
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:15527  | https://doi.org/10.1038/s41598-024-66318-0

www.nature.com/scientificreports

Research on bearing fault diagnosis 
based on improved genetic 
algorithm and BP neural network
Zenghua Chen 1,6, Lingjian Zhu 2,6, He Lu 3, Shichao Chen 1,4, Fenghua Zhu 4,5, Sheng Liu 1,4, 
Yunjun Han 1,4 & Gang Xiong 1,4,5*

Health monitoring and fault diagnosis of rolling bearings are crucial for the continuous and effective 
operation of mechanical equipment. In order to improve the accuracy of BP neural network in fault 
diagnosis of rolling bearings, a feature model is established from the vibration signals of rolling 
bearings, and an improved genetic algorithm is used to optimize the initial weights, biases, and 
hyperparameters of the BP neural network. This overcomes the shortcomings of BP neural network, 
such as being prone to local minima, slow convergence speed, and sample dependence. The improved 
genetic algorithm fully considers the degree of concentration and dispersion of population fitness 
in genetic algorithms, and adaptively adjusts the crossover and mutation probabilities of genetic 
algorithms in a non-linear manner. At the same time, in order to accelerate the optimization efficiency 
of the selection operator, the elite retention strategy is combined with the hierarchical proportional 
selection operation. Using the rolling bearing dataset from Case Western Reserve University in the 
United States as experimental data, the proposed algorithm was used for simulation and prediction. 
The experimental results show that compared with the other seven models, the proposed IGA-BPNN 
exhibit superior performance in both convergence speed and predictive performance.
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Rolling bearings are one of the important components of rotating machinery, widely used in industrial fields 
such as production workshops, aerospace, aviation, industrial aircraft, and intelligent manufacturing. Rolling 
bearings are subjected to multiple mechanical stresses such as friction, vibration, and high-speed motion during 
high-speed rotation, which can lead to fatigue cracks and wear on their surfaces, re-sulting in structural failures 
and ultimately bearing failure. Failed bearings will lead to more energy consumption, while also subjecting the 
surrounding environment to ex-cessive heat and pressure, thereby shortening the overall lifespan of machinery 
and equipment. According to relevant data statistics, about 45% of rotating machinery equipment failures are 
caused by damage to rolling bearings, and about 40% of motor equipment failures are caused by rolling bearing 
 failures1,2. With the development of modern industrial and manufacturing systems, the diagnosis of bearing 
faults and health monitoring of working conditions in rolling bearings are of great significance for ensuring the 
continuous and effective operation of related mechanical systems. The essence of fault diagnosis is to analyze 
the collected mechanical equipment signals and model information, in order to achieve effective diagnosis and 
accurate analysis of the working status of mechanical  equipment3.

At present, scholars in many literatures obtain feature parameters through signal processing methods and 
combine them with recognition algorithms for fault recogni-tion, such as support vector  machines4,5, extreme 
learning  machines6,7, tradi-tional neural  networks8, recurrent neural  networks9, and convolutional neural 
 networks10,11, etc.

Chen Xinyang et al. proposed a support vector machine algorithm (MFDE-SVM) based on multi-scale dila-
tion and dispersion entropy to address the problem of difficult recognition of bearing fault signals in rotating 
machinery equipment. Multiscale di-lation and dispersion entropy (MFDE) captures the diversity and irregularity 
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of data by analyzing data changes at different time scales, extracts fault features hidden in bearing vibration 
signals, and improves the accuracy of support vector machine (SVM) classification in bearing fault  diagnosis12. 
Xinran et al.13 proposed a fault di-agnosis method for rolling bearings, which uses an improved sparrow search 
algorithm (SSA) to optimize support vector machine (SVM). The optimized SVM can achieve more accurate 
self-adaptive classification results. Abed et al.14 used discrete wavelet transform to extract fault features of rolling 
bearings, and then used recurrent neural networks for fault detection and classification. Janssens et al.15 proposed 
a convolutional neural network for autonomous learning of bearing fault features, which can achieve better results 
than traditional methods; He et al.16 proposed a bearing fault diagnosis model that combines autoencoder and 
discrete Fourier trans-form for bearing fault signal preprocessing, feature extraction, and fault classification. Ning 
et al.17 proposed an improved fish swarm algorithm that utilizes its global optimization ability to optimize the 
weights and thresholds of the BP neural network, forming a fault diagnosis method based on the improved fish 
swarm algorithm optimized neural network. Chenlin et al.18 proposed an improved CNN fault diagnosis method 
to address the uncertainty of manually selecting features in ex-isting rolling bearing fault diagnosis models and 
the problem that diagnostic models are not targeted. Lizhi et al.19 proposed an enhanced deep autoencoder net-
work that combines the grey wolf algorithm to automatically select key network pa-rameters. This enhanced deep 
autoencoder network has better feature extraction abil-ity and stability. An et al.20 proposed a rolling bearing 
fault diagnosis algorithm based on overlapping group sparse model deep complex convolutional neural network 
to address the difficulty of feature extraction and multi-scale problems in composite signals of rolling bearings.

In most literature, optimization algorithms are used to optimize recognition net-works, but some networks 
do not reduce errors by adjusting weights and thresholds when approximating functions. For example, RBF 
networks reduce errors by adjusting Euclidean distances, while BP neural networks reduce approximation errors 
by ad-justing input weights and thresholds. Moreover, at the same accuracy, the structure of BP networks is more 
straightforward than other networks. In order to improve the recognition effect of rolling bearing faults, this 
paper uses an improved genetic algorithm to optimize the BP neural  network21–25.

In order to improve the accuracy of BP neural network in bearing fault diagnosis, an improved genetic algo-
rithm is used to optimize the initial weights, biases, and hy-perparameters of the BP neural network, in order 
to overcome the disadvantages of BP neural network being prone to local minima, slow convergence speed, and 
sample de-pendency. The improved genetic algorithm fully considers the degree of concentration and dispersion 
of population fitness in genetic algorithms, and adaptively adjusts the crossover and mutation probabilities of 
genetic algorithms in a non-linear manner, which avoids the problems of traditional genetic algorithm optimiza-
tion neural network models easily falling into local optima and low solving efficiency. At the same time, in order 
to accelerate the optimization efficiency, a layered and propor-tional selection operator is adopted, which not 
only considers retaining elite individu-als but also improves the diversity of the population.

