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Dynamic look‑ahead feedrate 
scheduling method based 
on sliding mode velocity control
Liuquan Wang 1,2, Qiang Liu 1,2*, Pengpeng Sun 3, Shisheng Lv 1,4, Ruijie Yang 1,5 & Zhiqi Yang 1,5

In the feedrate scheduling of complex curve direct interpolation, dynamic constraints such as axis 
acceleration and jerk are related to the actual state of the tool. Most existing methods convert 
dynamic constraints to velocity constraints at sampling points. However, it cannot guarantee the 
dynamic constraints are satisfied between sampling points. Addressing the issue, this paper proposes 
a dynamic look‑ahead feedrate scheduling method based on sliding mode velocity control, which 
generates the motion command considering dynamic constraints in every interpolation cycle. To 
dynamically generate commands based on the current tool state, the acceleration and deceleration 
method based on sliding mode velocity control has been proposed, which can control tool state to 
transition to the command state with any initial state. To ensure sufficient distance for acceleration 
and deceleration, this paper uses braking distance to dynamically estimate the look‑ahead distance. 
Then the minimum value within the look‑ahead interval is selected as the command velocity for this 
scheduling cycle and the actual motion command is determined based on the dynamic constraints 
of each axis. Simulation and experiment results prove that compared with the existing method, this 
method effectively reduces the overshoot of dynamic constraints without significantly increasing the 
machining time. The analysis of real‑time computation time has demonstrated the potential of the 
method proposed in this paper for real‑time applications.

Keywords Feedrate scheduling, Dynamic look-ahead, Sliding mode control, Tracking error

As the standard form for curves in the STEP standard, Non-Uniform Rational B-Splines (NURBS) curves are 
widely used for the geometric expression of complex parts. Direct interpolation for NURBS curves could avoid 
discretizing the continuous NURBS curve to straight lines and arcs and improve machining efficiency and preci-
sion. In machining process, high-accuracy surface quality requires that tool motion satisfy constraints such as 
chord error, tangential acceleration, and tangential  jerk1. Additionally, surface quality is also affected by servo 
axis motion performance such as servo tracking bandwidth, maximum acceleration and  jerk2. Feedrate schedul-
ing is an important component of NURBS direct interpolation, which can fulfill the requirement of machining 
accuracy and quality by adjusting the feedrate to satisfy constraints in geometry, kinematics and  dynamics3. 
The common feedrate scheduling methods for NURBS direct interpolation can be divided into acceleration and 
deceleration(A/D) method and time-optimal optimization (TOO)  method4.

The TOO method converts the feedrate scheduling to an optimal control problem and usually optimizes the 
velocity at sampling points to achieve maximum machining efficiency. After obtaining the time-optimized veloc-
ity at discrete sampling points, a continuous u-v curve can be fitted by spline to obtain the velocity at any position. 
Liu et al.5 used the square of the velocity as optimization variable, and considered the kinematics and dynamics 
constraints of the machine tool. Lu et al.6 employed a predictive deceleration method to predict switching points 
of jerk to ensure jerk constraints. Zhang et al.4 and Xiao et al.7 converted tracking error constraints into linear 
combinations of tangential velocity, acceleration and jerk, and have taken them into consideration in optimal 
control. Chen et al.8 linearized the contour error as a function of velocity and used the Frenet framework to deter-
mine the accurate upper limit of velocity under the contour error constraint. To avoid velocity fluctuation caused 
by spline fitting, Zhao et al.9 adopted A/D method to scheduling the feedrate between sampling points after 
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obtaining time-optimal velocity using optimal control. Yang et al.10 used particle swarm optimization to opti-
mize the control nodes of the fitted u-v curve. Although TOO can achieve maximum machining efficiency, the 
computational load limits the use of TOO in real-time environments, for it hard to respond to overridechanges.

