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Effect of a harmonic surface 
pressure on wave propagation 
over a beach
N. S. Abdelrahman 1*, M. S. Abou‑Dina 2 & A. F. Ghaleb 2

The objective is to study the harmonic forced wave motion over a beach by a finite Fourier transform 
technique. The constructed approximate solution has a logarithmic singularity at the shoreline. It 
accounts for reflexion and local perturbations. Trapping of waves may take place for particular choices 
of the applied surface pressure excess. The case of a wave incident against a cliff with horizontal 
bottom is solved exactly. The method deals invariably with a variety of bottom shapes, including 
the case where there is an additional corrugation of the bottom on a finite interval. Other bottom 
boundary conditions than impermeability can be treated as well. The results may be of interest 
in several practical applications, in particular the evaluation of the reflected wave. Numerical 
applications for a plane sloping beach, a parabolic-type beach and a shelf-type beach are presented 
and the systems of streamlines have been drawn over and in the proximity of the beach.

Keywords  Harmonic wave propagation, Potential flow, Surface pressure, Linear theory, Finite Fourier 
transform, Energy transfer, Water power conversion

The investigation of wave motion on beaches may be traced back to the end of the nineteenth century. The dis-
sipation phenomena during wave propagation over beaches have been extensively studied. On the other hand, 
the evaluation of wave reflection by the beach is still awaiting further investigation. The research work was mainly 
undertaken using the techniques of complex analysis, involving a great deal of complexity of the calculations. 
One of the early contributions to the subject is due Lewy1 who studies progressive water waves on beaches of 
constant slope for special values of the angle of inclination. Friedrichs2 presents an asymptotic representation 
of the solution for small slopes. John3 considers a barrier inclined at a special angle in water of infinite depth. 
Isaacson4 investigates progressing gravity waves over a plane sloping bottom. Peters5 studies the effect of a surface 
mat on water waves. He considers water wave propagation over a beach under a different bottom condition. 
The problem formulation and solution for waves on beaches may be found in Stoker6, Ch. 5, with a discussion 
on the validity of the solutions under different theories. Wehausen and Laitone7, p.537 give a detailed descrip-
tion of the problem under the general title of plane wave motion in unbounded regions with fixed boundaries. 
Lehman and Lewy8 discuss the uniqueness problem for water waves on sloping beaches and the boundedness of 
solutions. Peregrine9 studies the propagation of long waves in water of variable depth through nonlinear equa-
tions. Experimental studies on wave reflection by a sloping beach in a tank and the dependence of the reflection 
coefficient on wave steepness were carried out by Taira and Nagata10. Tuck and Hwang11 investigate the linear 
propagation of long waves on a uniformly sloping beach. Near-shore large amplitude waves are also investigated 
using the nonlinear theory. Suhayda12 presents measurements associated with standing waves beaches. Sachdev 
and Seshadri13 propose an approximate analytical solution to the problem of motion of a bore on a sloping beach. 
Svendsen and Hansen14 investigate two-dimensional time-periodic water waves on a gently sloping bottom in 
the long-wave limit. They derive solutions up to the second-order degree of smallness. Mahony and Pritchard15 
study wave reflexion from beaches and the dependence on friction at the bottom of the reflexion coefficient. 
Peregrine16 presents an overview of wave breaking on beaches. Ehrenmark17 considers the problem of a train 
of infinitesimal waves propagating over a uniformly sloping beach and discusses solutions having singularities 
of different orders at the shoreline. Miles18 studies wave reflection from a gently sloping beach within the linear 
theory. Mandal and Kundu19 re-investigate the two-dimensional problem of incoming wave against a cliff by 
Fourier transform. They present a simplified solution which includes a logarithmic singularity at the shoreline. 
The effect of surface tension is considered. Chakrabarti20 studies the propagation of waves against a cliff under 
the assumptions of linearized theory. His solution exhibits a source/sink type behavior of the velocity potential 
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at the shore-line. Gupta21 proposes an analytic solution describing the motion of a bore over a uniformly slop-
ing beach for the supercritical case. McIver22 provides an example of non-uniqueness in the twodimensional 
linear water wave problem. Javam et al.23 undertake a numerical study of internal wave reflection from sloping 
boundaries within a nonlinear theory. Ehrenmark24 studies wave trapping above a plane beach by partially or 
totally submerged obstacles within the linear theory. He underlines a case of non-uniqueness for the water wave 
problem on a beach. Liu et al.25 obtain analytical solutions for forced long waves on a sloping beach. Comparison 
is carried out with previous numerical solutions. Dias and Dutych26, Fujima27 and Helal28 study tsunami mod-
eling and runup on beaches. Bukreev29 presents experimental results concerning the reflection of a nonlinear 
wave from a vertical wall.