In order to verify the effectiveness of the IGA-BPNN algorithm proposed in this paper, the algorithm that only 
optimizes neural network weights proposed in this paper is defined as the IGA-BPNN-1 algorithm, and the algo-
rithm that only optimizes neural network hyperparameters proposed in this paper is defined as the IGA-BPNN-2 
algorithm. The algorithm that optimizes neural network weights and hyperparameters using traditional genetic 
algorithms is defined as GA-BPNN, the algorithm that only optimizes neural network weights using traditional 
genetic algorithms is defined as GA-BPNN-1 algorithm, and the algorithm that only optimizes neural network 
hyperparameters using traditional genetic algorithms is defined as GA-BPNN-2 algorithm. Simultaneously, an 
unoptimized BPNN algorithm is introduced as the baseline to compare the performance and efficiency of these 
seven algorithms. The above 7 methods all use the features extracted in this article for training and prediction. 
Then, in order to verify the effectiveness of the 23 feature models extracted in this paper, the method proposed 
in  paper27 was also used to extract features, and the improved algorithm IGA-BPNN proposed in this paper was 
used for training and prediction, which was defined as IGA-BPN-27. This article conducted rich experiments 
using the eight algorithms mentioned above, and conducted detailed experiments and comparative analysis 
from the aspects of model error, algorithm convergence speed and computational efficiency, fault diagnosis 
performance, and prediction result volatility, proving the superiority of the proposed algorithm IGA-BPNN. 
Finally, the method proposed in  paper27 was used to extract features through experiments using CNN and LSTM 
models. The experimental results showed that the IGA-BPNN method proposed in this paper still has significant 
advantages in computational efficiency and fault diagnosis performance.

Selection of fault diagnosis characteristic indicators
This article uses the bearing dataset from Case Western Reserve University (CWRU) in the United States for 
experiments. The CWRU bearing fault dataset is a publicly available dataset commonly used for mechanical 
fault diagnosis and predic-tion research. It is provided by the Department of Mechanical Engineering at Case 
Western Reserve University and is used for the analysis and algorithm development of bearing fault diagnosis 
and prediction. This dataset contains four different types of bearing operating state data: inner ring failure, outer 
ring failure, rolling ball failure, and normal state. Each type of fault includes data from multiple operating condi-
tions, such as different loads and speeds. The dataset collected vibration signals of bearings under different fault 
states, and sampled and processed them. Multiple bearing fault characteristic indicators can be extracted from 
the Case Western Reserve Universi-ty(CWRU) bearing fault dataset for fault diagnosis and prediction analysis. 
The fol-lowing are some common bearing fault characteristic indicators. (1) Vibration signal characteristics: 
including peak value, root mean square (RMS), pulse factor, etc. (2) Frequency domain characteristics: Peak 
frequency, Fault frequency of bearings. (3) Statistical characteristics: Mean, Variance, Skewness, Kurtosis, etc. 
(4) Wavelet packet features: Wavelet packet energy, etc.

The fault sample signals were collected by whole cycle sampling of inner ring faults, outer ring faults, and roll-
ing ball faults. The time-domain vibration signal and frequency-domain vibration signal of a certain whole cycle 
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are shown in Figs. 1 and 2, respectively. Usually, diagnostic modes based on vibration signal spectrum analysis 
are limited by factors such as time–frequency transformation and fault fre-quency dependence on bearing size 
parameters. Therefore, a more general machine learning method is employed to extract the mean, absolute mean 
value, waveform factor, peak to peak value, root mean square, standard deviation, skewness, kurtosis, pulse fac-
tor, peak factor, autocorrelation coefficient, and variance of bearing fault vi-bration signals. This article extracts 
23 feature indicators from the CWRU bearing fault dataset, as shown in Table 1. These feature indicators can be 
combined with machine learning and fault diagnosis algorithms to classify, predict, and diagnose bearing faults. 
Generally speaking, researchers can extract suitable features for the analysis and pre-diction of bearing faults 
based on specific analysis needs and algorithm choices.

Improved genetic algorithm optimization of BP neural network
BP neural network
Artificial neural network is a computational model generated by simulating the structure of biological neural 
networks, which can perform highly nonlinear mapping and has certain stability and fault tolerance. The most 
widely used among numerous neural network models is the back propagation (BP) neural network model, which 
is a multi-layer feedforward neural network trained using error backpropagation algorithm. Its model structure 
consists of an input layer, an output layer, and one or more hidden layers. The topology diagram is shown in 
Fig. 3, where nodes in the same layer do not interfere with each other and are independent of each other. Nodes 
in different layers are connected nonlinearly through neural network parameters such as weights and biases. The 
BP neural network algorithm includes the following two processes:

Forward propagation of signals.
Backpropagation of errors.

Assuming the BP network structure with three layers of neurons is n− q−m,x1, x2, . . . , xn is the input of 
the neural network, output as y1, y2, . . . , ym.

The commonly used loss functions in BP neural networks are mean squared error (MSE), cross entropy, and 
so on.

(1)L1 =
1

m

m∑

k=1

(y′k − yk)
2

Figure 1.  Time domain waveform of bearing vibration signal under 0hp working condition.
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Equation (1) represents the mean square error function, and Eq. (2) represents the cross entropy function. In 
Eq. (1), yk′ represents the predicted value, and yk represents the true value. In Eq. (2), yin represents the predicted 
sample distribution probability, and ŷin represents the true sample distribution probability.