The A/D method generally divides the whole curve into sub-curve segments according to the velocity at 
sampling points. And for each sub-curve, a fixed A/D model is employed to generate the velocity profile in this 
sub-curve. The most common A/D model is S-shaped  model11 and here are 17 S-shaped velocity curve profiles 
according to different  conditions12. Traditional S-shaped A/D method causes jerk impact. To reduce the jerk 
impact during the manufacturing process, some jerk planning methods based on trigonometric  function13,14, 
sigmoid  function15 and quartic  function16 were proposed. However, these approaches increase the complexity of 
curve classification discussions. Wu et al.17 proposed a scheduling method combining quartic S-shaped and cubic 
S-shaped where quartic S-shaped is used to avoid jerk impact and cubic S-shaped is used to ensure machining 
efficiency. Ren et al.16 proposed a method of segment merging to reduce A/D stages. Sang et al.18 used morpho-
logical filters to optimize the feedrate limitation profile . Jia et al.19 proposed the concept of the velocity sensitive 
region, in which a uniform rate scheduling was applied to avoid exceeding constraints. Sun et al.20 schedule 
the period of velocity stage to be an integer multiple of servo control cycle to eliminate velocity fluctuations. 
Currently, intelligent control algorithms in CNC systems, such as adaptive cutting force  control21, often require 
changing override real-time. To meet the requirements, many scholars have developed dynamic look-ahead fee-
drate scheduling methods based on A/D methods. Sun et al.22 proposed an acceleration look-ahead method with 
 sin2 acceleration curve to avoid frequent acceleration fluctuations during short segments. Zhang et al.23 proposed 
an iterative method that detects exceeding constraint points by pre-interpolation and re-divides sub-segments 
at exceeding constraints points. However, the iteration time is uncontrollable. Song et al.24 proposed a dynamic 
moving look-ahead window method which uses braking distance to estimate look-ahead window length.  Sun25 
proposed a dynamic look-ahead method, which constructs a hyperbolic tangent function relationship between 
velocity and acceleration to generate commands based on tool state. However, this method cannot guarantee 
stable arrival at end point of curve and its stability has not been proven.

As the complexity of parts increases, in the finishing stage, machining stability is more important than effi-
ciency, and it is required to satisfy constraints such as chord error, axis velocity, axis acceleration and axis jerk 
throughout the entire machining process. Only related to the geometric properties of the curve, static constraints 
such as chord error and axis velocity can be converted to tangential velocity constraints. However, dynamic con-
straints such as axis acceleration and jerk are related to the actual state of the tool. Existing methods often assume 
that the tool’s acceleration and jerk are zero, thereby converting dynamic constraints to velocity constraints at 
sampling points. However, it cannot guarantee satisfying constraints between sampling points.

To address the needs for real-time override adjustment and dynamic constraints, this paper proposes a 
dynamic lookahead method based on sliding mode velocity control (SMVC). Compared to S-shaped A/D which 
constructs a relationship between jerk and time, SMVC generates commands using current tool state, which 
can adjust jerk more flexibly. Based on SMVC, the dynamic look-ahead feedrate scheduling considers dynamic 
constraints in every interpolation cycle, achieving consideration of dynamic constraints in the entire machining 
process. The remainder of this manuscript is organized as follows. “Principle of proposed method” details the 
principles of proposed scheduling method. “Sliding mode velocity control acceleration and deceleration method” 
introduces the sliding mode velocity control method. “Feedrate scheduling method” introduces the specific 
implementation of proposed scheduling method. And “Simulation” and “Experiment” present the simulation 
and experimental results.

Principle of proposed method
The dynamic look-ahead feedrate scheduling method is shown in Fig. 1. The feedrate scheduling method is 
divided into two stages: non-real-time pre-processing and real-time tasks. The non-real-time pre-processing 
stage realizes the sampling of NURBS to obtain the differential properties of NURBS at sampling points. Com-
bined with the feedrate constraints model such as chord error and axial velocity, the feedrate limitation profile 
satisfying the constraints is obtained. Meanwhile, the relationship between feedrate and look-ahead distance is 
established. The above information will be saved in the buffer to support the real-time tasks.

