
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:17311  | https://doi.org/10.1038/s41598-024-66369-3

www.nature.com/scientificreports

Characterization and detailed 
mapping of C by spectral sensor 
for soils of the Western Plateau 
of São Paulo
Kathleen Fernandes 1, José Marques Júnior 1, Adriana Aparecida Ribon 2, 
Gabriela Mourão de Almeida 1, Mara Regina Moitinho 1*, Denise de Lima Dias Delarica 1, 
Angélica Santos Rabelo de Souza Bahia 1 & Dener Márcio da Silva Oliveira 3

Soil mineralogy and texture are directly related to soil carbon due to the physical properties of the 
clay surface. Traditional techniques for quantifying carbon in soil are time-consuming and expensive, 
making large-scale quantification for mapping unfeasible. The alternative is the use of soil sensors, 
such as diffuse reflectance spectroscopy (DRS), an economical, fast, and accurate technique for 
predicting carbon stocks. In this sense, this study aimed to (a) investigate the relationship of C 
with different soil mineralogical, chemical, and physical attributes for different geological and 
geomorphological compartments; (b) understand which spectral bands are most important for 
estimating C content; (c) estimate C content from diffuse reflectance spectroscopy using different 
mathematical techniques and indicate which one is the best for tropical soil conditions; and (d) map 
C contents in detail. The study area was the Western Plateau of São Paulo (WPSP), which covers 
approximately 13 million hectares (~ 48% of the State of São Paulo, Brazil). A total of 265 samples 
were collected in this area. The attributes clay, silt, sand, crystalline and non-crystalline iron, base 
saturation, soil density, total pore volume, total C, C stock, kaolinite/(kaolinite + gibbsite) and 
hematite/(hematite + goethite), hematite and goethite contents, and spectral curves were evaluated. 
The spectra were recorded at 0.5-nm intervals, with an integration time of 2.43 nm  s−1 over the 350 
to 2500-nm range (350–800 nm—visible—VIS and 801–2500 nm—near-infrared—NIR). The data were 
subjected to descriptive statistics, Spearman correlation, stepwise analysis, and cluster grouping 
for characterization purposes; partial least squares regression (PLSR) and random forest (RF) for 
estimation purposes; and geostatistics analysis for creation of spatial maps. Our results indicate that 
the highest C contents are associated with more clayey soils, oxidic mineralogy, higher total pore 
volume, and lower soil density in highly dissected basalt compartments. The random forest algorithm 
associated with the Vis–NIR spectral range is more efficient for estimating and mapping C contents. 
This suggests that integrating diffuse reflectance spectroscopy with machine learning techniques 
holds promise for shaping public policies related to land use, mitigating  CO2 emissions, and facilitating 
the implementation of carbon credit policies in a rapid and economically efficient manner.
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World soils contain around four times as much carbon (C) as the vegetation and three times as much as the 
 atmosphere1,2. Globally, soil organic C (SOC) stocks are currently estimated to be 1400 ± 150 petagrams of car-
bon (Pg C) at 1 m in depth and 2060 220 Pg C to 2 m at  depth3. Additionally, SOC improves soil health and the 
delivery of other related ecosystem  services4,5, with undeniable benefits on crop yields, boosting or maintaining 
the production of food, feed, fiber, and energy. Accordingly, any change in the soil C reservoir would signifi-
cantly impact both world food security and global climate  change6,7. In this sense, assessing and monitoring 
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SOC is  mandatory1,8. However, the conventional laboratory-based analytical methods for SOC accounting are 
expensive and time-consuming9,10. The development of accurate and cost-efficient alternative techniques for 
SOC quantification is a major concern in the climate  policy11.

Diffuse reflectance spectroscopy (DRS) is a technique that records the absorption and dispersion of light 
processes, produced on the surface of soil  particles12. It is a fast, non-polluting technique of lower cost and has 
already been used to characterize different  attributes13–16. Its use for estimating soil C  content17–20 may allow the 
detailed mapping of this variable on large scales and the understanding of its spatial variation in  landscapes8,21.

In addition to minerals in the soil governing numerous properties directly related to crop  productivity22–24, 
soil mineralogy plays a large role in directly regulating the size and stability of C  stocks25. Some studies have 
indicated a direct relationship between oxides and C flow in the soil of small  areas15,18,26. However, the existing 
relationships between mineralogy and C in large areas, with higher geological and geomorphological variability, 
are still little studied. Understanding the relationship between soil attributes in detail is the best alternative for 
management practices and soil  planning27.

Multivariate analyses, such as partial least squares regression (PLSR)28, and machine learning algorithms, 
such as random forest (RF)29, have been widely used in C estimation using DRS  data18–21,30 Bellon-Maurel and 
 McBratney17 provided a detailed literature review about DRS and C estimates. According to the authors, the 
future proposal is to optimize these studies spatially for mapping purposes and associate the estimates with 
robust mathematical models.

Soil is a system that is constantly changing. Therefore, accurate predictions of the consequences of human 
activities on terrestrial ecosystems may be  difficult31. The diffusion of new technologies and agricultural research 
developed in the coming decades will determine the possibility of mitigating resources and adapting to climate 
change to ensure continuity in food  production32. Moreover, there is always a shortage of data, inventories, 
detailed C maps for large-scale  projects21,33, and the best mathematical techniques for these  studies30,34, mainly 
in Brazil.

Studies of wide magnitude, which present not only C estimates but also its relationship with other soil attrib-
utes and their spatial variability on maps are essential for agriculture and the sustainability of terrestrial ecosys-
tems. In this context, this study aimed to (a) investigate the relationship of C with different soil mineralogical, 
chemical, and physical attributes for different geological and geomorphological compartments; (b) understand 
which spectral bands are most important for estimating C content; (c) estimate C content from diffuse reflec-
tance spectroscopy using different mathematical techniques and indicate which one is the best for tropical soil 
conditions; and (d) map C contents of the Western Plateau of São Paulo in detail.

Material and methods
Location and characterization of the area
The study area was the Western Plateau of São Paulo (WPSP), which covers approximately 13 million hectares 
(~ 48% of the State of São Paulo, Brazil) (Fig. 1). The geological outline is mainly characterized by sandy, clayey, 
and gravel sediments, volcanic rocks with basic composition, and sedimentary sequences, mainly psamitic, 
which may include pyroclastic sequences (Fig. 1a). Approximately 2 million hectares of WPSP are represented 
by basalt (15.5%), 7.4 million hectares by the Peixe River Valley Formation (57.1%), and 3.6 million hectares by 
other sedimentary formations (27.5%).

The geological formations of WPSP are divided into two groups: (i) Caiuá group, composed of Santo Anastá-
cio and Paraná River formations in the State of São Paulo, corresponding to deposits of sand sheets of dry climate, 
accumulated in extensive and monotonous desert plains, marginal to the large sand sea dune complexes (Caiuá 
Desert), extending to the northern region of the State of Paraná; and (ii) Bauru group, composed of Uberaba, 
Peixe River Valley, Araçatuba, São José do Rio Preto, Presidente Prudente, and Marília formations, which include 
Taiúva analcimites and volcanic rocks locally interspersed in the  sequence35,36.