Simarro et al.30 present a fully nonlinear Boussinessq-type model with several free parameters for the study 
of water waves in fluids of varying depth. Martin and Taskinen and Martin et al.31,32 study linear wave propaga-
tion in a pond with shallow beach. They show that the problem may have some continuous spectrum, in spite 
of the boundedness of the solution domain. Xu and Dias33 take a look back at old water wave solutions on a 
uniformly sloping beach and present four different standing wave solutions to this problem. Gallerano et al.34,35 
present numerical simulation and shock capturing models for free surface flow and runup over beaches based 
on a nonlinear model. Durán et al.36 proposed a modification of the governing equations of long-wave propa-
gation in shallow water that include well-conditioned dispersive terms to achieve efficient and stable run-up 
computations in the swash zone.

Wave propagation in shallow water over topography, and tsunami runup over beaches were studied theoreti-
cally and numerically by many authors, among whom Dobrokhotov and Nazaikinskii37, Bihlo and Popovych38, 
Zhang et al.39, Zhu and Wang40.

The existing literature deals mainly with uniformly sloping beaches with extension to deep water, or with 
vertical barriers and cliffs in water of finite or infinite depth. More investigations are still needed to deal with 
general beach shapes. The overwhelming majority of work does not include numerics.

The present work investigates approximate singular solutions to the problem of harmonic wave propagation 
over a beach in the presence of a pressure excess applied to a finite portion of the water surface. The solution has 
a logarithmic singularity at the shoreline, and is otherwise smooth inside the flow domain. In view of the flow 
obstruction by the beach, the logarithmic singularity is necessary as it provides a harmonic source/sink that 
takes part in the balance of mass. Explicit formulae are obtained for the strength of the logarithmic source, the 
reflexion coefficient and the coefficients of local perturbations in terms of unknown coefficients. These latter are 
calculated approximately from the satisfaction of the impermeability condition on the bottom. Cases are noted 
where wave trapping takes place for certain distributions of the surface pressure excess. The case of an incident 
wave against a cliff is solved exactly. The method may be used to treat a variety of bottom shapes, as well as 
cases when the bottom has an additional corrugation on a finite interval. Other boundary conditions (cf.5) than 
impermeability may be treated by the same method equally well. Computations have been carried out for a plane 
sloping beach, a parabolic-type beach and a shelf-type beach. The systems of streamlines have been drawn over 
the beach and over the adjacent part with horizontal bottom. The obtained results clearly indicate that there is 
complete reflection of the incoming harmonic wave, which means that a system of standing waves establishes in 
the channel. It is believed that this stems from the particular choice of a length parameter included in Fourier 
finite transform. The action of the excess surface pressure is to alter the shape of the streamlines and the values of 
the streamfunction along the different streamlines. The present method performs well in the interval 1 ≤ κ ≤ 2 . 
For larger values of κ , the errors in satisfying the different boundary conditions start to increase. Work is in 
progress to discover other types of solutions.

Problem formulation and frame of reference
Consider the incompressible, two-dimensional, potential flow of an inviscid fluid of constant density ( ρ = 1 ) 
in a semi-infinite channel with finite end in the form of a sloping beach, and a constant depth otherwise. The 
fluid motion is generated by an incident wave of amplitude I0 and harmonic time dependence of frequency ω , in 
addition to a given external pressure excess of the same harmonic time dependence, applied on a finite portion 
of the water surface. A system of outgoing waves establishes in the fluid body. It is required to determine the 
resulting fluid motion.

A rectangular frame of reference is used to describe the motion, with origin O and x-axis along the mean 
level of the water surface in the direction of propagation of the incident wave, and y-axis vertically upwards, 
as illustrated in Fig. 1. Since the incident wave and the surface pressure excess have the same harmonic time 
dependence, it is reasonable to assume that the velocity potential function will share the same time dependence. 
Thus, the time dependent velocity potential φ(x, y, t) may be written as:

where φ(x, y) is a complex function of x and y. Time can now be eliminated from all governing equations and 
boundary conditions.