In the real-time task stage, the look-ahead distance of current period is calculated firstly according to the 
actual feedrate and the look-ahead distance function. After seeking the look-ahead interval, the minimum 
value of feedrate limitation profile in this interval is to serve as the command feedrate vcmd(k) of this period. 
Then SMVC method calculates the desired tangential acceleration and jerk command acmd(k), Jcmd(k) using the 
current tool status. Subsequently, dynamic constraints are used to adjust the acmd(k) and Jcmd(k) and the actual 
jerk command Jact(k) satisfying dynamic constraints is derived. If there is no solution that meets the dynamic 
constraints, then Jact(k) only needs to meet the maximum tangential jerk constraint. Once Jact(k) is obtained, 
the arc length increment �s(k) and parameter increment �u(k) can be calculated. According to the �u(k) , the 
command position and NURBS differential properties of next period can be obtained.

Sliding mode velocity control acceleration and deceleration method
Define tool tip state x =

[

vact aact
]T , where vact represents the tool tip’s velocity and aact represents the tool tip’s 

acceleration. The command state can be represented as xcmd =
[

vcmd 0
]T,where the vcmd represents the com-

mand tool tip’s velocity. The A/D process is the process that tool tip’s state transitions to command state xcmd from 
current state x . And in this process, the velocity and acceleration should be continuous and aact ∈ [−Amax,Amax] . 
Consider the following relationship between acmd and vact
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where K1 is a positive coefficient. The graph of Eq. (1) on phase plane is shown in Fig. 2.
If acmd satisfies Eq. (1), it will be continuous and in [−Amax,Amax] . To prove the stability of control method 

described by Eq. (1), let ve = vcmd − vact and ae be the first-order derivative of the ve with respect to time t  , which 
can shift command status from 

[

vcmd 0
]T to 

[

0 0
]T . Equation (1) becomes

If [ve, ae]T can converge to [0,0]T , it implies that [vact, aact]T can converge to 
[

vcmd 0
]T.

Define Lyapunov function

(1)acmd = Amax
K1(vcmd−vact)√

1+(K1(vcmd−vact))
2

(2)ae = v̇e = −Amax
K1ve√

1+(K1ve)
2

(3)V1 = 1
2v

2
e

Figure 1.  Schematic diagram of dynamic look-ahead feedrate scheduling method based on SMVC.
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V1 is obviously positive definite and

When ve  = 0 , V̇1 �= 0 . It means that if tool tip system follows Eq. (1), it is asymptotically stable near 
[

vcmd 0
]T

.
Due to the constraint on jerk, it is necessary to ensure the jerk of Eq. (1) satisfying the limit. There is

Furthermore,

Letting dJcmd
dvact

= 0 , there are v1 = vcmd −
√
3

3K1
, v2 = vcmd +

√
3

3K1
 . In the interval (−∞,+∞) , it can be observed 

that

Given the maximum acceleration as Jmax , the K1 should satisfy

When the tool tip state satisfies Eq. (1) and K1 satisfies Eq. (8), the system will converge to the command state 
xcmd. For states not satisfying Eq. (1), a sliding mode control method can be designed to make them approach 
the ideal state first.

Define sliding mode surface as

When sc = 0, the current tool state satisfies Eq. (1). When sc  = 0 , it implies that the tool state is not on the 
sliding mode surface. By controlling sc to tend towards 0, the tool state can be ensured to approach the sliding 
mode surface. Consider following equation:

where Jact is the jerk of tool tip and K2 is a positive coefficient. For the system described by Eq. (10), the Lyapu-
nov function V2 = s2c/2 is chosen. It can easily be proven that V2 is positive definite and V̇2 is negative definite. 
It implies sc can stably converge to 0.