If the model output does not meet expectations, the BP neural network will adjust the weights and biases 
during the error feedback process, achieving adjustments to the computational structure of each neuron and 
gradually approaching the expected output. In the error correction stage, the weight is often determined using 
the gradient descent method. Taking the weight correction process of the hidden layer and output layer as an 
example, the specific mathematical expression is as follows.

(2)L2 = −

m∑

i=1

(ŷi1 log yi1 + ŷi2 log yi2 + · · · + ŷin log yin)

Figure 2.  Frequency domain waveform of bearing vibration signal under 0hp working condition.

Table 1.  Characteristic indicators for bearing fault diagnosis.

Number Feature name Number Feature name

1 Peak value 13 Wave form

2 Peak-peak value 14 Margin

3 Root-mean-square 15 Center of gravity frequency

4 Average absolute value 16 RMS bandwidth

5 Pulse factor 17 Frequency variance

6 Spectral characteristics 18 Autocorrelation coefficient

7 Energy feature 19 Variance

8 Frequency band energy 20 Standard deviation

9 Frequency peak 21 Wavelet feature mean

10 Skewness 22 Standard deviation of wavelet features

11 Kurtosis 23 Wavelet feature energy value

12 Average value
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In formulas (3) and (4), α represents the learning rate, L represents loss.�ωij(n+ 1) represents the gradient of 
the loss on the weight ωij(n) ; ωij(n) and ωij(n+ 1) represent the weights before and after the update, respectively.

Improved genetic algorithm (IGA)
Genetic algorithm is a stochastic global search optimization method proposed by Professor Holland, which 
combines Darwin’s theory of evolution and Mendel’s genetic ideas to solve optimization problems. It has good 
adaptability and optimization capabilities. The basic concepts of genetic algorithms include chromosome encod-
ing, genes, populations, fitness functions, selection, crossover, and mutation, as well as corresponding operational 
parameters. Based on the basic idea of survival of the fittest, it simulates the replication, crossover, and mutation 
phenomena in natural selection and genetics. The genetic operation process is shown in Fig. 4, where the chro-
mosome represents a solution to the problem. Through selection operation, crossover operation, and mutation 
operation, it evolves to generate individuals that are more suitable for the environment, gradually identifying 
the optimal solution region. In this way, generation after generation, this group will continue to reproduce and 
evolve, ultimately converging into a group of individuals that are most suitable for the environment.

The traditional genetic algorithm is a method of finding and solving the optimal solution by simulating the 
natural process of biological survival of the fittest. However, when dealing with and solving some complex opti-
mization problems, it is easy to fall into some local extreme points. This study proposes an improved Adaptive 
Genetic Algorithm (IGA) that takes into account the diversity of population fitness and adaptively adjusts the 
crossover and mutation probabilities of the genetic algorithm in a non-linear manner; In order to improve the 
convergence efficiency and optimization ability of genetic algorithms, a hierarchical and proportional selection 
operator is adopted, which not only considers retaining elite individuals but also enhances the diversity of the 
population.

Improved selection operator
The commonly used selection operators include optimal save strategy, random competition selection method, 
and roulette wheel selection method, all of which are based on the size of individual fitness values for selec-
tion. Individuals with higher fitness values are more likely to be selected to enter the next generation, while 
those with lower fitness values are more likely to be eliminated. However, these traditional selection operators 
all have some problems to some extent. The roulette wheel selection method will generate random errors, that 
is, selecting individuals with lower fitness values and eliminating those with higher fitness values. The optimal 
preservation strategy only focuses on preserving excellent individuals and completely ignores the problem of 
eliminating individuals with low fitness values, resulting in the problem of local optima. This article improves 
the selection operator by optimizing its selection mechanism for individuals. While maximizing population 
diversity, individuals with high fitness values can also be directly inherited to the next generation. The improved 
selection operator is as follows:

(3)�ωij(n+ 1) = −α
∂L

∂ωij(n)

(4)ωij(n+ 1) = ωij(n)+�ωij(n+ 1)

Figure 3.  Schematic diagram of neural network topology.
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1. Randomly determine the weights (biases) and hyperparameter combination values of a set of neural net-
works, designate them as the initial population, and calculate the fitness value.

2. Arrange the individuals in the initial population in ascending order based on their fitness values.
3. Select the top 5% and bottom 5% of individuals to skip the crossover stage and directly pass on to offspring, 

while the remaining population undergoes crossover operations. This can ensure the inheritance of excellent 
genes from the population to offspring, as well as the diversity of the population.

4. After the crossover is completed, randomly select 15% of individuals to directly enter the offspring.
5. Perform mutation operations on the entire population, randomly selecting 15% of individuals to directly 

enter offspring.
6. Calculate the fitness value of the entire mutated population and arrange it in ascending order. Divide it into 

three layers, and randomly select 20% of individuals from each layer to enter the offspring.

Improved adaptive crossover and mutation operators
Traditional genetic algorithms use fixed crossover and mutation probabilities, with crossover probabilities typi-
cally ranging from 0.3 to 0.7 and mutation probabilities typically ranging from 0.1 to 0.3. But there is a huge 
problem with this, which is that it is difficult to adjust the probability of crossover operation and mutation 
operation to the optimal level. If the crossover probability is set too low, the probability of crossover operations 
occurring decreases, leading to a weakening of the algorithm’s exploration ability. Low crossover probability may 
lead to insufficient communication and combination of genetic information among individuals in the population, 
making the algorithm trapped in local optima and difficult to discover global optima. If the crossover probability 
is set too high, the probability of crossover operation occurring may be high, which may lead to the algorithm’s 
excessive dependence on crossover operation, resulting in the generation of new individuals too quickly, and 
individuals with high fitness values are easily destroyed, which may lead to the algorithm evolving into a random 
search algorithm. If the mutation probability is set too low, it may lead to the algorithm falling into local optima 
in the search space and unable to effectively explore the global optimal solution. Low mutation probability may 
limit the diversity of individual genes, leading to premature convergence or stagnation of the algorithm. If the 
mutation probability is set too high, it may cause the algorithm to excessively explore the search space and waste 
computing resources. A high probability of variation may lead to individual genes changing too randomly, mak-
ing it difficult to maintain high-quality solutions. In addition, a high mutation probability may also cause the 
algorithm to excessively destroy the already converging high-quality solutions and fall into an unstable state. In 
response to the various shortcomings of traditional genetic algorithms, many scholars have continuously made 
improvements and proposed many improved algorithms, such as Adaptive Genetic Algorithm (AGA), which is 
shown in Eqs. (8) and (9)26.