The equation of the bottom is of the form y = k(x) , where

with

(1)φ(x, y, t) = Re
[
φ(x, y)e−iωt

]
,

(2)k(x) =

{
f (x), 0 ≤ x ≤ b,
−h, x ≥ b,

(3)f (0) = 0, f (b) = −h.
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The governing equations of the linearized theory of motion are best obtained from the nonlinear equations by 
expansion in a small parameter. The linear approximation imposes restrictions on the value of the dimension-
less parameter κ defined below and on the free surface elevation η above a mean horizontal line. This elevation 
is of the same order of magnitude as the small parameter ε used in the linearization process. According to41, the 
domain of applicability of the linear theory of motion roughly corresponds to

The reader is kindly referred to41,42 for details: 

	 (i)	 In the fluid mass 
(
−k(x) ≤ y ≤ 0, f −1(y) ≤ x < ∞

)
 , the condition of incompressibility yields: 

	 (ii)	 At the upper bound of the domain of the problem 
(
y = 0, x ≥ 0

)
 : An excess oscillatory external pres-

sure of finite support is applied, having the same order of magnitude and the same harmonic time 
dependence as those of the incident wave. In the absence of such excess pressure, one usually assumes a 
constant pressure at the surface, this may be taken equal to zero. If the external oscillatory excess pres-
sure has the form Pex(x, t) = P0(x)e

−iωt , the boundary condition at y = 0 in the frame of the linearized 
theory which expresses the impermeability of the upper fluid surface, is written as: 

 where g is the acceleration of gravity. Function P0(x) is assumed to have a finite support {x : α ≤ x ≤ β} , 
and is continuous on it, except for a finite number of finite discontinuities. Assuming continuity of the 
time-independent surface elevation η(x) of the upper fluid surface above a horizontal equilibrium level 
( y = 0 ), a jump in the pressure function P0(x) at a certain point induces a similar behavior of the veloc-
ity potential φ at the same point.

	 (iii)	 On the bottom of the channel 
(
y = k(x), 0 ≤ x < ∞

)
 and on the surfaces of the obtacles, the normal 

velocity component vanishes: 

	 (iv)	 The radiation condition at infinity (x → ∞) stating that: no wave is coming from infinity except the 
prescribed incident one.

The time-dependent water surface elevation

and the time-dependent pressure at any point inside the fluid as the sum of the usual hydrostatic pressure and 
the surface excess pressure:

are expressed in terms of η(x) and P(x, y):

0.08 < κ , εκ < 0.04.

(4)
∂2φ

∂x2
+

∂2φ

∂y2
= 0.

(5)
∂φ

∂y
−

ω2

g
φ =

iω

ρg
P0(x),

(6)
∂φ

∂n
= 0.

(7)η∗(x, t) = Re
[
η(x)e−iωt

]
,

(8)P∗(x, y, t) = −ρgy + Re
[
P(x, y)e−iωt

]
,

(9)η(x) =
iω

g
φ(x, 0)−

1

ρg
P0(x),

Figure 1.   Solution regions for a beach.
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hence finally in terms of the time independent velocity potential φ(x, y).
We do an analytic continuation of the harmonic function φ to the whole rectangle 

V =
(
0 ≤ x ≤ a, −h ≤ y ≤ 0

)
 . Without ambiguity, the same notation φ(x, y) will be retained for the extended 

function.

Method of solution
The flow domain is divided into two regions separated by a vertical line as in Fig. 1: A volume V0 bounded by the 
x-axis, the vertical line x = a and the bottom line, and an unbounded volume V+ to the right of V0 . Constant 
a is chosen so that the finite support (α,β) of the pressure excess satisfies (0 < α < β < a) , and the bottom 
line is horizontal for x ≥ a . The solution in the semi-infinite region is obtained by separation of variables and 
consists of an outgoing wave and local perturbations, in addition to an incident wave. Details of the solution 
may be found in41: 

1.	 Denote by �0 the only real positive root of the transcendental equation 

 corresponding to the Sturm–Liouville eigenvalue problem 

2.	 Denote by �p 
(
p = 1, 2, 3, ...

)
 the positive roots of the transcendental equation 

 arranged by increasing magnitude. This arises from the Sturm-Liouville eigenvalue problem: 

Related to these Sturm–Liouville problems is the following complete and orthogonal set of functions 
{cosh �0(y + h), cos �p(y + h), p = 1, 2, · · · } on the interval [−h, 0].