Increasing K2 can improve the system’s performance, but if K2 is too large, it may cause chatter on the sliding 
mode surface. In this paper, K2 is taken as 1/Ts , where Ts is the interpolation period. From Eq. (10), it can be 
deduced that

(4)V̇1 = vev̇e = −Amax
K1v

2
e√

1+(K1ve)
2

(5)Jcmd = dacmd
dt = dacmd

dvact
dvact
dt = dacmd

dvact
acmd = − A2

maxK
2
1 (vcmd−vact)

(

1+K2
1 (vcmd−vact)

2
)2

(6)dJcmd
dvact

= −A2
maxK

2
1

1−3K2
1 (vcmd−vact)

2

(1+K2
1 (vcmd−vact)

2)3

(7)
max{Jcmd} = max{J(+∞), J(v1)} = 3

√
3

16 A2
maxK1

min{Jcmd} = min{J(−∞), J(v2)} = − 3
√
3

16 A2
maxK1

(8)K1 ≤ 16
3
√
3

Jmax

A2
max

(9)sc = Amax
K1(vcmd−vact)√

1+(K1(vcmd−vact))
2
− aact

(10)ṡc = − AmaxK1aact
(

1+K2
1 (vcmd−vact)

2
)
3
2
− Jact = −K2sc

Figure 2.  Graph of Eq. (1) on phase plane.
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In the actual process, the jerk of the tool tip needs to satisfy the condition |Jcmd| ≤ Jmax . It means Eq. (11) 
may not be satisfied. However, as long as Jcmd doesn’t change sign, the system’s convergence direction will not 
change. The limit of jerk only affects convergence speed and the system remains stable.

In the A/D method, it is important to achieve the command velocity without overshoot. Near 
[

vcmd 0
]T , as 

vcmd − vact approaches 0, Eq. (1) and Eq. (11) can be approximated as

Then the system described by Eq. (11) can be approximated as a linear system as shown in Fig. 3.
The transfer function of the system shown in Fig. 3 is

The system depicted in Eq. (13) is a typical second-order system. The natural frequency and damping ratio are

Using Cauchy’s inequality, there is

equality is achieved when AmaxK1 = K2 = 0.
Therefore, the actual system’s damping ratio is greater than 1, indicating that the system is overdamped 

and will not overshoot during convergence. It should be noted that the system described by Eq. (13) is time-
continuous. Actual computer numerical control is a discrete system, which may cause some overshoot due to 
the discrete step size.

Figure 4 illustrates the process of adjusting the system state to the command state using SMVC, providing 
three initial conditions: Case 1: Initial velocity = 0, initial acceleration = 0; Case 2: 0 < initial velocity < command 
velocity, initial acceleration < 0; Case 3: Initial velocity > command velocity, initial acceleration > 0. It can be 
observed that in all 3 cases, SMVC can effectively control system convergence to the command state.

Figure 5 shows the response of SMVC to override changes. It shows that SMVC could flexible response the 
changes of override.

When the system enters the sliding mode surface, the convergence rate is determined by Eq. (1) and related 
to the velocity error. With the velocity error approaching 0, the convergence rate becomes very small, which can 
reduce the system’s efficiency. Although Eq. (8) limit the value of K1 , for specific command velocity, the system 
does not pass through the jerk extrema on Eq. (1) during convergence. So, without causing overshoot, K1 can be 
appropriately increased to improve the system’s performance.

Due to the nonlinear characteristics of SMVC, it is difficult to obtain an analytical expression between K1 and 
overshoot. Therefore, this paper uses an iterative method to solve for the optimal K1 . Let f (x) be the mapping 
from the parameter K1 to the system’s overshoot. The overshoot is calculated by vmax − vcmd , where vmax is the 
maximum velocity of the system during the given time response process, and vcmd is the command velocity. This 
mapping can be implemented through simulation. The process of using an iterative method to find the optimal 
K1 is shown in Fig. 6.

