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Prediction of frequency response 
of sub‑frame bushing and study 
of high‑order fractional derivative 
viscoelastic model
Bao Chen 1,2, Lunyang Chen 2*, Feng Zhou 2, Jiang Huang 1,2 & Zehao Huang 1,2

This paper presents experimental and dynamic modeling research on the rubber bushings of the rear 
sub‑frame. The Particle Swarm Optimization algorithm was utilized to optimize a Backpropagation 
(BP) neural network, which was separately trained and tested across two frequency ranges: 1–40 Hz 
and 41–50 Hz, using wideband frequency sweep dynamic stiffness test data. The testing errors at 
amplitudes of 0.2 mm, 0.3 mm, and 0.5 mm were found to be 1.03%, 3.05%, and 1.96%, respectively. 
Subsequently, the trained neural network was employed to predict data within the frequency range of 
51–70 Hz. To incorporate the predicted data into simulation software, a dynamic model of the rubber 
bushing was established, encompassing elastic, friction, and viscoelastic elements. Additionally, a 
novel model, integrating high‑order fractional derivatives, was proposed based on the frequency‑
dependent model for the viscoelastic element. An enhanced Particle Swarm Optimization algorithm 
was introduced to identify the model’s parameters using the predicted data. In comparison to the 
frequency‑dependent model, the new model exhibited lower fitting errors at various amplitudes, with 
reductions of 3.84%, 3.61%, and 5.49%, respectively. This research establishes a solid foundation for 
subsequent vehicle dynamic modeling and simulation.

Keywords Sub-frame bushing, BP neural network, High-order fractional derivative new model, Dynamic 
stiffness, Parameter identification

Rubber bushings are widely used in automotive chassis, especially in suspension components. They provide a flex-
ible connection between two interconnected parts, reducing wear and improving the lifespan of the components. 
In many electric vehicle chassis, replacing hinged connections with rubber bushings can enhance components 
durability. Additionally, rubber bushings offer advantages of lower cost and lighter weight compared to hinges, 
contributing to reduce manufacturing costs and overall vehicle weight.

Rubber bushings play a crucial role in vehicles by connecting the suspension to the body through subframe 
bushings, providing support for multidirectional  loads1. The transmission of road forces and shocks to the body 
can be reduce, thereby improving overall NVH (noise, vibration, and harshness) performance of the  vehicle2. 
Rubber exhibits strong nonlinear viscoelastic properties within the bushing, which are significantly influenced 
by factors such as load amplitude, frequency, and operating cycles. Therefore, the development of accurate rubber 
bushing models holds great significance in improving suspension and vehicle dynamic simulation  precision3,4.

Extensive research has been conducted by scholars worldwide on the dynamics of rubber bushings, with early 
studies primarily focusing on linear models such as the Kelvin–Voigt, the Zener and the Maxwell  model5. Chinese 
scholar Beibei  Sun6 introduced the concept of the rubber bushing as a combination of elastic, viscoelastic, and 
frictional elements, which provided a clearer understanding of rubber bushing dynamic modeling. Given the 
strong nonlinear viscoelastic properties of the rubber material within the bushing, research on the viscoelastic 
elements of the bushing model has become a focal point.

The most common dynamic models for viscoelastic elements in rubber bushings are standard mechanical 
models such as the Kelvin-Voigt, Maxwell,  Dzierzek7, and Frequency-dependent  model8. To better represent 
the viscoelasticity of rubber, fractional derivative models have been proposed. Metzler, Bagley, Nonnenmacher, 
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Liu and Lin Song, have respectively employed fractional derivative models to study the viscoelastic properties 
of rubber  bushings9–12. A five-parameter fractional derivative model is proposed by  Zhao13.

In simulation software such as MSC Adams, rubber bushing is expressed in the form of a dynamic model, 
so a more accurate rubber bushing dynamic model can help improve the accuracy of the simulation model in 
the simulation software. Further improve the reliability of pre-product development and product optimization.

This paper focuses on the rubber bushing of the rear subframe of a vehicle. The rubber bushing is shown in 
Fig. 1, where the X-direction represents the radial solid direction of the rubber bushing, the Y-direction repre-
sents the radial hollow direction of the rubber bushing, and the Z-direction represents the axial direction of the 
rubber bushing. The stiffness of different directions is different, so this paper focuses on Y-direction.