Soils with the highest occurrence are classified as Argissolo Vermelho-Amarelo (Ultisol), Latossolo (Oxisol), 
Latossolo férrico (Oxisol), Neossolo Litólico (Entisol), Nitossolo Vermelho (Nitisol), and Gleissolo Háplico (Gley-
sol) (Fig. 1b). The geomorphology of the area is shown in Fig. 1d. Moderately dissected areas are predominant in 
the region. The dissection level expresses the soil evolution in the landscape (Fig. 1b), which is associated with 
pedogenesis (soil formation rate) and geomorphogenesis (landscape evolution rate). The lowest hematite (Hm) 
content, highest amorphous goethite (Gt)  contents37, and highest kaolinite (Kt) proportion are observed in the 
central portion of WPSP, where sandstones  prevail38.

The mineralogical characterization at the detail level can infer numerous other soil characteristics. Silva et al.37 
and Fernandes et al.38 pointed out that iron oxides and minerals Kt and Gb accurately reflect their respective 
formation environments and the variability imposed by geological and geomorphological material. Soils undergo 
a reduction process in humid environments in highly dissected compartments in the most drained regions of the 
landscape, favoring Gt formation. On the contrary, sandstone compartments, rich in silica, favor Kt formation.

The tropical climate with a dry winter season prevails in the north and northwest of WPSP (C2rA′a′), while 
the humid temperate climate with a hot summer prevails in the south (B4rB′4a). In addition, the climate in the 
east and southeast consists of a humid temperate climate with a dry winter and hot summer (B2rB′3a). The cli-
mate in these regions can be subclassified into four more variations, according to the Thornthwaite classification. 
The natural vegetation in the area consisted of Atlantic Forest in the west and Cerrado in the east and southwest 
of WPSP, with the most representative current land use being sugarcane (Saccharum spp.), citrus, and pasture.

A total of 265 soil samples georeferenced in WPSP were collected to study the spatial variability of mineralogi-
cal attributes at a depth of 0.00–0.20 m. The minimum spacing between samples was 10 km and the maximum 
spacing was 60 km (Fig. 1d). The samples were collected along the highways of the State of São Paulo in rep-
resentative locations that have suffered minimal anthropogenic interference. The sampling plan was prepared 
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based on the file of State highways supplied by the Department of Roads and Highways using the ET GeoWizards 
tool in the software ArcView 9.3. The geographic coordinate information for each point was previously defined 
and inserted in a GPS navigation device with an accuracy of 3–5 m. Sample collection was guided by real-time 
navigation using GPS and laptops.

Points simulating the stratified sampling (in red in Fig. 1d) were selected after identifying the patterns of 
variability in soil attributes and identifying homogeneous  areas39. The choice of the sampled points considered 
previous experiences within WPSP, using geostatistical  techniques40,41, proposing a representative distribution 
of the studied area.

Analyses
Soil particle size and chemical analysis
Particle size analyses were performed for all WPSP points. The pipette method with a 0.1 mol  L−1 NaOH solu-
tion as a chemical dispersant and mechanical stirring at a low rotation for 16 h was used, as recommended 
by  Teixeira42. Calcium, magnesium, and potassium contents were extracted using the ion-exchange resin 
 procedure43. Base saturation (V) was given by the equation V = (Mg + Ca + K)/CEC.

Mineralogical analyses
Iron contents related to the totality of pedogenetic irons extracted by dithionite-citrate-bicarbonate (Fed) were 
determined following the procedure of Mehra and  Jackson44 for all grid points and the stratified samples. The 
contents of iron extracted by ammonium oxalate (Feo) relative to low-crystallinity pedogenetic iron oxides were 
determined following the methodology mentioned by Camargo et al.45 adapted from Schwertmann.46.

Minerals were quantified for all points on the total grid and stratified samples. Clay for the X-ray diffrac-
tion (XRD) analysis was separated from the soil sample by the centrifugation  method47. The clay fraction was 
subjected to the elimination of iron oxides by the dithionite-citrate-bicarbonate (DCB) method to characterize 
kaolinite (Kt) and gibbsite (Gb), according to Mehra and  Jackson48, and sieved in a 0.10-mm opening mesh. 
XRD characterized the minerals of the clay fraction Kt and Gb in sheets made with material without orientation 
(powder). Goethite (Gt) and hematite (Hm) were characterized after treating the clay fraction using 5 mol  L−1 
NaOH (1 g clay 100  mL−1 solution) for their concentration, according to the method of Norrish and  Taylor49, 
modified by Kämpf and  Schwertmann50.

XRD was performed with the samples prepared by the powder method using an HGZ apparatus equipped 
with cobalt cathode and iron filter and K radiation (20 mA, 30 kV) for Hm and Gt diffraction and copper cath-
ode with nickel filter for Kt and Gb diffraction. The scanning speed was 1°2θ  min−1 with an amplitude from 23° 

Figure 1.  (a) Updated geological map of the Western Plateau of São Paulo. (b) Pedological map of the 
Western Plateau of São Paulo. Source: Agronomic Institute of Campinas. (c) Dissection map of the Western 
Plateau of São Paulo. (d) Sample planning of the collected points. (e) Hematite map made by X-ray diffraction 
(Hm, g  kg−1). Source: Extracted from Silva et al.37 (f) Goethite map made by X-ray diffraction (Gt, g  kg−1). 
Source: Extracted from Silva et al.37. (g) Kaolinite/(kaolinite/gibbsite) ratio [Kt/(Kt + Gb)] map made by X-ray 
diffraction. Source: Extracted from Fernandes et al.38.
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to 49°. The reflexes of Kt (001), Gb (002), Hm (012 and 110), and Gt (110 and 111) were used for mineralogical 
evaluation.

Diffuse reflectance spectroscopy (DRS)
Diffuse reflectance spectra were obtained using approximately 1 g of air-dried fine soil ground in an agate mortar 
until obtaining constant color, and the content was placed in sample holders with a 16-mm diameter cylindrical 
space. The soil subsamples (1 g) used for the DRS analysis came from the samples corresponding to 250 g of soil 
collected at each of the 265 points georeferenced in WPSP.

Reflectance values were determined in a Lambda 950 UV/Vis/NIR spectrophotometer coupled to an integrat-
ing sphere of 150 mm in diameter. The spectra were recorded at 0.5-nm intervals, with an integration time of 
2.43 nm  s−1 over the 350 to 2500-nm range (350–800 nm—visible—VIS and 801–2500 nm—near-infrared—NIR).

The pre-processing technique used to remove noise from the raw curves was the standard normal variable 
(SVN). This technique is used to remove interference due to light scattering, helping to correct any curvilinear 
and linear trends in the baseline of the original  spectra14.

Carbon content and stock
The total soil carbon content (C%) was determined for all points of WPSP. The analysis was carried out by dry 
combustion using a LECO CN-20009. The soil samples (air-dried fine soil) were sieved on a 100-mesh sieve and 
oxidized at high temperatures (oven at 1350 °C) using 2.8 ultrapure oxygen.

The C stock was analyzed only for stratified samples. Undisturbed soil samples were collected with a volumet-
ric ring (with known volume) at a depth of 0.00–0.05 m to determine the following physical attributes: porosity, 
soil density (Ds), and soil moisture. The respective masses and soil moisture in the ring were determined for Ds 
calculation. The density of each layer was calculated according to the equation:

The total contents of C stock were determined using cross-calibration curves and based on the weight of the 
analyzed sample. C stocks (in Mg  ha−1) were calculated for each soil sample according to the equation described 
below:

Statistical analysis
The data were subjected to descriptive statistics after the completion of laboratory analysis. The mean, maximum, 
minimum, standard deviation, and coefficient of variation were calculated. Moreover, simple correlation coef-
ficients (Spearman) were calculated between soil attributes. All wavelengths of the spectral curves were submit-
ted to the stepwise regression gradually and interactively (forward–backward) based on the Akaike information 
criterion (AIC). Subsequently, the most relevant wavelengths for estimating C content were selected, as follows. 
These wavelengths were subjected to cluster grouping analysis.