(5)Pc =

{
k1(fmax−f ′)
fmax−favg

, f ′ ≥ favg

k2 f ′ < favg

Figure 4.  Genetic algorithm operation flowchart.
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In formulas (5) and (6), f ′ represents the larger fitness value among the two individuals to be crossed; fmax 
is the maximum fitness in the population; favg is the average fitness of the population; f  represents the fitness of 
the current individual; k1-k4 are adaptive control parameters. However, the AGA algorithm evolves slowly in the 
early stages and is prone to stagnation. Excellent individuals are basically in a stationary state, that is, there is no 
crossover or mutation operation. In the later stage, the probability of crossover and mutation tends to stabilize. 
Ultimately, individuals with high fitness values in the population are likely to converge locally, thus failing to 
achieve global optimization, which can easily lead genetic algorithms to evolve towards local convergence.

To retain elite individuals and avoid the population falling into local optima, this paper introduces the Tanh 
activation function to improve the adaptive crossover probability and mutation probability, using adjusted crosso-
ver probability Pc and mutation probability Pm , as shown in formulas (7) to (8).

In the above equation, Ps_max , Ps_min , Pc_max , Pc_min , Pm_max , and Pm_min represent the maximum and 
minimum values of selection probability, cross probability, and mutation probability, respectively. fi represents 
the fitness of individuals in the i-th generation population, and fiavg represents the average fitness of the i-th 
generation population.

IGA-BPNN algorithm based on IGA optimization for BP neural network
This paper refers to the connection weights and biases of BP neural networks as weight parameters, referred to 
as neural network parameter one, and the training hyperparameters of BP neural networks as neural network 
parameter two, collectively referred to as dual parameter combinations. The method proposed in this paper is 
to use an improved genetic algorithm to optimize the weight parameters of the BP neural network, in order to 
solve the problems of slow convergence speed and low accuracy caused by the random initial weights of the BP 
neural network. In addition, due to the poor optimization performance of existing neural network hyperparam-
eter optimization algorithms, they are prone to getting stuck in local optima, resulting in large network model 
errors that are difficult to meet practical application needs; Moreover existing neural network hyperparameter 
optimization algorithms have slow convergence speed and high time cost. This paper combines an improved 
genetic algorithm with a BP neural network for training and solving, in order to efficiently find the optimal BP 
neural network weight and hyperparameter—dual parameter combination, in order to solve the problems of 
slow convergence speed and easy falling into local optimal solutions.

Chromosome coding and parameter initialization
Due to the fact that the dataset used in this article is all floating-point numbers, the accuracy of model prediction 
is required to be high, and the algorithm is also expected to have good stability. Therefore, real number encod-
ing is used to encode chromosomes, with the length of chromosome encoding being the sum of the number of 
weights and hyperparameters, and the initial value of chromosomes is set to be equal to the random points in 
the search space. Assuming that the BP neural network model adopts a unified network topology structure, the 
model consists of one input layer, three hidden layers, and one output layer. The number of neuron nodes in the 
input layer of the network is equal to the dimension of the input data sample, the hidden layer contains three 
fully connected layers, and the output layer contains one node, representing the network output.

Choosing an appropriate range of hyperparameters is a crucial step in ensuring that the network model 
can fully learn and provide optimal performance. This article combines relevant literature research and work 
experience, as well as conducts preliminary tests on different combinations of hyperparameters. Considering the 
constraints of computing resources, the following range of hyperparameters is set.Let the number of neurons in 
the 1–3 hidden layers be n1 , n2 , and n3 . The activation functions used in the three hidden layers are represented 
by symbols a1 , a2 , and a3 , with values taken as integers within the interval [0,5], corresponding to six types of 
activation functions: ReLU, Sigmoid, Softmax, tanh, Softplus, and Softsign. During training, the number of 
samples selected for a single training batch is usually set to 32, 64, 128, 256, represented by integers within the 
interval [0,3]. The optimizer uses [0,4] to represent SGD, Adam, RMSpro, Adagrad, and Adadelta, respectively. 
Training generations use [0,5] to represent 100, 200, 300, 400, 500, and 600, respectively. The loss function uses 
[0,3] to represent mean square error(MSE), mean absolute error(MAE), classification cross entropy(CCE), and 
logarithmic variance(LV), respectively. The learning rate lr usually takes values of 0.01, 0.001, 0.0001, and is 
represented by integers within the interval of [0, 2]. The range of hyperparameter values is shown in Table 2.

The length of the chromosome is l = (n+ 1) ∗ n1 + (n1 + 1) ∗ n2 + (n2 + 1) ∗ n3 + (n3 + 1) ∗m+ 8 , where 
n represents the number of neurons in the input layer and m represents the number of neurons in the output layer.

(6)Pm =

{
k3(fmax−f ′)
fmax−favg

, f ≥ favg

k4 f < favg

(7)Pc =

{
Pc_min + (Pc_max − Pc_min)

e
fi−fiavg

−e
−(fi−fiavg )

e
fi−fiavg

+e
−(fi−fiavg )

, fi ≥ favg

pc_max fi < favg

(8)Pm =

{
Pm_min + (Pm_max − Pm_min)

e
fi−fiavg

−e
−(fi−fiavg )

e
fi−fiavg

+e
−(fi−fiavg )

, fi ≥ favg

pm_max fi < favg
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Configuration of fitness function for IGA
The fitness function of genetic algorithms is a criterion used to evaluate the quality of individuals. Due to the fact 
that genetic algorithms are essentially independent of external information in evolutionary search, a reasonable 
fitness function f  should be selected as the sole criterion for evaluation. Here, the fitness function uses the mean 
absolute error (MAE) of the network model on the dataset, represented as:

In formula (9), y′i and yi respectively represent the predicted and true values of the sample data, where n 
represents the number of samples.