The solution for the total time independent velocity potential in the region V+ satisfying the boundedness 
requirement at infinity is taken as:

The quantities Rp represent the so-called local perturbation coefficients, necessary to achieve continuity of the 
flow in the vicinity of the separation vertical line at x = a.

On the right bound of the domain V0
(
x = a, −h ≤ y ≤ 0

)
 , the continuity of the pressure and the velocity 

yields the following expressions for the solution �0(x, y):

Introduce the finite cosine Fourier transform of the surface pressure excess function P0(x)

The inversion formula reads

where q0m = 2− δ0m , δ0m is the Krönecker delta symbol. Under the above assumptions, coefficients Pm tend to zero 

at least like 
1

m
 as m grows indefinitely large.

To write an expression for the solution in the bounded region V0 , we refer to a remark by Stoker6, p. 81 : “... we 
expect to find two solutions of our problem which behave differently at the origin and at infinity. At the origin, 

(10)P
(
x, y

)
= iρω φ(x, y)+ P0(x).

�h tanh �h =
ω2h

g
= κ

−
d2F1

dy2
= −�

2 F1,
dF1

dy
−

ω2

g
φ = 0 at y=0,

dF1

dy
= 0 at y = -h.

�h tan �h = −κ ,

−
d2F2

dy2
= �

2 F2,
dF2

dy
−

ω2

g
φ = 0 at y=0,

dF2

dy
= 0 at y = -h

(11)�+(x, y) =
{
I0 e

−i�0x + R0 e
i�0x

}
cosh �0(y + h)+

∞∑

p=1

Rp cos �p(y + h) e−�p(x−a).

(12)�0(a, y) =
(
I0e

−i�0a + R0e
i�0a

)
cosh �0(y + h)+

∞∑

p=1

Rp cos �p(y + h),

(13)
∂�0

∂x
(a, y) =i�0

(
−I0e

−i�0a + R0e
i�0a

)
cosh �0(y + h)−

∞∑

p=1

�pRp cos �p(y + h).

(14)ρghaPm =

∫ a

0
P0(x) cos

mπx

a
dx, m = 0, 1, 2, . . .

(15)P0(x) =

∞∑

m=0

q0m
(
ρghPm

)
cos

mπx

a
,
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in particular, we expect to find one solution to be bounded and the other to have a logarithmic singularity”  
and another one by Wehausen and Laitone7, p. 537: “... All these authors restricted the solution to be bounded 
everywhere. This has the effect of excluding a physically important class of solutions with singularities at the 
origin”. Following these remarks, we consider a velocity potential function that belongs to a functional space 
whose functions possess a logarithmic singularity at the origin. A convenient representation of the solution for 
the velocity potential in the region V0 is taken as:

where E and C are unknown coefficients to be determined in the process of the solution, N is a positive integer 
the value of which will be fixed later on, �(x, y) is regular in the extended domain V, and

The extracted term from � with multiplicative constant E is necessary when treating the special case of a cliff 
with horizontal bottom. As to the function Z(x, y), it has a logarithmic singularity at the origin of coordinates 
through its first component, while the other three components are regular functions in the flow domain and on 
its boundary. This function has been chosen so as to make the calculations simpler due to the following relations:

The presence of the singularity at the shoreline with the beach should not cause concern, because a whole inter-
val at this point lies outside the region of applicability of the linear theory due to wave breaking (cf.15, p. 810).

The next step is to expand the horizontal derivative of the extended harmonic function � on the newly 
introduced boundary at x = 0 in terms of the above-mentioned complete orthogonal family of functions as:

where B0 and Bp are coefficients to be determined in the process of the solution.
For the determination of the function �(x, y) , introduce the finite cosine Fourier transform of this function 

defined as:

The inversion formula reads:

Transforming Laplace’s equation and using the continuity requirements of the horizontal derivative at two verti-
cal lines x = 0 , x = a one obtains:

with

The function multiplying C in the last equation may now be expanded in the complete set of functions 
{cosh �0(y + h), cos �p(y + h), p = 1, 2, · · · } on the interval [−h, 0] as:

(16)�0(x, y) = �(x, y)+ E cosh
2Nπy

a
cos

2Nπx

a
+ C Z(x, y),

(17)

Z(x, y) =
1

4

[
ln

√
x2 + y2

h
+ ln

√
x2 + (y + 2h)2

h

− ln

√
(x − 2a)2 + y2

h
− ln

√
(x − 2a)2 + (y + 2h)2

h

]
.