Two C analyses were used to estimate C contents: partial least squares regression (PLSR) and machine learn-
ing (ML). PLSR uses chemometric calibrations and validations by a cross-validation procedure. Reflectance 
measurements were converted into absorbance [Log10 (1/Reflectance)] for data processing in the software. 
The software ParleS®28 was used to determine the relationship between the entire spectral curve and the studied 
attributes. The database was subdivided into a set of calibrations (70%) and a set of predictions (30%) for analysis. 
The “train_test_split” technique was used to split the data into calibration and validation sets. This is a function 
in the “model_selection” module of the popular machine learning library scikit-learn. This function is used to 
perform the train test split procedures, which splits a dataset into two subsets: a training set and a test set.

The performance of each model was evaluated using the coefficient of determination  (R2), mean absolute 
error (MAE), and the root mean square error (RMSE). These metrics were evaluated both in calibration and in 
prediction. The ML algorithm was the random forest (RF)  regression51. RF is a non-parametric technique devel-
oped to improve the prediction of the classification and regression tree models, as it uses fully grown decision 
trees and reduces the error and  variation52. It consists of the combination of several trees, which are generated 
from an input variable sampled at random. All trees are the same size. However, the subdivisions of the trees are 
based on a subset randomly sampled from the total database, and the final result of RF consists of the mean of 
the results of all  trees53. RF has been one of the most used ML algorithms for presenting high performance in 
the prediction of soil  attributes54.

The performance of prediction models was evaluated in a set of independent and unprecedented data. In 
this sense, the database was subdivided into two different sets randomly separated, remaining 50% for training 
and 50% for testing. This division was due to the high variability of the data. The performance of each model 
was evaluated using  R2 and RMSE in the training and testing stages. The package scikit-learn was used to run 
the  algorithm55.

The geostatistical analysis was used to characterize the spatial variability pattern of the observed  values56. 
Semivariograms relating the distance vector to the semivariance were constructed and models were adjusted. 
The values were interpolated by ordinary kriging for the construction of spatial distribution maps. The semi-
variograms were generated and selected using the R language, which already provides the best adjustment in 
the geostat package.
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Results and discussion
Soil attributes across the Western Plateau of São Paulo
Soils originating from sandstone had a mean sand of 82%, while those from basalt were more clayey, with a mean 
of 53% clay (Table 1). The maximum and minimum clay values for basalt soils reached 67 and 27%, respectively. 
This higher range between minimum and maximum shows the variation of the attribute for the compartment. 
The same can be observed by the high coefficients of variation, according to the classification of Warrick and 
 Nielson57. Sandstone soils have a maximum of 90% and a minimum of 73% sand and, therefore, less variability 
compared to basalt soils. The CV for sand content was classified as low for the compartment.

The mean clay values in the geomorphological compartments increased from slightly (23% clay) to highly 
dissected compartments (34% clay). The means of silt and sand tended to increase from the highly to the slightly 
dissected compartments (Table 1). The maximum and minimum values for clay and silt means were higher for 
the low dissected compartment than the others. It shows that soils of highly dissected compartments tend to be 
more clayey and those of slightly dissected compartments tend to be sandier.

Slightly dissected environments would be those flatter ones, favoring higher water infiltration, better drainage, 
higher leaching, more uniform solar radiation, and other characteristics that condition higher soil weathering 
(higher pedogenesis rates). Therefore, higher mean values of clay and lower mean values of sand were expected. 
However, considering that highly dissected compartments have concave areas of high intensity and a depositional 
 behavior58, finer materials, such as clay and organic material, may have accumulated in this compartment. Cunha 
et al.59 and Silva et al.37 observed similar results.

Basalt compartment soils have higher mean contents of Fed (52 g  kg−1) than those from sandstone (12 g  kg−1) 
(Table 1). The same was observed for the Feo content, in which sandstone compartment soils presented a mean 
of approximately 1 g  kg−1, while basalt soils had a mean of 3 g  kg−1. The iron content by geomorphological 

Table 1.  Descriptive statistics for soil attributes from different geological and geomorphological 
compartments in agricultural areas and native forest in the Western Plateau of São Paulo. Min minimum, Max 
maximum, SD standard deviation, CV coefficient of variation, Fed crystalline iron, Feo non-crystalline iron, V 
base saturation, Ds soil density, TPV total pore volume, C carbon, Cs carbon stock, Kt kaolinite, Gb gibbsite, Gt 
goethite, Hm hematite.

Clay Silt Sand Fed Feo V Ds TPV C Cs Kt/ Gt/ Gt Hm

% g  kg−1 % g  cm−3 % g  kg−1 Mg  kg−1 (Kt + Gb) (Gt + Hm) g  kg−1

Sandstone compartment soils

 Mean 14.55 3.18 82.27 12.58 0.87 65.04 1.51 36.09 10.74 80.75 0.89 0.29 5.12 12.15

 Min 7.49 0.50 73.40 5.78 0.47 36.55 1.31 30.21 5.32 42.03 0.41 0.08 1.31 3.56

 Max 22.50 11.34 90.86 18.21 1.94 78.87 1.69 40.87 18.71 147.61 1.00 0.60 8.59 19.88

 SD 4.74 3.13 5.28 4.05 0.37 11.50 0.13 3.90 4.34 33.36 0.18 0.14 2.41 5.18

 CV 32.59 98.44 6.41 32.21 42.75 17.68 8.64 10.82 40.39 41.32 19.89 47.17 47.07 42.63

Basalt compartment soils

 Mean 53.10 9.46 37.44 52.22 3.34 70.25 1.39 41.78 20.82 144.34 0.46 0.22 15.63 55.84

 Min 27.50 1.55 23.89 29.95 1.50 43.64 1.27 32.50 14.85 102.02 0.29 0.03 2.88 23.82

 Max 67.47 20.37 70.95 64.33 6.08 84.55 1.69 47.67 25.95 189.12 0.71 0.50 26.06 73.65

 SD 15.79 6.92 20.06 12.61 1.39 12.39 0.14 5.04 3.78 29.14 0.15 0.13 7.14 18.57

 CV 29.74 73.10 53.60 24.14 41.73 17.64 10.26 12.07 18.15 20.19 33.36 61.03 45.70 33.26

Highly dissected compartment soils

 Mean 34.36 3.77 61.87 29.32 1.72 71.17 1.39 40.62 19.76 137.55 0.71 0.29 10.25 30.25

 Min 19.98 0.60 25.30 8.49 0.56 67.36 1.29 36.99 15.49 110.72 0.38 0.03 2.88 7.73

 Max 65.00 9.70 76.92 56.89 3.57 74.12 1.46 45.64 25.95 189.12 1.00 0.50 26.06 73.65

 SD 20.86 4.09 24.71 21.45 1.37 3.21 0.08 3.68 4.55 35.23 0.25 0.19 10.77 29.67

 CV 60.72 108.29 39.94 73.14 79.69 4.51 5.41 9.06 23.00 25.61 35.67 65.72 105.13 98.07

Moderately dissected compartment soils

 Mean 28.07 5.36 66.57 27.04 1.86 65.71 1.49 37.42 13.02 95.65 0.74 0.23 8.27 28.56