Implementation process of IGA‑BPNN algorithm
This article proposes an algorithm IGA-BPNN that utilizes an improved genetic algorithm to automatically 
optimize the weights and hyperparameters of BP neural networks. This method is based on neural networks. 
Firstly, the topology structure of the neural network and the hyperparameters that need to be optimized are 
determined, and at the same time, the upper and lower bounds of the parameter space of the hyperparameters 
are determined; Then, a combination of NP group weights and hyperparameters is randomly generated (NP is 
the population size), and each combination is encoded as a chromosome as input to the IAG-BPNN algorithm. 
The IGA-BPNN algorithm uses the fitness function shown in Eq. (11) to continuously select, cross, and vary, in 
order to obtain the individual which has the best fitness; Finally, the chromosome is decoded to obtain a set of 
weights and hyperparameters that optimize the fitness. Finally, the neural network is trained using the combi-
nation of these weights and hyperparameters. The entire implementation process of the IGA-BPNN algorithm 
is shown in Fig. 5.

The IGA-BPNN for weight and hyperparameter optimization algorithm proposed in this article is described 
in Algorithm 1.

Algorithm 1: IGA-BPNN for weight and hyperparameter optimization algorithm.
Input: Neural network topology, range of hyperparameter values for neural networks, population size NP for 

IGA-BPNN algorithm, maximum number of iterations N.
Output: The optimal set of weights and neural network hyperparameters.

Initialize the neural network topology and determine the parameter space of the neural network hyperpa-
rameters;
Initialize the genetic algorithm population P(0), population size NP, maximum number of iterations N, 
crossover probability Pc , mutation probability Pm , etc.;
While (maximum number of iterations not reached):
Calculate the fitness fi of each individual, decode a set of weights and hyperparameters corresponding to 
the BP neural network model for each individual, and use the average absolute error of the model on the 
training set as the fitness fi;
Using an improved hierarchical proportional selection operator to select individuals as parents from the 
population;
Using a two-point crossover operator with improved crossover probability to perform crossover operations 
on the parent generation, generating new individuals;
Using a single point mutation operator with improved mutation probability to perform mutation operations 
on the crossed offspring, selecting offspring to form a new population according to the improved selection 
operator;
End while;
Decoding the globally optimal individual to obtain the optimal set of weights and hyperparameter combina-
tions;
Train the BP neural network using the optimal combination of weights and hyperparameters.

(9)
f = MAE =

n∑
i=1

∣∣y′i − yi
∣∣

n

Table 2.  Range of hyperparameter values for neural networks.

Hyperparameter name Value range

Activation function a1 [0,5]

Activation function a2 [0,5]

Activation function a3 [0,5]

Batch [0,3]

Optimizer [0,4]

Training generation [0,5]

Loss function [0,3]

Learning rate(lr) [0,2]
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Experimental results
Evaluating indicator
In order to verify the effectiveness of the IGA-BPNN algorithm proposed in this paper, the algorithm that only 
optimizes neural network weights proposed in this paper is defined as the IGA-BPNN-1 algorithm, and the algo-
rithm that only optimizes neural network hyperparameters proposed in this paper is defined as the IGA-BPNN-2 
algorithm. The algorithm that optimizes neural network weights and hyperparameters using traditional genetic 
algorithms is defined as GA-BPNN, the algorithm that only optimizes neural network weights using traditional 
genetic algorithms is defined as GA-BPNN-1 algorithm, and the algorithm that only optimizes neural network 
hyperparameters using traditional genetic algorithms is defined as GA-BPNN-2 algorithm. Simultaneously, an 
unoptimized BPNN algorithm is introduced as the baseline to compare the performance and efficiency of these 
seven algorithms. The above 7 methods all use the features extracted in this article for training and prediction. 
Then, the method proposed in  paper27 is used to extract features, and the improved algorithm IGA-BPNN pro-
posed in this paper is used for training and prediction, which is defined as IGA-BPNN-27. Finally, the method 
proposed in  paper27 was used to extract features through experiments using CNN and LSTM models. The 

Figure 5.  IGA-BPNN algorithm flowchart.
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experimental results showed that the IGA-BPNN method proposed in this paper still has significant advantages 
in computational efficiency and fault diagnosis performance.

In order to comprehensively evaluate the accuracy of the prediction results of each model, mean square error 
(RMSE), mean absolute error (MAE), and cross entropy loss were used to compare and analyze the performance 
ability of each model. The specific calculation formula for each indicator is as follows:

In Eqs. (10), (11), and (12), y′i and yi represent the predicted and true values of the sample data, where n 
represents the number of samples.

Due to the different weighting, threshold, hyperparameter assignment methods, and training functions of 
neural network models, their predictive performance also varies. In order to more accurately reflect the dif-
ferences in prediction performance of different models, this article trains each model 20 times and conducts 
statistical analysis on four evaluation indicators: MSE, MAE, cross entropy loss, and total number of iterations 
calculated for each prediction. The prediction performance of the models is compared.

Dataset of bearing fault
The following experimental comparative analysis will be conducted based on the feature indicators extracted 
in this article and the feature indicators extracted in the method described in  paper27, as shown in Tables 3 and 
4, respectively.