(18)Z(a, y) = 0,
∂Z

∂y

∣∣∣∣
x=a

= 0,
∂

∂y

(
∂Z

∂x

)∣∣∣∣ x = a
y = −h

= 0.

(19)
∂�

∂x
(0, y) = i�0B0 cosh �0(y + h)+

∞∑

p=1

�pBp cosh �pa cos �p(y + h),

(20)�̃m(y) =

∫ a

0
�(x, y) cos

mπx

a
dx, m = 0, 1, 2, . . .

(21)�(x, y) =

∞∑

m=0

q0m
a

�̃m(y) cos
mπx

a
.

(22)
∂2

∂y2
�̃m(y)−

(mπ

a

)2
�̃m(y) = ζ(y)+ (−1)mξ(y),

(23)ζ(y) = i�0B0 cosh �0(y + h)+

∞∑

p=1

�pBp cosh �pa cos �p(y + h),

(24)

ξ(y) = i�0

(
I0e

−i�0a − R0e
i�0a

)
cosh �0(y + h)+

∞∑

p=1

�pRp cos �p(y + h)

+C

(
a

a2 + y2
+

a

a2 + (y + 2h)2

)
.
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where β0,βp are shown in Suppl. Appendix. It may be easily verified that this function is positive, bounded and 
monotonic decreasing on its interval of definition. Moreover, it has zero derivative at y = −1 , showing that the 
expansion can be differentiated term by term.

The transformed condition on the water surface reads:

with

and

The quantities Wm and Qm tend to zero like 1/m as m increases indefinitely. The first integral in the expression 
for Wm has a removable singularity and equals:

Si(z) denoting the usual integral sine function in the variable z.
Solving Eq. (22), satisfying the condition on the water surface and applying the inverse transformation, one 

obtains:

Under the assumption

where N is the same positive integer introduced in Eq. (16), chosen large enough so as to include the non-
horizontal part of the bottom and the finite support of the surface pressure excess in the region V0 , the term 
with vanishing denominator in the expression (30) will have a removable singularity if the numerator vanishes:

and the following limit exists:

(25)
a

a2 + y2
+

a

a2 + (y + 2h)2
= β0�0 cosh �0(y + h)+

∞∑

p=1

βp�p cos �p(y + h),

(26)
h
∂�̃m(y)

∂y
− κ�̃m(y) = κ

[
E
a

2
δ2Nm + aCWm

]
+ Ch

(π
8
− Qm

)
+ iνaPm

= iνaP′m, say,

(27)
ν = ωh2,

Wm =−
1

4

1

mπ

∫ a

0
sin

mπx

a

[
1

x
+

x

x2 + 4h2
+

1

2a− x
+

2a− x

(2a− x)2 + 4h2

]
dx,

(28)Qm =2ah

∫ a

0

a− x(
x2 + 4h2

)[
(2a− x)2 + 4h2

] cos mπx

a
dx

P′m = Pm − iE
κ

2ν
δ2Nm − iC

κ

ν

[
Wm +

h

κa

(π
8
− Qm

)]
.

(29)
∫ a

0

1

x
sin

mπx

a
dx =

∫ mπ

0

1

x
sin x dx = Si(mπ),

(30)

�(x, y) =

M∑

m = 0

q0m
Am

cosh mπh
a

(
cosh

mπy

a
+

a

h

1

mπ
κ sinh

mπy

a

)
cos

mπx

a

+ iν

M∑

m = 0

q0m
mπ

P′m sinh
mπy

a
cos

mπx

a
+ iB0 sin �0x cosh �0(y + h)

+
i

sin �0a

(
B0 cos �0a+ I0e

−i�0a − R0e
i�0a − iCβ0

)
cos �0x cosh �0(y + h)

−

P∑

p=1

Bp cosh �pa
cosh �p(a− x)

sinh �pa
cos �p(y + h)

−

P∑

p=1

(
Rp + Cβp

) cosh �px
sinh �pa

cos �p(y + h),

�0a = 2Nπ ,

(31)R0 = B0 + I0 − iβ0C
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The limit may be taken at once to yield:

The expresssion for � now simplifies to:

T h e  f u n c t i o n  cosh
2Nπy

a
 i s  n ow  e x p a n d e d  i n  t h e  c o mp l e t e  s e t  o f  f u n c t i o n s 

{cosh �0(y + h), cos �p(y + h), p = 1, 2, · · · } on the interval [−h, 0] as:

where Im0, Imp are shown in Suppl. Appendix.