The rubber bushing was subjected to experimental analysis, with a focus on the Y-direction. The PSO-BP (Par-
ticle Swarm Optimization-Backpropagation) neural network was trained and tested across two frequency ranges: 
1–40 Hz and 41–50 Hz. The trained PSO-BP neural network was then used to predict data in the frequency 
range of 51–70 Hz. In addition, to improve the accuracy of the rubber bushing’s dynamic model, a high-order 
fractional derivative new model was proposed based on the Frequency-dependent model. The new model aimed 
to enhance the overall model accuracy. Then parameter identification was performed on the dynamic model, and 
a modified particle swarm optimization algorithm was proposed for parameter identification.

Prediction of the dynamic characteristics of rubber bushing
Rubber bushing experiment
Experiments are the most effective and intuitive method for studying the mechanical properties of rubber 
bushings. In this study, the rear-point rubber bushing of a vehicle rear suspension sub-frame was selected as the 
experimental object. Dynamic and static loading tests were conducted on the rubber bushing to obtain experi-
mental data. The LETRY dynamic stiffness testing platform, as shown in Fig. 2, was used for the experiments.

Figure 1.  (a) is an actual vehicle; (b) is an actual vehicle chassis; (c) is the rubber bushing form the actual 
vehicle.

Figure 2.  (a) is the LETRY dynamic stiffness testing platform; (b) is the rubber bushing X loading.
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Rubber bushing static loading test
The elastic and friction units of the bushing model established in this study are used to simulate the static 
behavior of the bushing.

The loading range in the X/Y direction is ± 12000N, and in the Z direction is ± 6000N. The experimental 
results are shown in Fig. 3. Due to the anisotropic nature of the rubber bushing studied in this paper, the static 
characteristics in the X/Y/Z directions exhibit significant differences.

Rubber bushing dynamic loading test
The dynamic loading test of the rubber bushing involves conducting wideband frequency sweep tests with 
sinusoidal excitations of different amplitudes. To fully investigate the dynamic characteristics of the rubber 
bushing, dynamic loading tests were performed in the frequency range of 1–50 Hz with amplitudes of 0.2 mm, 
0.3 mm, and 0.5 mm. The relationship curve between the dynamic stiffness of the rubber bushing and the sweep 
frequency was obtained.

The experimental results for the X, Y, and Z directions are shown in Figs. 4, 5, 6.
In the case of constant amplitude, the dynamic stiffness of the rubber bushing in the X/Y/Z directions 

increases with increasing frequency. Conversely, under constant frequency, the dynamic stiffness decreases with 
increasing amplitude. There is significant variation in the dynamic stiffness of the rubber bushing in different 
directions and amplitudes, particularly noticeable between the X and Y directions. In this study, the focus was 
on modeling the rubber bushing in the Y-direction, which exhibits higher dynamic stiffness.

Figure 3.  Rubber bushing static loading test data in X/Y/Z-directions.

Figure 4.  Relationship between dynamic stiffness and frequency in X-direction for different amplitudes of 
rubber bushing.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15767  | https://doi.org/10.1038/s41598-024-66536-6

www.nature.com/scientificreports/

Prediction of Dynamic Stiffness in the Y‑Direction of Rubber Bushing using PSO‑BP Neural 
Network
In the testing of rubber bushings, wideband frequency sweep tests are required at different amplitudes. This is 
especially crucial in the research process of NVH characteristics, where more frequency test samples are needed. 
However, the increased demand for test samples leads to higher costs and longer testing cycles. Additionally, 
during the testing process, the resonance of the testing machine itself can cause abrupt changes in the test data 
of the rubber  bushings14.

To reduce the testing cost and cycle, BP neural networks are used to predict the test data of rubber bush-
ings. In order to improve the prediction accuracy of the BP neural network, this study combines it with the 
PSO  algorithm15. The BP neural network adjusts its network weights and thresholds based on the prediction 
 error16. The PSO algorithm, proposed by Dr. Eberhart and Dr. Kennedy in  199517, is an intelligent optimization 
algorithm inspired by birds searching for food. It searches for the optimal solution based on fitness by updating 
the position and velocity of particles.

The iteration formulas for updating velocity and position in the PSO algorithm is calculated as follows:

(1)
vt+1 = wvt + c1r1(pb − xt)+ c2r2(gb − xt)

xt+1 = xt + vt+1

Figure 5.  Relationship between dynamic stiffness and frequency in Y-direction for different amplitudes of 
rubber bushing.