For example, with vcmd = 50 mm/s, Amax = 1000 mm/s2, Jmax=10,000 mm/s3, according to Eq. (8), K1 = 0.0308 
s/m is obtained. Given tolerance of 0.01 mm/s, a more optimal parameter K∗

1  = 0.0385 s/mm can be achieved. 
Figure 7 presents the response of SMVC under K1 and K∗

1  , while also comparing them to the response of the 

(11)Jcmd = K2

(

Amax
K1(vcmd−vact)√

1+(K1(vcmd−vact))
2
− aact

)

− AmaxK1aact
(

1+K2
1 (vcmd−vact)

2
)
3
2

(12)
{

acmd ≈ AmaxK1(vcmd − vact)
Jact ≈ (AmaxK1(vcmd − vact)− aact)− AmaxK1aact

,Whenvact → vcmd

(13)G(s) = AmaxK1K2

s2+(AmaxK1+K2)s+AmaxK1K2

(14)

{

ωn =
√
AmaxK1K2

ξ = AmaxK1+K2

2
√
AmaxK1K2

(15)ξ = AmaxK1+K2

2
√
AmaxK1K2

≥ 2
√
AmaxK1

√
K2

2
√
AmaxK1K2

= 1

Figure 3.  Approximated linear system.
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S-shaped A/D. It can be observed that the performance of the system after parameter optimization has become 
very close to S-shaped A/D method.

At the end of entire curve, the command state is 
[

0 0
]T.If tool system directly follows the 

[

0 0
]T , it may 

cause velocity to be 0 before reaching endpoint. To address this issue, this paper introduces a position-error-
feedback velocity term in the endpoint command state, which changes the endpoint command state from 

[

0 0
]T 

to 
[

K3

(

pend − pact
)

0
]T . where pend is the endpoint position, pact is the current position, and K3 is a positive 

coefficient. The added term ensures that the velocity of tool will not drop to 0 before reaching endpoint.

Feedrate scheduling method
NURBS description
The definition of an p-degree NURBS curve is as follows:

where Ni,p(u), i = 0, 1, ..., n is the basis function of the p-degree B-spline defined on the node sequence 
U =

[

u0 u1 · · · un+p+1

]

 , Pi , i = 1, 2, · · · , n are the control points of the NURBS curve, wi are the weight fac-
tors corresponding to the control points Pi , The B-spline basis function can be calculated by the de Boor-Cox 
recursive formulation:

(16)C(u) =
∑n

i=0 Ni,p(u)wiPi
∑n

i=0 Ni,p(u)wi

Figure 4.  Sliding mode velocity control under 3 initial conditions: (a) results on phase plane;(b) velocity – time; 
(c) acceleration-time; (d) jerk-time.

Figure 5.  SMCVC response to override changes: (a) results on phase plane;(b) velocity – time; (c) acceleration-
time; (d) jerk-time.
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Figure 6.  Iterative method for parameter optimization.

Figure 7.  S-shaped response and SMVC response under K1, K∗
1
 : (a) velocity–time; (b) acceleration-time; (c) 

jerk -time; (d) partial enlargement of velocity–time.
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For five-axis machine tools, machining curve is generally described by dual NURBS curve, which is com-
posed of 2 NURBS curve, C(u) and (u) , as defined by Eq. (16). And C(u) represents the tool tip position and 
O(u) = H(u)−C(u)

||H(u)−C(u)|| represents the tool orientation vector.
The motion relationship between five physical axes and the tool tip can be expressed as

where qs(u) , qss(u), qsss(u) are the first order, second order and third-order derivative of the axis position with 
respect to the arc length s . us(u) , uss(u), usss(u) are the first order, second order and third-order derivative of the 
parameter u with respect to the arc length s.

Chord error constraint
To ensure the discrete points can reflect the characteristics of the original curve, it is necessary to consider the 
constraint of the chord error.