Continuity of the solution at x = a

The continuity requirement of the velocity potential at x = a yields

By orthogonality, using Eqs. (31, 32) and after some manipulations, one obtains:

in terms of the incident wave amplitude I0 and the unknown coefficients

D = lim
�0a→2Nπ

i

sin �0a

(
B0 cos �0a+ I0e

−i�0a − R0e
i�0a − iCβ0

)

= lim
�0a→2Nπ

i

sin �0a

[
B0(cos �0a− 1)+ I0

(
e−i�0a − 1

)
+ R0

(
ei�0a − 1

)]
.

(32)D = I0 + R0.

(33)

�(x, y) =

M∑

m = 0

q0m
Am

cosh mπh
a

(
cosh

mπy

a
+

a

h

1

mπ
κ sinh

mπy

a

)
cos

mπx

a

+ iν

M∑

m = 0

q0m
mπ

P′m sinh
mπy

a
cos

mπx

a
+ (I0 + R0) cosh �0(y + h) cos �0x

+ iB0 sin �0x cosh �0(y + h)−

P∑

p=1

Bp cosh �pa
cosh �p(a− x)

sinh �pa
cos �p(y + h)

−

P∑

p=1

(
Rp + Cβp

) cosh �px
sinh �pa

cos �p(y + h),

(34)cosh
2Nπy

a
=I2N ,0 cosh �0(y + h)+

∞∑

p=1

I2N ,p cos �p(y + h),

(35)

M∑

m = 0

(−1)mq0m
Am

cosh mπh
a

(
cosh

mπy

a
+

a

h

1

mπ
κ sinh

mπy

a

)

+ iν

M∑

m = 0

(−1)m
q0m
mπ

P′m sinh
mπy

a
+ EI2N ,0 cosh �0(y + h)

+

P∑

p=1

[
EI2N ,p − Rp −

(
Bp + Rpe

−�pa + Cβp

)
coth �pa

]
cos �p(y + h) = 0.

(36)C = c1 + c2E +
1

ρ0κ

∞∑

m = 0

(−1)mq0mGm
Am
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Ultimately, the unknown coefficients will be determined approximately from the satisfaction of the bottom 
boundary condition. The introduced notation is listed in Suppl. Appendix.

Singular solutions with prescribed strength C, or regular solutions with C = 0 may be obtained from the above 
formulae, in which case one gets an additional constraint between the unknown coefficients of the problem. The 
regular solution, however, may conceal important physical features of the considered problem ( Cf. Wehausen 
and Laitone7, p. 537).

The total velocity potential in the region V is:

Determination of the unknown coefficients
Prior to the application of the impermeability condition on the bottom, the expressions for the velocity poten-
tial �0 and the stream function �0 are re-written in a form that exhibits their dependence on the unknown 
coefficients:

and

The different functions are listed in Suppl. Appendix.
It remains now to determine the constants C,E,Bp, (p = 0, 1, 2, . . .) and Am, (m = 0, 1, 2, . . .) by satisfying 

the boundary impermeability condition �0 = 0 on the bottom by a suitable boundary method. We note two 
methods: 

a.	 Boundary collocation: Satisfying the condition at points Pr , r = 1, 2, ...,R adequately chosen on the bottom 
line L produces R linear algebraic equations in a finite number of the unknowns Bp, p = 0, 1, 2, . . . , P and 
Am, m = 0, 1, 2, . . . ,M . The absolute error in satisfying the boundary condition on the bottom line is defined 
as 

b.	 A boundary Fourier expansion method: Let θ , 0 ≤ θ ≤ � be a running parameter for the bottom curve L in 
the region V0 . Then �0 = �0(θ) = 0 on L. Expand this function in a Fourier series on [0,�] . Then Fourier 
coefficients of this function must vanish. This provides a set of linear algebraic equations for the unknown 
coefficients. The error here is defined as: 

Due to the existence of singularities in the function of the velocity potential and its derivatives at the origin, it is 
believed that the application of the boundary integral method (Cf. the boundary Fourier expansion method43), 
is appropriate for better results. It is thus clear that the method deals in a unified way with any shape of the bot-
tom curve. This is an important feature and an advantage of the present method.
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Computational aspects
When carrying out computations, the infinite series over m and p in the solutions must be truncated. The same 
holds for the Fourier representation of the surface pressure excess function P0(x) which will be assumed to have 
only K + 1 terms. Proper limits must then be taken. The divergent series for ρ0 and ρp (see Suppl. Appendix) 
must be re-written as:

The Eqs. (36), (31) and (38) now assume the form:

The coefficients appearing in these last equations are expressed as:

Trapping of waves
Formula (31) obtained for the reflection coefficient allows to treat cases where the incident wave is totally 
absorbed due surface pressure excess. For this, it suffices to set R0 = 0 in that formula to yield:
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GM
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This equation will now be considered to involve the unknown constants Pm , to be determined together with the 
other unknown coefficients of the problem.