Figure 6.  Relationship between dynamic stiffness and frequency in Z-direction for different amplitudes of 
rubber bushing.
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In Eq. 1, w represents the inertia weight; vt and xt denote the current particle’s velocity and position; pb and 
gb respectively indicate the positions associated with the individual best fitness value and the global best fitness 
value; r1 and r2 represent random numbers within the range (0,1); and c1 and c2 are the learning factors; the veloc-
ity and position of the particle have ranges of [vmin, vmax] and [xmin, xmax] , respectively.

The fitness function for the PSO-BP neural network can be expressed as follows:

In the formula, n represents the number of output nodes in the neural network, yi denotes the desired output 
of the i-th node in the BP neural network, and oi represents the predicted output of the i-th node. The coefficient 
k is set to 1 in this study.

The parameter settings are provided in Table 1, and the PSO-BP neural network process is illustrated in Fig. 7.
The prediction results based on PSO-BP neural network test data can be shown by Fig. 8. According to Fig. 9, 

the comparison between the prediction results and experimental data results of the PSO-BP neural network can 
be observed.

(2)F = k

(

n
∑

i=1

∣

∣(yi − oi)
∣

∣

)

Table 1.  Parameter Settings for PSO-BP Neural Network. The particle dimension refers to the sum of 
the threshold and weight count of the entire neural network. The weight count is calculated as follows: 
1 × 5 + 5 × 1 = 10, and the threshold count is 5 + 1 = 6. Therefore, the particle dimension is 10 + 6 = 16.

Algorithm Parameters Values

BP neural network

Input neuron 1

Hidden layer 5

Output neuron 1

Training samples 1–40 Hz

Test samples 41–50 Hz

Prediction 51–70HZ

Learning rate 0.1

PSO algorithm

Particle dimension 16

Population size 30

Number of iterations 50

[vmin , vmax] [− 1,1]

[xmin , xmax] [− 5,5]

c1 1.5

c2 1.5

Figure 7.  PSO-BP neural network flowchart.
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According to Fig. 10, the data samples ranging from 1 to 40 Hz are used as training data, resulting in lower 
prediction errors. The samples ranging from 41 to 50 Hz are used to test the capabilities of the trained PSO-BP 
neural network, hence the errors may be higher compared to the 1–40 Hz range. Table 2 shows the calculated 
errors of the neural network, and errors within 10% are considered acceptable. From the table, it can be seen 
that the prediction errors are within an acceptable range.

Establishment of the parameterized model for rubber bushing.
The dynamic model of the bushing, as shown in Fig. 11, can be constructed by parallel connections of elastic, 
frictional, and viscoelastic elements. In the figure, Fe represents the elastic force in units of N ; Ff  represents the 
force of the frictional hysteresis element in units of N;Fv and represents the viscoelastic force in units of N ; F 
represents the response force of the entire parameterized model in units of N.

Since the elastic, frictional, and viscoelastic elements are connected in parallel, the combined force of the 
three elements represents the response force of the entire bushing, as expressed in Eq. 3:

(3)F = Fe + Ff + Fv

Figure 8.  1–70 Hz, prediction results of PSO-BP neural network.

Figure 9.  Comparison of prediction results from PSO-BP neural network with experimental data.
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Elastic element
The static characteristics of the bushing are caused by its elastic deformation. Constitutive models commonly 
used to describe the static mechanical behavior include the Mooney-Rivlin  model18, Neo-Hookean  model19, 
Yeoh  model20, Ogden  model21, etc. However, considering the elastic deformation characteristics of the bushing, 
in order to more flexibly accommodate the nonlinearity of the elastic element, a polynomial spring model is 
used to represent the static characteristics of the bushing. The polynomial spring can adjust the highest degree 
or coefficients to adapt to the nonlinearity of the elastic element. Its mechanical expression is as  follows22:

Fe represents the force of the elastic element, measured in units of N . Under the influence of a sinusoidal 
excitation with an amplitude of x0 , the amplitude of the elastic module is given by:

The elastic element does not consider friction, so there is no energy loss.

(4)Fe = a0 + a1x + a
2
x2 + ......+ anx

n

(5)Fe0 = a0 + a1x0 + a
2
x20 + ......+ anx

n
0

Figure 10.  Difference between predicted values and experimental values for 1–50 Hz.