The chord error can be expressed as:

where δ(u) is the chord error at the parameter u , ρ(u) is the radius of curvature of the curve at u , vt is the feedrate, 
Ts is the interpolation period, and δm is the maximum allowable chord error. The radius of curvature ρ(u) can 
be calculated by

Servo feed axis constraint
From Eq. (18), the velocity, acceleration, and jerk of the servo feed axis q can be expressed as:

where vt, at, Jt are the tangential velocity, tangential acceleration and tangential jerk. Each servo feed axis has a 
maximum allowable velocity, acceleration and jerk, so it needs to satisfy:

Tracking error constraint
The tracking error of tool affect the machining quality and  precision11, and limiting the tracking error of each axis 
could reduce the tracking error of tool. Currently, the servo feed axis usually adopts proportional-proportional-
integral control. And the control structure is shown in Fig. 8.

where Kp is the proportional gain coefficient of the position loop. Kv is the proportional gain coefficient of the 
velocity loop. Kvi is the integral gain coefficient of the velocity loop. M is the equivalent mass. Bm is the equivalent 
damping coefficient and rg is the transmission coefficient.

(17)











Ni,0(u) =
�

0, ui ≤ u ≤ ui+1

1, other

Ni,p(u) = u−ui
ui+p−ui

Ni,p−1(u)+
ui+p+1−u

ui+p+1−ui+1
Ni+1,p−1(u)

(18)







qs(u) = qu(u)us(u)
qss(u) = quuu

2
s (u)+ qu(u)uss

qsss(u) = quuu(u)u
3
s (u)+ 3quu(u)us(u)uss(u)+ qu(u)usss(u)

, q = X,Y ,Z . . .

(19)δ(u) = ρ(u)−
√

ρ2(u)−
(

vtTs
2

)2
≤ δm

(20)ρ(u) = 1
�Css(u)�

(21)







vq = qs(u)vt
aq = qss(u)v

2
t + qs(u)at

Jq = qsss(u)v
3
t + 3qss(u)vtat + qs(u)Jt

, q = X,Y ,Z, · · ·

(22)







�

�qs(u)vt
�

� ≤ Vmq
�

�qss(u)v
2
t + qs(u)at

�

� ≤ Amq
�

�qsss(u)v
3
t + 3qss(u)vtat + qs(u)Jt

�

� ≤ Jmq

, q = X,Y ,Z, · · ·

Figure 8.  Feed axis control model.
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The transfer function of the system is:

Define the tracking error E(s) = X(s)− Y(s) , then:

Equation (24) can be written in differential form:

Where e(t), ė(t), ë(t), ...e (t)  is the axis tracking error and its first-order, second-order and third-order derivative, 
J is the axis command jerk, a is the axis command acceleration, and v is the axis command velocity. According 
to the derivation of  literature26,27, if

then mean |e(t)| ≤ E.
Therefore, the tracking error of the axis is converted into a linear combination of velocity, acceleration, and 

jerk of the axis. The constraint of tracking error is:

where

Feedrate limitation profile
The axis acceleration, jerk and tracking error are related to the actual system state. In this paper, the critical 
velocity satisfying above constraints can be estimated according to the state of at = 0, Jt = 0 , and the coefficient 
Kdyn can be used to achieve a more conservative estimate. In this paper , Kdyn = 0.9 . For satisfying the above 
constraints, there is:

The feedrate limitation can be calculated as follows:

Dynamic lookahead distance
In the dynamic forward-looking feedrate scheduling based on SMVC, the look-ahead distance determines 
whether the system can satisfy constraints and smoothly follow command. To balance efficiency and smooth-
ness, the look-ahead distance in this paper is calculated using the braking distance, which is the shortest distance 
required to decelerate to 0 at the current velocity and can obtained by numerical simulation of SMVC. Due to 
the constraints of acceleration and jerk, the actual braking distance may be longer than in the ideal case. Then a 
positive coefficient K4 can be multiplied to ensure sufficient look-ahead distance. Since the look-ahead distance 
is velocity-dependent, command velocity oscillation may occur when approaching the velocity minimum, and 
jitter can be suppressed using a mean filter.