 Min 10.00 0.50 23.89 8.60 0.47 36.55 1.27 30.21 5.32 42.03 0.29 0.08 1.31 5.97

 Max 67.47 18.64 89.36 64.33 6.08 78.87 1.69 47.67 23.97 172.33 1.00 0.39 18.91 69.02

 SD 22.04 5.05 25.26 20.82 1.62 12.00 0.16 5.64 6.31 44.95 0.30 0.11 5.28 23.50

 CV 78.52 94.31 37.95 77.00 86.93 18.26 10.64 15.07 48.51 46.99 40.46 45.25 63.77 82.27

Slightly dissected compartment soils

 Mean 23.30 8.26 68.44 23.70 1.37 67.41 1.44 38.58 14.18 100.09 0.77 0.40 10.54 22.46

 Min 7.49 1.65 27.21 5.78 0.52 45.61 1.31 35.43 8.48 61.61 0.61 0.26 2.71 3.56

 Max 52.42 20.37 90.86 58.57 2.92 84.55 1.57 42.05 21.97 143.68 1.00 0.60 22.95 58.94

 SD 25.25 10.51 35.75 30.20 1.35 19.88 0.13 3.32 6.98 41.27 0.21 0.18 10.87 31.60

 CV 108.33 127.24 52.24 127.43 98.76 29.50 9.10 8.61 49.23 41.23 26.99 45.16 103.16 140.67
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compartment showed that the slightly dissected compartment had the lowest means of Fed (24 g  kg−1) and Feo 
(1.37 g  kg−1). Fed content had the same behavior as the clay content, that is, lower values in the slightly dissected 
compartment and higher values in the highly dissected compartment.

Basalt compartment soils showed a higher V (70%) than soils originating from sandstone (65%) (Table 1). 
WPSP is an intensely cultivated region and soil liming/fertilization and management practices may have influ-
enced these results. Also, sandstone rocks have higher particle sizes and, consequently, the weathering process 
is slower in these rocks than in basalt rocks. The mean of V for geomorphological compartments reached 71%, 
while soils from the slightly dissected environment showed a mean of 67%. The moderately dissected compart-
ment was intermediate compared to the others (65%). The differences are small for these compartments.

The mean value of soil density (Ds) was higher for sandstone soils (1.52 g   cm−3) than for basalt soils 
(1.39 g  cm−3) (Table 1). Thus, the data analysis by compartments for large areas may present results similar to 
those observed in the literature. In this case, the shape of the mineral in kaolinitic soils, such as sandstones, may 
favor higher Ds values, while the shape of these minerals for basalt soils, with higher iron oxide content, may 
contribute to better arrangement of particles and lower  Ds60. Ds presented intermediate means for the moderately 
dissected compartment (1.49 g  cm−3), increasing from highly to slightly dissected (1.39–1.44 g  cm−3, respectively).

The means of total pore volume (TPV) showed an inverse behavior when compared to the means of Ds 
(Table 1). TPV is higher for basalt compartment soils (41%) and lower for sandstone compartment soils (36%). 
The means for geomorphological compartments had little difference, i.e., 40, 37, and 38% for highly, moderately, 
and slightly dissected compartments, respectively. It indicates that the geomorphological compartment did not 
capture TPV variability well.

The total C contents were higher for areas of basalt and highly dissected compartments than the other com-
partments. The mean for the basalt compartment (20.82 g  kg−1) was almost double the mean observed for the 
sandstone compartment (10.74 g  kg−1). Bahia et al.18 observed C values similar to those found in this research 
when studying smaller WPSP areas. All mean attribute values are similar to those found in the literature for 
different sandstone and basalt geological  compartments18,60,61.

The basalt compartment presented the highest C stock (Cs) (144 Mg  ha−1) than the sandstone compartment. 
The same behavior was found for highly (137 Mg  ha−1) and slightly dissected compartments (100 Mg  ha−1), 
matching the higher C and clay contents. The highest Cs values are related to compartments with predominant 
oxidic mineralogy (Table 1), as verified for the entire WPSP extension.

Sandstone compartment soils are kaolinitic and basalt compartment soils are oxidic, showing the highest 
mean values of Gt (15 g  kg−1) and Hm (55 g  kg−1). It is also observed in the mean value for the Gt/(Gt + Hm) 
ratio of 0.22 for soils originating from basalt and the mean of 0.89 for the Kt/(Kt + Gb) ratio for sandstone soils 
(Table 1). According to Curi and  Franzmeier62, soils originating from basalt present higher iron contents than 
those originating from sandstone, favoring the formation of iron oxides to the detriment of other minerals. 
Mineralogy presented means with small differences for geomorphological compartments. The highest difference 
was found for the Gt/(Gt + Hm) ratio of 0.40 in the slightly dissected compartment, which was higher than the 
others. Thus, this compartment has a predominance of oxidic mineralogy, while the others (highly and moder-
ately dissected) have a predominance of kaolinitic mineralogy.

Correlation between C contents and soil attributes
Figure 2 shows a correlation matrix with all the studied attributes and geological and geomorphological compart-
ments. A direct correlation can be observed between sand content and the sandstone compartment and between 
clay content and the basalt compartment, as found in the descriptive statistics. Sandstone soils are sandier and 
basalt soils are more clayey. Geomorphological compartments did not show good correlations with geological 
compartments. A directly proportional correlation was found between clay content and the highly dissected 
compartment and an inverse correlation with sand content. An inverse behavior was observed for sand content.

Fed and Feo contents showed a high and inverse correlation with the sandstone compartment (− 0.83) and 
a direct correlation with the basalt compartment (Fig. 2). Regarding the geomorphology, Fed and Feo contents 
showed low correlation coefficients, with the highest values of − 0.24 and − 0.22 for soils of the slightly dissected 
compartment, respectively. The attributes V, TPV, C, Cs, Gt, and Hm showed a direct correlation with the basalt 
compartment and an inverse correlation with the sandstone compartment, while Ds and the Kt/(Kt + Gb) and 
Gt/(Gt + Hm) ratios showed negative correlations with the sandstone compartment and positive correlation 
with the basalt compartment.

Considering the correlations between the attributes and C and Cs contents, the highest values were found 
between clay content and soil mineralogy. The higher the clay content and predominance of soil oxides, the 
higher the C and Cs contents. The opposite was observed for sandier soils, with a predominance of kaolinitic 
mineralogy, as the correlation between these attributes and C and Cs was high but negative. Therefore, areas 
with higher means of clay content are potential C reservoirs, as proposed by  Mendes63. Soil  CO2 emission can 
be described by the emission and C stock decay coefficients. Thus, the potentials for higher or lower emissions 
are intrinsic to the soil and closely related to formation processes and factors, expressed by covariate attributes, 
such as texture and  mineralogy15,26,64.

Carbon stocks vary according to the studied soil type and depth, and although these correlations are poorly 
studied, the stock is an important indicator of environmental  services65. Assad et al.66 observed that soil proper-
ties gain prominence in the influence of Cs on local work scales. Saiz et al.67 pointed out that soil texture was a 
determinant factor for Cs variations.