Table 2.  Prediction errors of the PSO-BP neural network.

Amplitude Percentage Error (%)

0.2 mm 1.03

0.3 mm 3.05

0.5 mm 1.96

Figure 11.  Rubber bushing dynamic model.
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Frictional element
The hysteresis effect of a rubber bushing becomes more pronounced with increasing deformation, and the non-
linearity becomes more evident. The expression for the smooth friction force model is as  follows23:

Among them, Ff  represents the frictional force, x represents the displacement of the loading, measured in 
units of mm; Ffmax is the maximum frictional force, measured in units of N; x2 is the displacement at which the 
frictional force increases from 0 to Ffmax/2 , measured in units of mm;(xs , Ffs ) represents a reference point on 
the force–displacement curve obtained from static loading tests. Under the influence of a sinusoidal excitation 
with an amplitude of x0 , the amplitude of the frictional hysteresis module is given by:

In the formula,u = Ff 0/Ffmax , and Ef  represents the energy dissipation per cycle, measured in units of N∙mm.

Viscoelastic element
For the dynamic model of the viscoelastic element in a rubber bushing, following the approach proposed by Liu 
Guo jia et al., a high-order fractional derivative model is derived based on the Frequency-dependent model.

The Frequency-dependent model is then modified to develop a new model called the High-Order Fractional 
Derivative Frequency-dependent model. The structure of the Frequency-dependent model and the new model 
is shown in Table 3.

Frequency‑dependent model
The mechanical expression of the Frequency-dependent model is as follows:

In the equations:x represents the loading displacement of the rubber bushing, measured in units of mm; z 
represents the displacement of the elastic element k2 and the damping element c2 , measured in units of mm; 
k1, k2, c1, c2 are the elastic coefficients and damping coefficients of the model.

(6)Ff = Ffs +
(x − xs)

[

Ff max − sign(ẋ)Ffs
]

x2

[

1− sign(x)
Ffs

Ff max

]

+ sign(ẋ)(x − xs)

(7)Ff =
Ff max

2x2

(

√

x20 + x22 + 6x0x2 − x0 − x2

)

(8)Ef = 2Ff max

[

2x0 − x2(1+ u)2 ln
x2(1+ u)+ 2x0

x2(1+ u)

]

(9)F1 = k1x

(10)F2 = k2z + c2ż = c1(ẋ − ż)

(11)F = F1 + F2

Table 3.  Model Structure Diagram.

Model Structure

Frequency dependent

k1

k2

c1

c2

F1

F1

z

x

New model

k1

k2

c2

x

c1
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Substituting Eqs. 9 and 10 into Eq. 11:

In the formula, ż represents:

α = k2
k1

 ; β = c2
c1

 ; γ = c1
k1Equations 14 and 15 are obtained from 12 and 13 through Laplace transformation:

From Eq. 15, it can be concluded that:

Equation 16 is substituted into Eq. 14:

From Eq. 17, the formula for calculating the complex stiffness can be derived:

The complex stiffness converted to the frequency domain yields the following equation:

By further deriving from the above equation, the amplitude of the real part and imaginary part of the response 
force, denoted as Fv0Re and Fv0lm respectively, under a sinusoidal excitation of amplitude x0 , can be obtained:

New model
Because the Frequency-dependent model cannot accurately describe the viscoelastic properties of rubber, this 
paper proposes a Frequency-dependent model based on the High-Order Derivative Frequency-dependent model. 
The relationship between force and displacement in this new model is given by:

In the equation, α and β represent the order of the fractional derivatives, which range (0,1) ; k1, k2, c1, c2 are 
the elastic modulus and viscosity coefficients of the model, respectively; and 0Dα

t  is the Riemann–Liouville 
fractional derivative operator.

0
D
α

t
 can be definition by Eq. 23:

In other words, f (t) is first to do (n− α) fractional integration, and then take the n derivative, n is 1.
Based on the Frequency-dependent model, changing the damping to a sticky pot with fractional derivative of 

displacement can better describe the viscoelastic properties of rubber. When α and β are both 1, the new model 
will be equal to the Frequency-dependent model, so the mechanical properties of the new model already include 
the mechanical properties that the Frequency-dependent model can represent.

