 0.520082 1.3064 0.0997822
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Table 4.  Parameter estimates and goodness-of-fit measures for the SRS and RSS designs with s· = 60.

Method Design â b̂ ĉ AT WT KST

ML
SRS 1.08963 0.100069 2.08944× 10

6 2.17557 0.358186 0.150029

RSS 1.35325 1.24509 1.25147× 10
8 1.22693 0.17796 0.11505

AD
SRS 1.14461 0.04876 325788 2.1395 0.333795 0.157366

RSS 1.34632 0.010936 384756 1.22646 0.178962 0.116644

CRM
SRS 1.20208 2.21269 1.69354× 10

7 2.1774 0.325384 0.165076

RSS 1.38406 1.3848 1.34145× 10
6 1.24028 0.175973 0.11425

MXPS
SRS 0.999184 3942.18 183870 2.39583 0.413046 0.152589

RSS 1.19084 1258.93 63057.2 1.47821 0.240442 0.142101

LS
SRS 1.20225 0.290438 2.58634× 10

7 2.17762 0.325384 0.165099

RSS 1.3831 16.3061 3.3309× 10
7 1.23958 0.175974 0.114165

SPAD
SRS 1.12833 0.100006 1673.94 2.14302 0.339339 0.155235

RSS 1.12833 0.100006 0.937451 1.98519 0.305023 0.151386

SPALoD
SRS 1.01889 153509 1.39044× 10

7 2.33543 0.403704 0.152126

RSS 1.02833 0.100001 0.964921 1.97596 0.317579 0.14366

MSSD
SRS 0.793657 0.405077 1.34382× 10

6 3.78251 0.802906 0.221374

RSS 1.44385 8.92162× 10
−9 0.459674 1.3169 0.183221 0.119541

MSSLD
SRS 1.06579 0.12035 86613.8 2.21424 0.37395 0.146863

RSS 1.06983 0.100107 0.979211 1.93282 0.303017 0.14248

MSLND
SRS 0.788221 7.47944× 10

−8 1.57541 3.83752 0.816582 0.223016

RSS 1.4409 1.16053× 10
−8 0.353558 1.31159 0.18253 0.119279
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Figure 4.  Plots of the estimated PDFs of the PLD with histogram for the two sampling methods when s· = 60.
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