The descriptive statistics and all the studied attributes show that basalt soils and slightly dissected compart-
ments are more weathered than sandstone soils and highly dissected compartments. The moderately dissected 
compartment presented intermediate means for highly and slightly dissected compartments for all attributes, 
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not allowing for a more specific differentiation. All intermediate landscape forms were included in this group. 
Therefore, the attributes are expected to present higher variation than the other compartments (Table 1).

The intensity of landscape shapes, indicated by the dissection level, follows a pattern imposed by the struc-
tural control of the parent material, indicating a pedogenesis (soil formation) and geomorphogenesis variation 
(landscape carving). The highly dissected compartment shows concave areas of high intensity, indicating higher 
dissections in the region and, consequently, higher geomorphogenesis, while the slightly dissected compart-
ment encompasses more preserved regions, with more flattened surfaces and higher pedogenesis rates than 
geomorphogenesis.

Vasconcelos et al.68 studied the pedo-geomorphogenesis evolution model of Serra da Canastra and observed 
that the dynamics of the relief developed from the process of cutting the land (higher landscape dissection) causes 
environments of water saturation and stagnation and better conditions for drainage in flatter areas. However, 
environments of higher water stagnation favor the advance of hydromorphy, resulting in the formation of amor-
phous minerals and Kt  predominance69, while flatter and well-drained areas favor the advance of oxidation, with 
the domain of more crystalline minerals and higher Gb  content70.

The observations showed that highly dissected basalt compartments with higher clay content and oxidic 
mineralogy are more favorable for C storing. The opposite occurs for sandstone soils. These results can assist 
producers in making decisions regarding planting, reforestation, and practices aiming to increase Cs in the soil 
and reduce  CO2 emissions. Some of these practices are cited by Minasny et al.8 The use of these practices has 
already been considered in C credit and monetization policies.

Spectral signature and most important bands for C estimation
Figure 3 shows the spectral signatures for the different geological and geomorphological compartments of WPSP. 
The curves for the sandstone soil presented higher reflectance. Sandstone soils have a higher content of clear 
minerals, such as orthoclase, quartz, and plagioclase, which increase the reflectance of  samples16. On the other 
hand, the reflectance values for basalt samples are lower. Darker minerals in soils originating from basalt, such 
as iron oxides, reflect less, generating a shorter spectral curve than the curve of sandstone  soils71.

The range from 400 to 690 nm in the visible (VIS) is used to characterize the presence of the oxides Hm and 
 Gt14–16,35,72. The curve in this band has a greater concavity for the basalt soil, pointing out a higher expression 
of oxides for soils with this parent material. The spectral behavior for basalt soils also points to a predominance 
of Hm relative to Gt (greater characteristic concavity). Genú et al.73 observed similar results for Oxisols of the 
Serra Geral Formation.

Figure 2.  Spearman correlation matrix for attributes at a depth of 0–0.20 m and different geological and 
geomorphological compartments of the Western Plateau of São Paulo. Fed crystalline iron, Feo non-crystalline 
iron, V base saturation, Ds soil density, TPV total pore volume, C carbon, Cs carbon stock, Kt kaolinite, Gb 
gibbsite, Gt goethite, Hm hematite.
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The characteristic range for Kt and Gb varies from 2000–2100 to 2300–2350  nm38,72. The sandstone soil pre-
sented only one characteristic valley (2100–2200 nm), referring to Kt. The predominant mineral in sandstone 
samples, rich in quartz and silicon, was Kt. Therefore, this mineral is more abundant in the clay fraction in WPSP 
soils, as most of the soils in the area are of sandstone origin. Silva et al.37 observed values of weathering indices 
(Ki and Kr) that classify the reference soils of the region as kaolinitic to oxidic kaolinitic.

Two features were observed for the basalt soil in the range from 2150 to 2300 nm, the first referring to Kt 
and the second to Gb. The valley depth of Kt was smaller regarding the curve of the sandstone soil, showing a 
less favorable environment for Kt formation in basalt soils. Demattê et al.16 studied spectral curves of Brazilian 
biomes and observed that the characteristic features of Gb are found in more weathered soils, such as those of 
the Cerrado biome. On the contrary, less weathered soils, such as those of the State of Rio Grande do Norte, 
presented no characteristic features of Gb. Basalt has minerals more easily weathered than the minerals present 
in the sandstone, thus showing higher Gb content.

Stenberg and Viscarra  Rossel74 pointed out the presence of hydroxyls in the range of 1400 nm related to 
molecular water. A marked presence of water molecules (H–O–H) bound to minerals or impurities has been 
observed in the range of 1900  nm75–77. Dufréchou et al.78 observed that the band of 1900 nm is not characteristic 
of a specific mineral but due to the clay composition. These bands were indicated in the importance values as 
important in the prediction of the Kt/(Kt + Gb) ratio, thus being only the influences of other minerals or the 
water molecule.

Figure 3.  Spectral curves of stratified samples for sandstone and basalt in the area of the Western Plateau of 
São Paulo. Adapted from Fernandes et al.38. *Kt kaolinite, Gb gibbsite, Gt goethite, Hm hematite, OM organic 
matter, H2O water molecule, OH hydroxyl. The ranges most frequently cited in the literature for C content are 
850–90074,80 nm and 2320–2370 nm for organic  C74,80, inorganic C, and  OM20, 410, 570, and 660 nm for organic 
 C81, and 476 and 808  nm30.
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Moreover, Bishop et al.79 pointed out that variations in absorbance ranges occur due to the stretching of Si, 
Fe, and Al oxides, cation size, and folding mode, among other crystallographic characteristics that can divide 
the occurrence of attributes into several spectral bands. Demattê et al.78 observed that the relationship between 
the spectral behavior of soils varies according to the different soil pedogenetic processes and landscape position. 
Therefore, the identification of spectral bands is restricted to the characteristics and conditions of soil formation.

The ranges most frequently cited in the literature for C content are 850–90074,80 nm and 2320–2370 nm for 
organic  C74,80, inorganic C, and  OM20, 410, 570, and 660 nm for organic  C81, and 476 and 808  nm30. Several 
ranges in the Vis–NIR range have the potential to predict the total, organic, or inorganic C content. Bahia et al.18 
observed that the best prediction parameters can be observed in the NIR range, as there are several ranges related 
to the biding of elements such as C–C, C=C, CH, and C–N over this range.

All spectral bands were inserted into the stepwise model to minimize errors. This procedure gradually and 
interactively selected the most important bands to predict the total C. The error measured by RMSE and MAE 
decreased and  R2 increased as the wavelength was inserted into the model. The first band for the Vis range to be 
inserted into the model was 699 nm, followed by 352, 696, 697, 503, 501, 455, 442, and 478 nm. The best model 
presented the following parameters: RMSE of 4.74, MAE of 3.77, and  R2 of 0.30.

The first band for the NIR range to enter the model was 2434 nm, followed by 2211, 2413, 1696, 1617, 2207, 
1946, 1465, 1400, 1078, 1022, 1902, 1696, 1493, 1410, 1943, 1939, 1896, 1892, 1522, 1453, 1402, 1420, 1129, 1092, 
and 949 nm. The best model found for the NIR range presented an RMSE of 3.87, MAE of 3.07, and  R2 of 0.52.

The best parameters obtained for NIR can be explained according to the observations of Bahia et al.18 as 
previously mentioned. More bands related to C can be found in the NIR range. Some of the bands classified as 
important, according to the stepwise model, were similar to those mentioned by other authors, such as 660 and 
410  nm81 and 808 and 476  nm30. These results indicate that some variations in the most important ranges for 
estimating C can be observed when comparing studies of different soils and regions around the world.