Based on the previous discussion, this study set 23 factors that affect the detection results of bearing faults as 
feature indicators for the model, and used a BP neural network to determine the rationality of their settings. The 
23 input factors of the neural network are peak value, peak to peak value, root mean square value, average abso-
lute value, pulse factor, spectral feature, energy feature, frequency band energy, frequency peak value, skewness, 
kurtosis, waveform, margin, center of gravity frequency, etc. Root mean square bandwidth, frequency variance, 
autocorrelation coefficient, variance, and wavelet features. By defining the number of wavelet feature decompo-
sition levels in Table 1 as 5, we can ultimately obtain 18 wavelet features, and with the addition of an additional 
20 features, we can ultimately obtain 38 features in this paper. In the above dataset, NORMAL represents the 
normal condition of the bearing during operation, represented by label 0. OR021 represents an outer ring fault 
with a diameter of 21 mils, represented by label 1. OR014 represents a fault in the outer ring with a diameter of 
14 mils, indicated by label 2. OR007 represents an outer ring fault with a diameter of 7 mils, indicated by label 3. 
IR021 represents an inner ring fault with a diameter of 21 mils, indicated by label 4. IR014 represents an inner 
ring fault with a diameter of 14 mils, indicated by label 5. IR007 represents an inner ring fault with a diameter 
of 7 mils, indicated by label 6. B021 represents a rolling element fault with a diameter of 21 mils, indicated by 
label 7. B014 represents a rolling element fault with a diameter of 14 mils, indicated by label 8. B007 represents 
a rolling element fault with a diameter of 7 mils, indicated by label 9. At the same time, the above dataset is pre-
processed to extract features, and fault diagnosis models are established using the aforementioned algorithms 
for training and prediction.

(10)
MSE =

n∑
i=1

(y′i − yi)
2

n

(11)
MAE =

n∑
i=1

∣∣y′i − yi
∣∣

n

(12)loss =

n∑

i=1

yi log(y
′

i)

Table 3.  The sample dataset of this article.

Sample type Characteristic length

Number of samples

Sample labelsTraining set Validation set Test set

NORMAL 38 6000 2000 2000 0

OR021 38 6000 2000 2000 1

OR014 38 6000 2000 2000 2

OR007 38 6000 2000 2000 3

IR021 38 6000 2000 2000 4

IR014 38 6000 2000 2000 5

IR007 38 6000 2000 2000 6

B021 38 6000 2000 2000 7

B014 38 6000 2000 2000 8

B007 38 6000 2000 2000 9
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Due to space limitations in the article, as shown in Fig. 6, the waveform diagram below shows features such 
as mean, variance, kurtosis, skewness, pulse factor, and peak to peak value. From Fig. 6, it can be seen that the 
different signal characteristic parameters extracted after analysis and processing can clearly distinguish different 
types of faults from the original vibration signal shown in Figs. 1 and 2.

Analysis of error
In order to quantitatively analyze the advantages and disadvantages of the 8 methods mentioned above, 20 
independent repeated experiments were conducted on the above dataset. The IGA-BPNN algorithm proposed 
in this paper was compared with the bearing fault diagnosis models established by IGA-BPNN-1, IGA-BPNN-2, 
GA-BPNN-1, GA-BPNN-2, BPNN, and IGA-BPNN-27, respectively. The average absolute error (MAE) and 
mean square error (MSE) were used as evaluation indicators for the model. The MAE comparison of the fault 
diagnosis models established by these eight algorithms is shown in Table 5, and the MSE comparison is shown 
in Table 6. From Tables 5 and 6, it can be seen that the MAE and MSE of the IGA-BPNN algorithm are superior 
to other algorithm models.

Analysis of algorithm convergence speed
This article uses IGA-BPNN to train and predict bearing fault diagnosis models with eight algorithms: IGA-
BPNN-1, IGA-BPNN-2, GA-BPNN-1, GA-BPNN-2, BPNN, and IGA-BPNN-27. In order to compare their 
convergence rates, the most representative experiment is selected from them, and its convergence algebra is 
recorded. At the same time, its convergence curve is plotted. Among them, the MSE convergence curves of the 
network model for eight algorithms during the optimization process are shown in Fig. 7, and the corresponding 
convergence algebraic analysis results are listed in Table 7.

According to the results in Figs. 7, 8, 9 and 10 and Table 7, it can be clearly observed that the IGA-BPNN 
algorithm proposed in this paper has the lowest convergence algebra, followed by the GA-BPNN algorithm, and 
the IGA-BPNN algorithm also achieved the minimum mean square error. This indicates that the IGA-BPNN 
algorithm performs well in optimization and has a good convergence speed.

Through quantitative analysis, it can be seen that the proposed algorithm IGA-BPNN reduces the number 
of convergence iterations by 4.62% compared to IGA-BPNN-1; Compared with IGA-BPNN-2, the number of 
convergence iterations has been reduced by 6.15%; Compared with GA-BPNN, the number of convergence 
iterations has decreased by 3.08%; Compared with GA-BPNN-1, the number of convergence iterations has 
decreased by 4.62%; Compared with GA-BPNN-2, the number of convergence iterations has been reduced by 
6.15%; Compared with BPNN, the number of convergence iterations has decreased by 7.69%; Compared with 
IGA-BPNN-27, the number of convergence iterations has decreased by 6.15%.

By observing Figs. 7, 8, 9 and 10 and Table 7, it can be intuitively observed that IGA-BPNN has the fastest 
convergence speed and the obtained mean square error(MSE) is also close to optimal. In summary, under limited 
time and iteration times, the algorithm proposed in this paper can maintain a good level of convergence speed 
and error loss compared to the other seven BP neural network algorithms for the bearing fault diagnosis model.

Comprehensive diagnostic analysis
As mentioned above, the population size of the genetic algorithm in the seven fault diagnosis models used in this 
article, IGA-BPNN, IGA-BPNN-1, IGA-BPNN-2, GA-BPNN-27, etc., is set to 200, chromosome length is set 
to 52, population iteration number is set to 100, Pc_min is set to 0.2, Pc_max is set to 0.8, Pm_min is set to 0.2, and 
Pm_max is set to 0.8. In addition, since the BPNN algorithm does not use genetic algorithms, the loss function of 
the BPNN algorithm is set to the cross entropy function categorical, the optimizer is set to Adam, and the learn-
ing rate is set to 0.01. Obtain the confusion matrix of eight algorithm experimental results, as shown in Fig. 11. 
In the confusion matrix, row labels are predicted labels and column labels are true labels. The darker the color 
of the diagonal blocks, the higher the corresponding classification accuracy, while the lighter the color of the 
remaining blocks, the better. From Fig. 11, it can be seen that the IGA-BPNN model proposed in this article not 

Table 4.  Sample dataset for  paper27.