Interpolation algorithms
After obtaining the command jerk for this period, the state at the end of this interpolation period can be written:

According to  paper28, using the second-order Taylor development, there is:

(23)�(s) = Y(s)
X(s) =

KpKvrgs+KpKvirg
Ms3+(Bm+Kvrg)s2+(Kvi+KpKvrg)s+KpKvirg

(24)�e(s) = E(s)
X(s) =

Ms3+(Bm+Kvrg)s2+Kvis

Ms3+(Bm+Kvrg)s2+(Kvi+KpKvrg)s+KpKvirg

(25)M
KpKvirg

...
e (t)+ Bm+Kvrg

KpKvirg
ë(t)+ Kvi+KpKv

KpKvi
ė(t)+ e(t) = M

KpKvirg
J + Bm+Kvrg

KpKvirg
a+ 1

KpKvirg
v

(26)
∣

∣

∣

M
KpKvirg

J + Bm+Kvrg
KpKvirg

a+ 1
Kprg

v
∣

∣

∣
≤ E

(27)
∣

∣Kqe3Jq + Kqe2aq + Kqe1vq
∣

∣ ≤ Eq, q = X,Y ,Z, · · ·

(28)Kqe3 =
Mq

KpqKviqrgq
,Kqe2 =

Bmq + Kvqrgq

KpqKviqrgq
,Kqe1 =

1

Kpqrgq
, q = X,Y ,Z

(28)



























vt ≤ Kdyn

�

Amq

|qss(u)| , q = X,Y ,Z, . . .

vt ≤ Kdyn
3

�

Jmq

|qsss(u)| , q = X,Y ,Z, . . .

vt ≤ Kdyn
Eq

Kqe1|qs(u)| , q = X,Y ,Z, . . .

(29)vt(u) ≤ min

{

2
√
2δm(ρ(u)−δm)

Ts
,

Vmq

|qs(u)| ,Kdyn

√

Amq

|qss(u)| ,Kdyn
3

√

Jmq

|qsss(u)| ,Kdyn
Eq

Kqe1|qs(u)|

}

(30)







aact(k + 1) = aact(k)+ Jact(k)Ts

vact(k + 1) = vact(k)+ aact(k)Ts + 1
2 Jact(k)T

2
s

�s(k) = s(k + 1)− s(k) = vact(k)Ts + 1
2aact(k)T

2
s + 1

6 Jact(k)T
3
s
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Simulation
To prove the effectiveness of proposed method, simulations are carried out. The simulations were carried out 
on a PC with Windows10 operation system. The simulation environment was Matlab 2020a and the CPU was 
Intel® Xeon® Silver 4110 CPU @ 2.10GHz.

The constraints and parameters for simulation of each axis are shown in Table 1:

Simulation 1: butterfly‑shaped curve
A butterfly-shaped curve is used for simulation as shown in Fig. 9. And the curve information is shown in 
Appendix A Table A1. 

The tangential feedrate command is set to 50 mm/s, the maximum tangential acceleration to 1000 mm/s2, 
maximum tangential jerk to 10,000 mm/s3, chord error limit to 0.1μm, K1 = 0.0385 , K3 = 5, K4 = 2. The feedrate 
scheduling results in parameter domain are shown in Fig. 10a and results in time domain is shown in Fig. 10b–d, 
the axes tracking error is shown in Fig. 10e. The results show that the method proposed could schedule feedrate 
satisfying the tangential velocity, acceleration and jerk constraints. And the tracking error of each axis is also 
within the allowable range.

Axis acceleration and jerk are the typical dynamic constraints. Comparing the considering dynamic con-
straints time-optimal  method5 (M1) with the method proposed in this paper (M2), the results shows in Fig. 11 
and Table 2. The results show that the method proposed in this paper, compared to M1, effectively reduces the 
exceeding of dynamic constraints without significantly increasing the machining time.

Simulation 2: open‑pocket curve
The open-pocket curve is shown in Fig. 12. And the curve information is shown in Appendix A Table A2. 

The simulation settings are same as Simulation1. And the feedrate scheduling results in parameter domain is 
shown in Fig. 13a and results in time domain is shown in Fig. 13b–d, the axis tracking error is shown in Fig. 13e,f. 
The tangential constraints and axes tracking error are all be satisfied.