Cluster plots with heatmaps were generated from the most important bands (Fig. 4) to group the spectral 
bands, C contents, and geological compartments and understand their cause-and-effect relationships with the 
wavelengths selected by stepwise. Figure 4 shows that the highest C contents (lighter colors) were grouped 
with the basalt compartment for both Vis (Fig. 4A) and NIR ranges (Fig. 4B). The sandstone compartment was 
grouped and associated with the lowest C contents.

The most important spectral bands in the Vis and NIR ranges (Fig. 4) showed the highest C contents grouped 
with the lowest reflectances. C contents in the Vis range, which expresses the soil  color14,15,24, are associated with 
organic C, present in organic matter (OM). Demattê et al.82 studied the influence of OM on soil reflectance and 
pointed out that its removal increases reflectance across the spectral curve. In other words, the lower the OM 
content, the lighter the soils and the higher their reflectance.

The opposite was observed for the sandstone compartment. The highest reflectances were grouped for sand-
stone soils with lower C contents. These facts can be observed in the spectral curves of Fig. 3. The lowest 

Figure 4.  Cluster analysis with the heatmap for the most important spectral ranges for C estimation, as 
indicated by the stepwise modeling, C contents, and geological and geomorphological compartments for soils 
in the Western Plateau of São Paulo in the Vis (A) and NIR ranges (B). The color legend is a table that associates 
the colors used in the heatmap with the values of the main variable. The heatmaps were generated using the R 
language, gplots package, version 4.2.2 (https:// www.R- proje ct. org/).

https://www.R-project.org/
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reflectances are observed for soils originating from basalt, which have higher C means (Table 1). Spectral curves 
with higher reflectance are observed for sandstone soils (Fig. 3), which, in turn, have lower C means (Table 1).

Some samples of the basalt compartment were not grouped, being dispersed among the sandstone compart-
ment samples. In theory, all samples from each compartment should form a single group. However, maps and 
scales for collecting the points were different. The points were chosen and collected based on previous experiences 
in smaller  areas40,41 to represent all the variability of 13 million hectares. Moreover, agronomic data present high 
variability in space and, therefore, present different behaviors from those expected.

Total C estimation and mapping
Estimation by random forest (RF)
Table 2 shows that the testing stage had lower metrics than the training stage. Heil et al.83 also observed a 
reduction in metrics in the prediction stage for soil C and iron content. The C estimate for the Vis–NIR range 
showed the best metrics, with MAE of 2.50, RMSE of 3.40, and  R2 of 0.74 for training, and MAE of 3.81, RMSE 
of 4.88, and  R2 of 0.54 for testing. The metrics for the C estimate in the NIR range (MAE = 2.46, RMSE = 3.41, 
and  R2 = 0.73) were similar to those observed for the Vis–NIR range in the training stage. However, the  R2 in the 
NIR range was higher than that observed for the Vis–NIR range in the testing stage.

Morellos et al.30 used the cubist ML algorithm and obtained an RMSE value of 2.18 and an  R2 of 0.78 for 
estimating organic C in a Luvisol in Germany. Gelsleichter et al.19 studied the estimate C by RF and obtained an 
 R2 of 0.84 for soils in the Itatiaia National Park, Brazil. The results found in the literature are higher than those 
obtained in this study. However, the high variability of the area can lead to higher errors and more erratic predic-
tions. However, they are still efficient when comparing the cost–benefit ratios 28,84,85.  Stenberg13 pointed out that 
samples from sandy soils in the testing and/or calibration stages can result in worse attribute estimates. Sand has 
a small total surface compared to clay and OM, which can cause more erratic effects due to high  absorption12.

Figure 5 shows the regression between observed and estimated data. The estimate using the three ranges (Vis, 
NIR, and Vis–NIR) showed that values up to 10 g  kg−1 of C, observed and estimated by RF, are very close to each 
other and the line. Values of C > 10 g  kg−1 had more dispersion between the observed data and those estimated 
by RF. It may indicate that the algorithm has little sensitivity to learn and estimate higher C content. Therefore, 
the sample grid in areas with a higher C content must be densified to minimize errors. The wide differences 
between minimum and maximum values can make the prediction more erratic, as it is a large area, with a high 
geological and geomorphological variability.

In general, ML shows better results than traditional methods, but it can be considered of low  interpretability86. 
The importance of the variables used in the estimation and the number of times they were mentioned in the 
rules must be evaluated to overcome this possible  difficulty87–89. It enables the visualization of how the models 
were generated to interpret them (Fig. 5).

The C contents observed and estimated by RF for the Vis, NIR, and Vis–NIR ranges were subjected to geo-
statistical analysis for detailed mapping (Table 3). The C data observed and estimated by RF in the Vis range 
were adjusted to the exponential model. The C data estimated by RF in the NIR and Vis–NIR ranges adjusted 
to a spherical model.

Bahia et al.18 worked with C mapping for a small area of the State of São Paulo and adjusted the spherical 
model to the data. La Scala Jr. et al.26 and Bahia et al.90 studied the soil  CO2 flux in areas of the State of São Paulo 
and also adjusted the spherical model to the data, pointing out that the data agreed with those observed in the 
literature. The spherical model is considered the most common for adjusting soil  variables56,91, as they present 
abrupt variations along the  landscape92.

The data estimated by RF presented shorter ranges and lower spatial dependence. The results showed that the 
algorithm has a high sensitivity to capture the heterogeneity of the data. The highest C contents were found in 
the south, southwest, and east edges, where basalt compartments are located (Fig. 6). The lowest C contents were 
found in the other WPSP regions, especially in the central region, where sandstones are located. The estimates 
using DRS and RF could detect these wide variations of C contents in the sandstone.

The data maps estimated by RF showed similar behavior to the observed C map (Fig. 6A–C). However, the 
algorithm tends to underestimate the C contents in both geological and geomorphological compartments. As 
indicated by the metrics, the estimation model that associated the Vis–NIR ranges generated the C map most 
similar to the observed map. The association of ranges allowed a better capture of transitions in the compart-
ments, especially in the sandstone compartments. The C content estimation by Vis and NIR in the sandstone 
compartment was generalized although presenting similar maps to that observed.

Table 2.  Evaluation metrics of random forest models to estimate the total C (g  kg−1) for the Vis, NIR, and 
Vis–NIR ranges at a depth of 0.00–0.20 m for soils in the Western Plateau of São Paulo. Vis Visible, NIR near-
infrared, MAE mean absolute error, RMSE root mean square error.

Training Testing

MAE RMSE R2 MAE RMSE R2

C (g  kg−1)

Vis 3.14 4.27 0.67 3.74 4.86 0.54

NIR 2.46 3.41 0.73 3.69 4.73 0.59

Vis–NIR 2.50 3.40 0.74 3.81 4.88 0.54
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Figure 5.  Regression analysis between predicted C (g  kg−1) data by the (A) Vis (visible), (B) NIR (near-
infrared), and (C) Vis–NIR ranges by random forest and observed data for soils in the Western Plateau of São 
Paulo.

Table 3.  Geostatistical metrics of the total C contents observed and estimated by the Vis (visible), NIR (near-
infrared), and Vis–NIR ranges by random forest (RF) at a depth of 0.00–0.20 m for soils of the Western Plateau 
of São Paulo. Exp exponential model, Sph spherical model, C0 nugget effect, C0 + C sill, A0 range, SQR sum of 
squared residuals, DSD degree of spatial dependence.