For the particular choice of a constant pressure excess over the interval [0, a], all the coefficients Pm vanish, 
with the exception of the (unknown) coefficient P0 . This latter may be found, together with the other coefficients, 
from the impermeability condition on the bottom curve together with the reduced equation.

Other cases of trapping may be found if all the Pm’s, except a finite number of them, vanish identically.

Progressive wave against a cliff with horizontal bottom
For a progressive wave against a cliff with horizontal bottom as in Fig. 2, the coefficients B0,B1,B2, · · · may be 
calculated from the condition of vanishing of the horizontal derivative of the velocity potential �0 at the cliff 
as follows:

hence by integration using orthogonality:

On the other hand, as shown above:

Then the coefficients Am,m = 0, 1, 2, . . . are determined from the satisfaction of the bottom condition by equat-
ing to zero the vertical derivative of the velocity potential �0 as follows:

Make a Fourier cosine expansion

so that:
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Figure 2.   Solution regions for a cliff with horizontal bottom.
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The condition on the bottom becomes:

For m = 2N the above equation yields the value of the coefficient E from the relation:

For the other values of m, one gets the values of the constants Am in terms of the other unknown coefficients 
from the relations:

Equations (36) and (31) now serve to determine the two constants C and R0 . Finally, the remaining constant A2N 
may be obtained by a limiting procedure from the expression of Am:

with

Thus the problem of wave propagation against a cliff finds here an exact solution with logarithmic singularity for 
the velocity potential function at the intersection of the water surface mean position with the cliff.

For a constant pressure over the interval [0, a], one has P0 = 1, Pm = 0,m = 1, 2, · · ·.
The case when the pressure function is a delta function concentrated at x0(< a) was noted by Stoker6. This 

case is important for two reasons: (i) A general distribution of the surface pressure can be replaced by a super-
position of concentrated distributions; (ii) When the surface pressure distribution is extremely complicated, or 
even unknown, and interest is mainly focused on the asymptotic behavior of the solution. Here:

Numerical results
We have considered three types of beaches for the determination of the system of streamlines. Here we have set 
the surface excess pressure equal to zero. For the calculations, we have taken

This value for κ shows that the conditions for shallow water theory are not satisfied.
The number of collocation nodes was taken so as to achieve a square matrix. Two methods of solution, the 

Gaussian elimination and the least squares yielded the same results. The best results for all the three considered 
cases were obtained for the truncation parameters:

These choices made the jump δ between the values of the stream function on both sides of the vertical line x = a 
less than the value 0.00045. 

a.	 The parabolic beach. The shape of the beach is described by the function 
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 with initial inclination ≃ 41◦ . The shape of the beach and the collocation nodes are shown in Fig. 3. The 
streamlines for the parabolic beach in the region V0 are illustrated in Fig. 4. The 3D-plot of the streamfunc-
tion in the region V0 is shown in Figure 5. The streamlines for the parabolic beach in the region a ≤ x ≤ 2a 
appear in Fig. 6, while the 3D-plot of the streamfunction in the region 0.01 ≤ x ≤ 2a is shown in Fig. 7.

b.	 The uniformly sloping beach. The shape of the beach is described by the function 

Figure 3.   The parabolic beach and the collocation nodes.

Figure 4.   The streamlines for the parabolic beach in the region V0.

Figure 5.   Streamfunction for the parabolic beach in the region V0.
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 with initial inclination ≃ 19◦ . Figures 8, 9, 10, 11 and 12 illustrate the same flow characteristics as for the 
previous case.

c.	 The shelf-type beach. The shape of the beach is described by the function 

(52)k(x) =

{
16h
9a2

(
x − 3a

4

)2
− h, 0 ≤ x ≤ 3a

4 ,

−h, x > 3a
4 ,

Figure 6.   Streamlines for the parabolic beach in the region a ≤ x ≤ 2a.

Figure 7.   The streamfunction for the parabolic beach for 0.01 ≤ x ≤ 2a.