Sample type Characteristic length

Number of samples

Sample labelsTraining set Validation set Test set

NORMAL 864 6000 2000 2000 0

OR021 864 6000 2000 2000 1

OR014 864 6000 2000 2000 2

OR007 864 6000 2000 2000 3

IR021 864 6000 2000 2000 4

IR014 864 6000 2000 2000 5

IR007 864 6000 2000 2000 6

B021 864 6000 2000 2000 7

B014 864 6000 2000 2000 8

B007 864 6000 2000 2000 9
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only achieves high diagnostic accuracy in fault diagnosis, but also performs excellently in diagnostic accuracy. 
This shows the superiority of the IGA-BPNN model in bearing fault diagnosis.

According to the IGA-BPNN fault diagnosis model, a confusion matrix of classification results was extracted 
from the dataset in this article. Table 5 lists the classification accuracy, precision, recall, and comprehensive 
evaluation index (F1) for each type of diagnostic model to evaluate the bearing fault diagnosis effectiveness of 
the eight models. The fault diagnosis results of each neural network model are shown in Table 8.

Figure 6.  Trend of variation of different characteristic values under different faults.
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Table 5.  MAE comparison of eight algorithms.

Algorithm Optimal value /10–2 Worst value /10–2 Average value/10–2

IGA-BPNN 0.2397 2.6862 1.0903

IGA-BPNN-1 0.2668 2.8713 1.1159

IGA-BPNN-2 0.2684 2.8773 1.1291

GA-BPNN 0.2671 3.6727 1.1650

GA-BPNN-1 0.2612 3.7674 1.1649

GA-BPNN-2 0.2679 3.7698 1.1668

BPNN 0. 2792 4.1352 1.3162

IGA-BPNN-27 0. 2702 4.2117 1.2344

Table 6.  MSE comparison of eight algorithms.

Algorithm Optimal value /10–2 Worst value /10–2 Average value /10–2

IGA-BPNN 0.0832 0.2415 0.1381

IGA-BPNN-1 0.0974 0.2786 0.1754

IGA-BPNN-2 0.1001 0.2843 0.1812

GA-BPNN 0.1130 0.2776 0.1751

GA-BPNN-1 0.1232 0.2749 0.1741

GA-BPNN-2 0.1291 0.2782 0.1759

BPNN 0.1326 0.2706 0.1877

IGA-BPNN-27 0.1016 0.2320 0.1526

Figure 7.  Iterative curves of mean square error for eight algorithms.

Table 7.  Convergence algebra of eight algorithms.

Algorithm Convergent algebra MSE/10–2

IGA-BPNN 65 0. 1352

IGA-BPNN-1 68 0.1615

IGA-BPNN-2 69 0.1622

GA-BPNN 67 0.1679

GA-BPNN-1 68 0.1642

GA-BPNN-2 69 0.1691

BPNN 70 0.1706

IGA-BPNN-27 69 0.1586
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From the data in the table, it can be seen that the accuracy, recall, and comprehensive evaluation index F1 
score of the IGA-BPNN model, IGA-BPN-1 model, and IGA-BPN-2 model used for bearing fault diagnosis are 
significantly higher than those of other algorithm models except GA-BPNN algorithm. The IGA-BPNN model 
has the best fault diagnosis performance, with all indicators higher than other models, reaching 98.55%, 98.79%, 
98.55%, and 98.67%, respectively.

From the above classification index data, it can be seen that all BPNN diagnostic models optimized by 
genetic algorithm have better prediction results than traditional unoptimized BPNN models. The GA-BPNN 
algorithm has better diagnostic performance than GA-BPNN-1 and GA-BPNN-2 models that only optimized 

Figure 8.  Iterative curves of the mean absolute error of eight algorithms.

Figure 9.  Iterative curves of training loss for eight algorithms.

Figure 10.  Iterative curves of accuracy for eight algorithms.
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some parameters due to the use of genetic algorithms to optimize the combination of neural network weights 
and hyperparameters. The IGA-BPNN algorithm has improved the selection, crossover, and mutation opera-
tors of genetic algorithms, and its predictive performance is also better than the unimproved GA-BPNN model. 
Although the GA-BPNN model did not improve the genetic algorithm, the use of genetic algorithm to optimize 
the dual parameter combination of BPNN neural network weights and hyperparameters resulted in better predic-
tive performance than the diagnostic models GA-BPNN-1 and GA-BPNN-2, which only used a single parameter 
combination. Although the IGA-BPNN-27 model used an improved genetic algorithm to optimize the combina-
tion of neural network weights and hyperparameters, it did not adopt the feature extraction rules proposed in 
this paper, resulting in lower diagnostic accuracy for bearing faults compared to other fault diagnosis models. 

Figure 11.  Confusion matrix of eight bearing fault diagnosis models.
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Similarly, due to the absence of the feature extraction rules proposed in this article and the lack of improvements 
to traditional CNN and LSTM algorithms, only the vibration signals extracted by the method proposed in  paper27 
were input into the traditional CNN and LSTM models for fault diagnosis, resulting in lower accuracy in bearing 
fault diagnosis compared to the BP neural network model optimized by genetic algorithm.This indicates that 
the feature extraction method proposed in this paper has a significant effect on improving diagnostic accuracy.

Figure 11.  (continued)

Table 8.  Classification index data of experimental sample.