Attribute Model C0 C0 + C A0 (m) R2 SQR DSD

Observed C (g  kg−1) Exp 19.4 58.22 5.95 0,82 5.32 0.66

Estimated RF

C (g  kg−1)–Vis Exp 3.68 7.44 0.25 0.78 2.24 0.50

C (g  kg−1)–NIR Sph 4.93 9.87 0.93 0.90 2.65 0.50

C (g  kg−1)–Vis–NIR Sph 5.88 13.62 1.01 0.91 3.50 0.56
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The superiority of mathematical modeling depends on the database. The choice of modeling depends on the 
database size and professional expertise. The RF analysis was carried out using the database reduced by stepwise 
analysis for practical and data processing purposes. The selection of specific wavelengths allows the researcher to 
work with a smaller database and sensors that capture wavelengths less frequently. Models derived from smaller 
spectral libraries can provide more accurate predictions of C content, surpassing predictions obtained with a 
model derived from a large spectral  library93.

The use of the most robust ML algorithms manages to capture the non-linearity of the data, besides being able 
to adapt to the database and improve the model  accuracy94. ML techniques capture valuable spatial information 
that is not captured by environmental covariates, and the inclusion of this information improves the overall pre-
dictive  performance95. These algorithms associated with DRS allow detailed mapping of C content in a precise and 
fast way. Indirect techniques, such as DRS, are efficient in capturing the spatial variability of C, being faster and 
more efficient, as well as less costly, than conventional  techniques18,85. The maps generated using these estimates 
can assist in defining public policies for land use, reducing  CO2 emissions, and implementing C-credit policies.

Other potential technologies, such as UAV (unmanned aerial vehicles)-based NIR, also offer quality assess-
ment and monitoring of soil  C96 and plant  biomass97. Aldana-Jague et al.96 investigated the potential of UAV 
multi-spectral imagery (480–1000 nm) for estimating the OC content in bare cultivated soils at a high spatial 

Figure 6.  Observed C maps and estimated by random forest based on the ranges of the spectral curves Vis (A), 
NIR (B), and Vis–NIR (C) and their respective error maps (D–F) for soils of the Western Plateau of São Paulo. 
Vis visible, NIR near-infrared. The semivariograms and maps were generated using the R language, geostat 
package, version 4.2.2 (https:// www.R- proje ct. org/).

https://www.R-project.org/
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resolution (12 cm) and concluded that the methodology has a clear potential for use in precision agriculture 
or monitoring important soil properties following management changes. The authors obtained a coefficient of 
determination of 95% for the validation and an RMSE of 0.21% C based on cross-validation despite a sampling 
design that was not fully optimized for spectral calibration or spatial mapping. In this context, remote sensors 
attached to UAVs have been successfully calibrated using ground control points with known  reflectance98,99. 
Cruciol et al.100 investigated calibration approaches of UAV-based near-infrared digital images and observed that 
the conversion of visible and near-infrared digital images into reflectance promoted a decrease in the coefficient 
of variation of the spectral data for all visible bands.

Estimation by partial least squares regression (PLSR)
Table 4 shows the metrics obtained for the partial least squares regression (PLSR). The errors given by MAE, 
RMSE, and  R2 values are slightly higher in this prediction stage. Bahia et al.18 estimated the total C by PLSR 
and obtained an  R2 of 0.82 for the Vis range and 0.88 for the Vis–NIR range in a small study area within WPSP. 
Asgari et al.20 studied the estimate of organic C in Iran and obtained an  R2 of 0.74 for the Vis–NIR range. Vis-
carra Rossel et al.81 obtained an  R2 of 0.86 for the NIR range and 0.91 for the Vis–NIR range. The extension and 
high variability of WPSP should be considered although the results are higher than those found in these studies.

The Vis range presented the best metrics for this modeling, with an  R2 of 0.64, MAE of 3.49, and RMSE of 
4.40 for calibration, and  R2 of 0.58, MAE of 3.52, and RMSE of 6.65 for prediction (Table 4). The Vis range was 
followed by the Vis–NIR range, with an  R2 of 0.52, MAE of 3.40, and RMSE of 4.59 for calibration, and  R2 of 
0.52, MAE of 3.48, and RMSE of 6.42 for prediction. The NIR range presented the worst metrics, mainly in the 
prediction stage, with an  R2 of 0.32, MAE of 3.52, and RMSE of 5.56 for calibration, and  R2 of 0.35, MAE of 
3.59, and RMSE of 7.75 for prediction. Bahia et al.18 explained that the metrics obtained for the Vis range can 
be justified by the good relationship between C and iron oxides. The relationships between these oxides and C 
contents were observed in this study and also by La Scala Jr. et al.26 and Bahia et al.15,90.

Unlike RF and regardless of the higher or lower C contents, the observed and estimated data showed higher 
dispersion along the line in the regression analysis (Fig. 7). The entire spectral curve was used for the PLSR mod-
eling, as the calibration and prediction models need a wide variety of data. Wavelengths can have wide variations 
that influence the predictive capacity of the chemometric  analysis101. Also, Wold et al.101 explained that the PLSR 
analysis is based on data homogeneity, and very sudden variations of dilution in the curves or noise can lead to 
errors. In other words, working with only a few wavelengths or doing extreme preprocessing can favor errors 
in the estimation of attributes. Gelsleichter et al.19 studied the preprocessing of spectral curves for C estimation 
and pointed out that it can decrease the predictive potential of PLSR.

The comparison between PLR with RF modeling showed that the latter algorithm had a better performance 
than the multivariate chemometric analysis. Morellos et al.30 used RF and PLSR and observed that ML presents a 
better performance for estimating C. The authors stated that the efficiency of this model is due to its high capac-
ity to deal with the nonlinear pattern of the data. Viscarra Rossel et al.14 Keskin et al.102 and Gelsleichter et al.19 
made the same considerations, corroborating the results observed in this study.

Regarding the lengths considered the most important for each range, the range between 420 to 480 nm is 
considered as important for C prediction. PLSR does not consider the length of 352 nm and above 500 nm as 
important for the estimation. In the NIR, RF considers wavelengths between 1000 to 2000 nm as important, 
while PLSR considers wavelengths above 2000 nm as more important. The ranges considered important for C 
prediction were wide compared to those found in the literature. Viscarra Rossel et al.81 cited wavelengths of 
400–2198 nm in the Vis–NIR range and 1100–2498 nm in the NIR range. Demattê et al.103 cited several wave-
lengths, such as 825, 853, 1100, 1138, 1449, 1524, 1650, 1706, 1730, 1754, 1930, 1961, 2033, 2135, 2137, 2275, 
2316, 2307, 2336, 2381, and 2469 nm. These authors corroborate with the results of this study regarding the 
specific wavelengths and the fact that more wavelengths in the NIR range may be important for estimating C.

The geostatistical analysis for detailed mapping (Table 5) showed that the C data estimated by PLSR were 
adjusted to three different models: exponential (Vis range), spherical (Vis–NIR range), and Gaussian (NIR 
range) (Table 5).

The closest ranges were obtained for the observed C data (5.95 m) and estimated by PLSR for the Vis (5.11 m), 
NIR (3.15 m), and Vis–NIR ranges (6.01 m), with the highest values of spatial dependence (DSD). The long-
est ranges for the estimated data indicate higher underestimations, generating a more homogeneous database.