(12)F = k1x + c1(ẋ − ż)

(13)ż =
1

1+ β

(

ẋ −
α

γ
z

)

(14)F(s) = k1X(s)+ c1(sX(s)− sZ(s))

(15)sZ(s) =
1

1+ β

(

sX(s)−
α

γ
Z(s)

)

(16)Z(s) =
sX(s)

(1+ β)s + α
γ

(17)F(s) = k1X(s)+ c1

(

sX(s)−
s2X(s)

(1+ β)s + α
γ

)

(18)Kv(s) =
F(s)

X(s)
= k1 + c1s −

c1s
2

(1+ β)s + α
γ

(19)Kv(ω) =
F(ω)

X(ω)
= k1 + c1iω +

c1ω
2

(1+ β)iω + α
γ

(20)Fv0Re =

(

k1 +
c1ω

2αγ

(1+ β)2ω2γ 2 + α2

)

x0

(21)Fv0lm =

(

c1ω −
c1ω

3γ 2(1+ β)

(1+ β)2ω2γ 2 + α2

)

x0

(22)0D
β
t F +0 D

α
t

c2

c1
F +

k2

c1
F =0 D

β
t (k1 + k2)x +0 D

α
t

c2

c1
k1x +

k2k1

c1
x +0 D

α+β
t c2x

(23)0D
α
t f (t) ≈

1

Ŵ(n− α)

dn

dtn

∫ t

α

f (x)

(t − x)α−n+1
dx
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Equations 23 are obtained 22 through Laplace transformation:

From Eq. 23, the formula for calculating the complex stiffness can be derived:

�1 =
c2
c1

 ; �2 = k2
c1
。

The complex stiffness of the new model in the frequency domain can be derived as:

Setting n = 0 as the principal root, the result is as follows:

From Euler’s formula, we can obtain:

Substituting Eq. 26 into Eq. 23, we have:

By further deriving from the above equations, the magnitudes of the real part and imaginary part of the 
response force, denoted as Fv0Re and Fv0lm respectively, under a sinusoidal excitation of amplitude x0 can be 
obtained:

(24)sβF(s)+ sα
c2

c1
F(s)+

k2

c1
F(s) = sβ(k1 + k2)X(s)+ sα

c2k1

c1
X(s)+

k2k1

c1
X(s)+ sα+βc2X(s)

(25)Kv(s) =
F(s)

X(s)
=

(k1 + k2)(s)
β + �1k1(s)

α + �2k1 + c2(s)
α+β

(s)β + �1(s)
α + �2

(26)Kv(ω) =
F(ω)

X(ω)
=

(k1 + k2)(iω)
β + �1k1(iω)

α + �2k1 + c2(iω)
α+β

(iω)β + �1(iω)
α + �2

(27)(iω)α = ωαeiπα/ 2+2nπα

(28)(iω)α = ωαeiπα/ 2

(29)(iω)α = ωα(cos(
απ

2
)+ isin(

απ

2
))

(30)

Kv(ω) =
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The above equations will be used for the subsequent parameter identification of the viscoelastic element.

Parameter identification of the parameterized model for rubber bushing
In the parameter identification process of the rubber bushing model, the elastic unit and friction unit are first 
identified using quasi-static loading data. Subsequently, the viscoelastic unit is identified by combining the 
dynamic stiffness data.

Parameter identification of the elastic and friction units
Parameter identification is performed using static loading test data. The static elastic stiffness Ke of the elastic 
unit, as shown in the Fig. 12, can be approximate by the slope of the curve near the limit position of displace-
ment. The maximum friction force Ffmax in the friction model expressed by half the vertical distance between 
the upper and lower limits of the hysteresis loop. The maximum slope of the curve is Kmax.

The parameter x2 in the friction unit can be determined using Eq. 32.

By aligning the upper and lower boundary curves of the hysteresis loop in Fig. 12 through translation, the 
force–displacement test curve for the elastic component is obtained. Using the data from this curve, a 3rd-degree 
polynomial spring model is fitted as shown in Fig. 13.

Results of parameter identification for the elastic unit and friction unit are shown in Table 4.

Parameter identification of the viscoelastic unit
The parameter identification of the viscoelastic unit involves a large number of parameters, resulting in a sig-
nificant computational burden. Parameter identification for the viscoelastic unit is typically performed using 
algorithms such as least  squares24, genetic  algorithms25, and particle swarm optimization.