Algorithm Accuracy Precision Recall F-score

IGA-BPNN 0.9855 0.9879 0.9855 0.9867

IGA-BPNN-1 0.9733 0.9779 0.9733 0.9751

IGA-BPNN-2 0.9683 0.9778 0.9683 0.9729

GA-BPNN 0.9717 0.9778 0.9717 0.9743

GA-BPNN-1 0.9650 0.9709 0.9650 0.9678

GA-BPNN-2 0.9610 0.9676 0.9610 0.9632

BPNN 0.9587 0.9679 0.9588 0.9628

IGA-BPNN-27 0.9128 0.9233 0.9128 0.9157

CNN 0.9590 0.9670 0.9590 0.9599

LSTM 0.8805 0.9109 0.8805 0.8933
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In summary, the IGA-BPNN model used in this paper has superior performance in bearing fault diagnosis 
by preprocessing the vibration signals of the Case Western Reserve University bearing fault dataset and extract-
ing features from the dataset through wavelet packet transform and other methods. Using the IGA algorithm to 
optimize the weights and hyperparameter combinations of BPNN networks not only eliminates the extremely 
time-consuming task of manual tuning, but also enables faster selection of the most suitable initial weights and 
hyperparameter combinations for the network, thereby obtaining more accurate and precise results of fault 
diagnosis. In summary, the IGA-BPNN model proposed in this article has stable classification performance 
when facing complex data, which can ensure good fault diagnosis performance.

Volatility analysis
Considering the differences in the results of the algorithm under multiple diagnoses, under the same parameter 
settings and sample proportion allocation, the diagnostic results of the test set sample population are shown 
in Fig. 12 after 20 repeated calculations. In the figure, it can be observed that the BPNN algorithm exhibits 
significant fluctuations due to random initialization parameters, with a standard deviation of 0.009791; Other 
algorithms have optimized the BP neural network, resulting in smoother fluctuations compared to the BPNN 
algorithm. The standard deviation of IGA-BPNN is 0.003356, while the standard deviations of IGA-BPNN-1, 
IGA-BPNN-2, GA-BPNN, GA-BPNN-1, and GA-BPNN-2 are 0.003848, 0.006805, 0.005396, 0.004584, and 
0.004380, respectively. Although IGA-BPNN-27 uses an improved genetic algorithm to optimize the neural 
network algorithm, its prediction accuracy is not ideal due to the feature extraction method not following the 
method proposed in this article, with a standard deviation of 0.024672 and a large fluctuation range. The tra-
ditional CNN algorithm and LSTM algorithm, which were not optimized, used the bearing vibration signals 
extracted in  paper27 for fault diagnosis. The fluctuation difference of the results was 0.036209 and 0.029874, 
respectively, with a significantly larger fluctuation range than the aforementioned eight algorithms.It can be seen 
that the IGA-BPNN algorithm has more stable diagnostic results compared to other algorithms.

Computational efficiency
As shown in Table 9 and Fig. 13, the average computation time required for 10 bearing fault algorithm models, 
including CNN and LSTM algorithms, in 20 experiments is shown. Among them, IGA-BPNN, IGA-BPNN-1, 
and IGA-BPNN-2, which both used the improved genetic algorithm proposed in this paper to optimize the 
traditional BP neural network model, have similar computation time, but all have lower computation time than 
the GA-BPNN, GA-BPNN-1, and GA-BPNN-2 algorithms that did not improve the genetic algorithm optimized 
neural network model. The BPNN algorithm lacks genetic selection, crossover, and mutation operations due to 
the lack of optimization using GA algorithm. Although it takes time to cross, the final diagnostic results of the 
model are relatively poor. Similarly, IGA-BPNN-27 did not use the 23 features proposed in this article for bear-
ing fault diagnosis. Although its time consumption is relatively low, the diagnostic results of this model are not 
very ideal. Finally, this article uses the feature signals extracted in  paper27 to directly input into traditional CNN 
and LSTM models for fault diagnosis. Due to the complexity of CNN and LSTM results compared to general 
BPNN neural networks, their time consumption is also the highest among the ten bearing fault diagnosis models.

Figure 12.  Volatility analysis of eight fault diagnosis algorithms.

Table 9.  Computation time of different fault diagnosis models.

Algorithm IGA-BPNN IGA-BPNN-1 IGA-BPNN-2 GA-BPNN GA-BPNN-1 GA-BPNN-2 BPNN IGA-BPNN-27 CNN LSTM

Computation time (s) 87.5 86.9 87.1 92.6 91.8 91.3 78.9 82.7 171.9 188.3
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Conclusions
This article focuses on the optimization of neural network weights and hyperparameters, and proposes a bearing 
fault diagnosis model based on an improved genetic algorithm IGA optimized BP neural network algorithm 
from the perspective of evolutionary algorithms. Encode each combination of neural network weights and 
hyperparameters into a chromosome, iteratively evolve through the IGA algorithm, and ultimately output an 
optimal combination of network weights and hyperparameters to optimize network performance. The method 
proposed in this article adopts real number encoding to ensure algorithm accuracy, improve algorithm stability, 
and through an improved hierarchical proportional selection operator, it not only ensures the optimal preserva-
tion strategy but also maintains population diversity, effectively avoiding the problem of genetic algorithm getting 
stuck in local optima. The convergence of the algorithm is ensured through improved two-point crossover and 
single point mutation operators, Ultimately, the algorithm has the advantages of fast convergence and avoiding 
getting stuck in local optima. Finally, the proposed algorithm and seven other fault diagnosis models were trained 
and evaluated using the bearing fault dataset from Case Western Reserve University, in order to compare and 
analyze the effectiveness and performance of the IGA-BPNN algorithm proposed in this paper. The experimental 
results show that the algorithm proposed in this article can fully optimize the combination of neural network 
weights and hyperparameters, and can obtain the optimal network weights and hyperparameters in a limited 
time. This provides important reference significance for engineering applications. However, the algorithm pro-
posed in this article still requires more experimental scenarios to verify its effectiveness in different practical 
application backgrounds.

Data availability
The CRWU bearing failure dataset used in this paper is a publicly available dataset that can be downloaded from 
the following website: https:// engin eering. case. edu/ beari ngdat acent er/ downl oad- data- file. All data generated or 
analysed during this study are included in this published article.
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