The maps of data estimated by PLSR showed similar behavior to the map of observed C (Fig. 8A–C). The 
data estimated by the association of ranges (Vis–NIR) and NIR could not capture the variations between sand-
stone and basalt compartments, tending to overestimate C contents in basalt regions, which have more C, and 

Table 4.  Metrics for evaluating models by partial least squares regression to estimate the total C (g  kg−1) for 
the Vis, NIR, and Vis–NIR ranges at a depth of 0.00–0.20 m for soils of the Western Plateau of São Paulo. Vis 
Visible, NIR near-infrared, MAE mean absolute error, RMSE root mean square error.

Calibration Prediction

MAE RMSE R2 MAE RMSE R2

C (g  kg−1)

Vis 3.49 4.40 0.64 3.52 6.65 0.58

NIR 3.52 5.56 0.32 3.59 7.75 0.35

Vis–NIR 3.40 4.59 0.52 3.48 6.42 0.52
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Figure 7.  Regression analysis between the C (g  kg−1) data predicted by the (A) Vis (visible), (B) NIR (near-
infrared), and (C) Vis–NIR ranges by partial least squares regression and observed data for soils in the Western 
Plateau of São Paulo.

Table 5.  Geostatistical metrics of the total C contents observed and estimated by the Vis (visible), NIR (near-
infrared), and Vis–NIR ranges by partial least squares regression (PLSR) at a depth of 0.00–0.20 m for soils 
of the Western Plateau of São Paulo. Exp exponential model, Sph spherical model, Gau Gaussian model, C0 
nugget effect, C0 + C sill, A0 range, SQR sum of squared residuals, DSD degree of spatial dependence.

Attribute Model C0 C0 + C A0 (m) R2 SQR DSD

Observed C (g  kg−1) Exp 19.4 58.22 5.95 0.82 5.32 0.66

Estimated PLSR

C (g  kg−1)–Vis Exp 29.3 98.60 5.11 0.70 4.10 0.70

C (g  kg−1)–NIR Gau 15.8 44.95 3.15 0.92 3.80 0.74

C (g  kg−1)–Vis–NIR Sph 16.22 37.96 6.01 0.83 4.45 0.57
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underestimate these contents in sandstone regions, with less C content. The southwest and south regions of WPSP 
have an extension of the basalt compartment with a higher C content (map of observed total C). However, these 
ranges in the PLSR analysis did not capture this variation.

Following the best PLSR metrics, the estimated data map for the Vis range showed the most similar patterns 
to the observed map (Fig. 8). The data in the basalt compartment followed the same patterns as the observed 
map. The data in the sandstone compartment were overestimated mainly in the central region of WPSP. Bahia 
et al.18 mapped the total C content in a small area within WPSP and observed that PLSR underestimates the 
maximum C values, while it is more assertive for regions with lower C contents.

PLSR is a technique successfully used to predict numerous soil attributes, using spectral curves in various 
regions of the world. Using PLSR, Fernandes et al.38 estimated soil mineral contents, Camargo et al.61 estimated 
available and adsorbed P content, and Bahia et al.18 estimated C and N contents. These studies, carried out in 
Brazilian soils, demonstrate the potential and diversity of the technique. Several other studies at an international 
level with the most varied soil attributes can also be  mentioned20,28,94.

Conclusions
The highest C contents are associated with more clayey soils, oxidic mineralogy, higher total pore volume, and 
lower soil density in highly dissected basalt compartments.

Soils with a higher reflectance have lower C content.

Figure 8.  Observed C maps and estimated by partial least squares regression based on the ranges of the spectral 
curves Vis (A), NIR (B), and Vis–NIR (C) and their respective error maps (D–F) for soils of the Western Plateau 
of São Paulo. Vis visible, NIR near-infrared. The semivariograms and maps were generated using the R language, 
geostat package, version 4.2.2 (https:// www.R- proje ct. org/).

https://www.R-project.org/
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The most important wavelengths for estimating carbon are 352, 696, 697, 503, 501, 455, 442, and 478 nm in 
the visible range and 2211, 2413, 1696, 1617, 2207, 1946, 1465, 1400, 1078, 1022, 1902, 1696, 1493, 1410, 1943, 
1939, 1896, 1892, 1522, 1453, 1402, 1420, 1129, 1092, and 949 nm in the mid-infrared range.

The random forest algorithm associated with the Vis–NIR spectral range is more efficient in estimating C 
content in tropical soils. The random forest algorithm associated with the Vis–NIR spectral range allowed the 
construction of a map of the estimated C content more similar to the observed map, pointing out that it can 
be used to define public policies for land use, reduce  CO2 emissions, and implement C credit policies in an 
economic and fast way.

Implications of the study: the importance of using a spectral sensor for pedogenesis in soil C 
mapping
This study provides an alternative strategy to the usual methodologies for evaluating and mapping soil charac-
teristics, since traditional methods for quantifying soil properties involve field sampling and laboratory analysis, 
which are later mapped using interpolation to transform point data into a surface, making the process expen-
sive, time-consuming, and laborious, and may not provide accurate information for large spatial  areas9,10. Thus, 
spectral pedology using proximal sensors has been gaining prominence with the growing need for soil mapping 
with higher spatial resolution, presenting higher applicability in countries with large territorial extensions, such 
as  Brazil16. It is a very promising technology that relates soil studies to the interpretation of electromagnetic 
spectra. This technology allows the discrimination of soil  attributes14,104, and the information is added to digital 
mapping. In addition, the adoption of new methodologies, such as diffuse reflectance spectroscopy (DRS), and 
robust mathematical techniques, such as machine learning and geostatistics, work together to make research of 
this magnitude  possible16,105.

Soil mineralogy and texture are directly related to C stock due to the physical properties of the clay 
 surface106,107. Inadequate and unplanned land use, related to a lack of knowledge of the dynamics of C entry and 
exit from the soil, increases  CO2 emissions by 31%32. In this context, the topic addressed by this research is based 
on environmental sustainability and food security. According to England and Viscarra-Rossel105, C stocks in the 
soil can be stabilized or increased through the identification and implementation of agronomic and environmen-
tal management. However, soil C shows high variability, requiring quantification to verify changes in its stock due 
to human activities, which demand a large sample  volume93. Therefore, the study of C concentrations and their 
dynamics in the landscape through mapping could serve as a basis for countless future decisions, identifying, 
for example, where the soil has the highest potential to store C naturally, thus guiding actions for the mitigation 
of  CO2 emissions from agricultural food production  systems108.

The use of geology and geomorphology to compartmentalize the study area helps to determine the spatial 
variability of soil attributes. In this context, we understand that knowledge of these attributes in an area of 13 
million hectares with economic relevance and heterogeneous in numerous characteristics can guide not only 
work in the State of São Paulo but also in neighboring states that have similar conditions, demonstrating the 
future potential of this research.

Therefore, we present here unprecedented results when considering methodology, territorial extension, and 
mapping. Thus, associated research in other Brazilian regions, using different methodologies and mathematical 
techniques, or showing how these maps can be used through field experimentation, are extremely important 
for validating the results. All the generated data is now part of a regional database and can be used as a basis for 
other research, guiding a pioneering development of research and innovation and contributing to the economical 
and sustainable advancement of science in Brazil.

Data availability
The data that support the findings of this study are available from the corresponding author, [Moitinho, M.R], 
on reasonable request.
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