Figure 8.   The uniformly sloping beach and the collocation nodes.
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 with initial inclination ≃ 37◦ . We have shown in Figs. 13, 14, 15, 16 and 17 the different flow characteristics 
for the shelf-shaped beach.

All over the semi-infinite channel, the system of stremlines forms cells. This is due to the harmonic time 
dependence of the incident wave. In that part of the channel with x ≥ a where the bottom is horizontal, there 
establishes a system of streamlines composed of the bottom line ψ = 0 and a denumerable number of vertical 

(53)k(x) =





9h
2a2

�
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3

�2
− h
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3 ,

− 3h
4 + h

4 cos
�
12π
5a x − 12π

15

�
, a

3 < x ≤ 3a
4 ,

−h, x > 3a
4 ,

Figure 9.   The streamlines for the uniformly sloping beach in the region V0.

Figure 10.   Streamfunction for the uniformly sloping beach in the region V0.

Figure 11.   Streamlines for the uniformly sloping beach in the region for a ≤ x ≤ 2a.
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lines at xr = (r + 1) a2 , r = 1, 2, . . . connecting the free surface to the bottom line. These streamlines form cells 
inside which all the other streamlines are distributed, all of them ultimately reaching to the free surface. The 
pattern consists of repeated units, each formed of two consecutive cells. These cells are shown for all three 
types of beaches on Figs. 6, 11 and 16 for that portion of the channel for which a ≤ x ≤ 2a . As time goes on, an 
animation program has shown that this system of cells moves as a whole to the right with uniform velocity ω

�0
.

Animation experiments have revealed that a system of standing waves establishes in the initial, left part of the 
channel for which x < a , with small vertical oscillations of the system of streamlines. In the right part of the chan-
nel, there are progressive waves propagating toward infinity. In between, there exists a buffer zone encompassing 

Figure 12.   The streamfunction for the uniformly sloping beach for 0.01 ≤ x ≤ 2a.

Figure 13.   The shelf-type beach and the collocation nodes.

Figure 14.   The streamlines for the shelf-type beach in the region V0.
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Figure 15.   Streamfunction for the shelf-type beach in the region V0.

Figure 16.   Streamlines for the shelf-type beach in the region a ≤ x ≤ 2a.

Figure 17.   The streamfunction for the shelf-type beach for 0.01 ≤ x ≤ 2a.
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the vertical line and consisting of one cell performing horizontal oscillations and splitting periodically. Taking 
into account the surface excess pressure will lead to the modification of the streamlines, and the values taken by 
the streamfunction on these streamlines.

Conclusions
Using a method relying on finite Fourier transform, an approximate spectral solution has been constructed for 
the water wave problem over a beach, that includes a logarithmic singularity at the shore line, and in the presence 
of a surface pressure excess. The logarithm, through its harmonic strength, provides a necessary source/sink 
term that balances the obstruction of the flow by the beach. Otherwise, the presence of such a singularity at the 
shoreline does not matter, because the waves do break before reaching this point and therefore a whole interval 
at this point lies outside the region of applicability of the linear theory. The method separates from the outset 
the singularity in the velocity potential and its derivatives at the origin, as well as the asymptotic behavior of the 
solution. It leads to formulae for the velocity potential satisfying the requirements of continuity to any degree of 
smoothness everywhere inside the domain of the flow. It also provides expressions for the strength of the loga-
rithm, for the reflexion coefficient and for the coefficients of local perturbation in terms of unknown coefficients 
to be determined approximately by the satisfaction of the impermeability condition at the bottom. Cases with no 
reflexion are noted and the problem of an incoming wave against a cliff finds here an exact solution. The study 
deals with a variety of bottom shapes, and may be easily extended to cases involving an additional corrugation 
of the bottom over a finite interval, with submerged obstacles following the guidelines presented in41, or with 
different bottom boundary conditions. Unlike most of the existing literature, the present work contains numerical 
results for three beach topographies showing the systems of streamlines over the beach and the contiguous region 
with flat bottom. In all cases, the obtained values for the reflexion coefficient is nearly equal to unity, meaning 
that a system of standing waves establishes in the channel. This constraint, to our belief, is related to the special 
choice of the length parameter a involved in the finite Fourier transform.

The present results concerning the streamline distribution in the channel, and the possibility of wave trap-
ping, may be of interest for environmental purposes, as it gives an indication about the way pollution propagates 
near the beaches.

Data availability
All data generated or analyzed during this study are included in this article.
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