Because the model established in this paper has many parameters and strong nonlinear. The PSO algorithm 
is often used to solve the optimization problem with many parameters, wide range and strong nonlinear. There-
fore, this paper selects PSO algorithm for optimization. However, the PSO algorithm is prone to premature 
convergence, meaning it may get trapped in local optima and fail to explore the entire search space. Due to the 
premature convergence problem of the particle swarm optimization algorithm, where it gets trapped in a local 

(32)
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Figure 12.  Force–displacement curve under quasi-static loading test.
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optimal solution, genetic algorithm has the ability of mutation. The proposed improved particle algorithm is 
proposed based on the genetic and mutation ideas. When the particle swarm optimization algorithm gets trapped 
in a local optimal solution, a new particle swarm is generated by mutating it to seek a better solution and thus 
avoid premature convergence.

To improve the speed of optimization, a random particle is selected from the particle swarm during the veloc-
ity update process. By controlling the particle’s velocity update in three directions, the speed of particle optimiza-
tion is enhanced, and it helps prevent getting trapped in local optima. The velocity update equation is as follows:

In the Eq. 33: c3 is the learning factor; r3 is a random number in the range (0,1); ps is the randomly selected 
particle from the current particle swarm.

To prevent getting trapped in local optima, the results of each optimization iteration are evaluated. If the 
historical best fitness of the particle swarm remains unchanged after the current iteration is completed, the entire 
particle swarm undergoes crossover and mutation operations similar to those in genetic algorithms. This gener-
ates new particles and changes the search direction, thereby avoiding local optima.

The crossover operation is performed in a real-valued encoding format. For particles that meet the crossover 
condition, one random particle is selected for the crossover operation. The specific method is as follows:

In the Eq. 34: xk represents the particle that satisfies the crossover condition, xl is the randomly selected 
particle, and σ is a random number in the range (0,1).

The mutation operation applies different mutation probabilities to different particles. Therefore, the particle 
swarm is sorted in ascending order based on their fitness values, where particles with higher fitness values have 
higher mutation probabilities. The specific method is as follows:

(34)
vt+1 = wvt + c1r1(pb − xt)+ c2r2(gb − xt)

+c3r3(ps − xt)

(35)
xk = xk(1− σ)+ xl

xl = xl(1− σ)+ xk

Figure 13.  Fitting the curve of the elastic unit.

Table 4.  Parameter identification results for the elastic and friction units.

Model units Parameters Results

Elastic unit

Ke 6663.68

n 3

a3 85.12

a2 -187.2

a1 6782

a0 647.662

Frictional unit
Ffmax/(N) 0.1257

x2/(mm) 0.1257
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In the Eq. 35: Pm represents the mutation probability, and i represents the index of the particle in the popula-
tion, ranging from 1 to n.

The mutation operation selects the j-th dimension of the i-th particle for mutation. The mutation method 
is as follows:

In the Eq. 36: max(j) represents the upper bound of the j-th dimension of the particle, min(j) represents the 
lower bound of the j-th dimension of the particle, and r is a random number in the range (0, 1).

Fitness function of the algorithm:

In the Eq. 37: n represents the number of operating conditions being considered; kidyn_t represents the experi-
mentally measured dynamic stiffness data; kidyn represents the dynamically calculated dynamic stiffness for the 
i-th operating condition.

During the identification process, it is necessary to ensure that the data fitted during the model calculation 
does not have significant errors. Therefore, a constraint is established:

Calculate the dynamically calculated dynamic stiffness of the bushing using Eq. 39:

The two types of model parameters will be identified using the MPSO (Modified Particle Swarm Optimiza-
tion) and PSO (Particle Swarm Optimization) algorithms separately. The MPSO algorithm will follow the process 
outlined in Fig. 14.

The specific parameter settings are provided in Table 5 and Table 6. Both models are selected for parameter 
identification using dynamic stiffness data at frequencies of 1, 10, 20, 30, 40, 50, 60, and 70 Hz, with an amplitude 
of 0.2 mm.

To verify the reliability of the MSPO algorithm proposed in this paper, the optimization effects of the PSO 
algorithm, the Adaptive chaotic particle swarm optimization (ACPSO) algorithm, and the MPSO were compared. 
From Fig. 15 to Fig. 16, it can be observed that both for the new model and the frequency-dependent model, 
the MPSO algorithm demonstrates stronger optimization capabilities compared to the PSO algorithm and the 
ACPSO optimization algorithm.

For the new model, the particle is represented as x = (k1, k2, c1, c2,α,β) . Both MPSO and PSO algorithms 
will have a maximum of 300 iterations.

For the frequency-dependent model, the particle is represented as x = (k1, k2, c1, c2) . Both MPSO and PSO 
algorithms will have a maximum of 300 iterations.

From Fig. 17, it can be observed that at a 0.2 mm amplitude, the new model exhibits better fitting performance 
compared to the frequency-dependent model. The error results are shown in Table 7.

The error results also indicate that the new model exhibits better fitting performance, thereby improving the 
model accuracy.

The identification results of unknown parameters of the two dynamic models are shown in Table 8.
Both models were selected for parameter identification using dynamic stiffness data at frequencies of 1, 10, 

20, 30, 40, 50, 60, and 70 Hz, at amplitudes of 0.3 mm and 0.5 mm. The results are shown in Fig. 18.
From Fig. 18, it can be observed that for both 0.3 mm and 0.5 mm amplitudes, the new model exhibits bet-

ter fitting performance compared to the frequency-dependent model. The error results are shown in Table 9.
The error results also indicate that the new model exhibits better fitting performance, thereby improving the 

model accuracy.

Conclusion
This study conducted experiments on the rear suspension sub-frame rubber bushing of a certain electric vehicle 
model. The Y-direction of the rubber bushing was selected as the research object, and the PSO-BP neural network 
was used to predict the dynamic stiffness test data of the rubber bushing. To improve the accuracy of the bushing 
model, a new model was proposed based on the Frequency-dependent model when establishing the dynamic 
model. The parameter identification of the models and a comparison of the fitting accuracy between the two 
models were performed, leading to the following conclusions:

(1) The proposed MPSO algorithm for parameter identification demonstrated stronger optimization capability 
compared to the PSO algorithm, highlighting its practical value.

(36)Pm = 0.5− 0.01
(

i
/

n
)

(37)xij =
(

max(j)+min(j)
)/

2+
(

max(j)−min(j)
)

(r − 0.5)

(38)Fobj =

n
�

i=1





�

kidyn − kidyn_t

kidyn_t

�2




(39)

∣

∣

∣

∣

∣

kidyn − kidyn_t

kidyn_t

∣

∣

∣

∣

∣

≤ 0.1

(40)
F0 =

√

(Fe0 + Ff 0 + Fv0Re)2 + (F2v0lm)

Kdyn = F0
/

x0



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15767  | https://doi.org/10.1038/s41598-024-66536-6

www.nature.com/scientificreports/

Figure 14.  MPSO algorithm flow.

Table 5.  MPSO and PSO parameter settings for the new model.

Algorithm Parameters Values

PSO

Particle dimensions 6

n 50

[x(1−4)min , x(1−4)max] [0,500]

[x(4−6)min , x(4−6)max] [0,1]

w 1.2

c1 1.5

c2 1.5

[v(1−4)min , v(1−4)max] [-50,50]

[v(4−6)min , v(4−6)max] [−1,1]

MPSO
c3 1.5

Crossover probability 0.8
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Table 6.  MPSO and PSO Parameter Settings for the Frequency-dependent Model.

Algorithm Parameters Values

PSO

Particle dimensions 4

n 50

[xmin , xmax] [0 ,500]

w 1.2

c1 1.5

c2 1.5

[vmin , vmax] [-50 ,50]

MPSO
c3 1.5

Crossover probability 0.8

Figure 15.  Comparison of optimization algorithms for the new model.

Figure 16.  Comparison of optimization algorithms for the frequency-dependent model.
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(2) The new model exhibited higher fitting accuracy compared to the Frequency-dependent model, indicating 
its practicality and usefulness.

Figure 17.  Fitting results for 0.2 mm amplitude model.

Table 7.  Model Fitting Errors.

Model Errors (%)

New model 1.49

Frequency-dependent 5.33

Table 8.  Identification Results of Rubber Bushing Parameters at 0.2 mm Amplitude.

Model Parameters Results

New model

k1 8.5215

k2 58.5935

c1 2.1749

c2 14.081

α 0.9014

β 0.0147

Frequency-dependent

k1 194.1252

k2 0.1164

c1 4.5061

c2 259.6623
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