Comparing M1 with M2, the results are shown in Fig. 14 and Table 3. Although M2 method has a greater 
number of exceeding constraints cycles compared to M1, the exceeding constraint ratio is very minor compared 
to M1. Therefore, it can still be considered that the method proposed in this paper has a better performance on 
satisfying dynamic constraints.

(31)u(k + 1) = u(k)+ us(u(k))�s(k)+ 1
2uss(u(k))(�s(k))2

Table 1.  Axis constraints and parameters for simulation.

Max velocity Max acceleration Max jerk Max tracking error Kqe1 Kqe2 Kqe3

X 100 mm/s 1000 mm/s2 10,000 mm/s3 0.5 mm 0.01667 s/mm 6.1642E-5  s2/mm 4.5062E− 8  s3/mm

Y 100 mm/s 1000 mm/s2 10,000 mm/s3 0.5 mm 0.01667 s/mm 6.1642E-5  s2/mm 4.5062E− 8  s3/mm

Z 100 mm/s 1000 mm/s2 10,000 mm/s3 0.5 mm 0.01667 s/mm 6.1642E-5  s2/mm 4.5062E− 8  s3/mm

A 1 rad/s 10 rad/s2 100 rad/s3 0.1 rad 1.25E-4 s/mm 1.0836E-6  s2/mm 3.3796E− 10  s3/rad

C 0.5 rad/s 5 rad/s2 50 rad/s3 0.1 rad 1.25E-4 s/rad 1.0836E-6  s2/rad 3.3796E− 10  s3/rad

Figure 9.  Butterfly-shaped curve.
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Experiment
To verify the real-time performance and tracking error constraints of the method proposed in this paper, experi-
ments were carried out on a five-axis motion platform as shown in Fig. 15.

The control system of this platform is developed by TwinCAT3 and runs on a Windows 7 industrial computer 
an Inter® Core™ i7-6700 CPU @ 3.40 GHz. The interpolation and feedrate scheduling cycle is 2 ms. The tracking 
error coefficient can be identified through actual state and tracking  error4. The identified result and constraints 
for each axis are shown in Table 4.

Experiment 1: butterfly‑shaped curve with override change
The tangential feedrate command is set to 50 mm/s, maximum tangential acceleration to 1000 mm/s2, maximum 
tangential jerk to 10,000 mm/s3, chord error limit to 0.1μm, K1 = 0.0385 , K3 = 5, K4 = 2. Before u ≥ 0.5, the over-
ride is set to 100%. After u ≥ 0.5, the override is adjusted to 40%, which means the tangential feedrate command 
is reduced to 20 mm/s. After u ≥ 0.7, the override is set back to 100%.

The results are shown in Fig. 16. Figure 16a demonstrates the capability of the method proposed in this paper 
to adjust the override in real time. This capability provides the possibility for online control of cutting forces, 
which is an effective method for improving machining quality. Figure 16b shows that the maximum tracking 
errors for the X and Y axes are 0.4832mm and 0.4347 mm, both less than the constraint of 0.5 mm. This demon-
strates the effectiveness of the tracking error constraints in this paper. and smaller tracking errors can indirectly 
reduce the machining contour errors, resulting in a surface with higher quality.

Experiment 2: open‑pocket curve
Due to the dynamic performance of C axis, the experiment settings are same to experiment except K4=3.2. 
The results are shown in Fig. 17. Figure 17a demonstrates the capability of the method proposed in this paper 
for 5-axis machining. Figure 17b,c indicate that the maximum tracking errors for linear axes X, Y and Z are 
0.0715mm, 0.4272 mm and 0.4636 mm, all less than the constraint 0.5 mm. The maximum tracking errors of 
rotary axes A and C are 0.0043 rad and 0.0114 rad, both less than the constrained value of 0.1 rad.

Computation time analysis
The computation time of Experiment1 and 2 is assessed by TwinCAT3 software and shown in Fig. 18. For the but-
terfly-shaped curve, the computation time can be kept below 50 μs in most cases, with a maximum not exceeding 
80 μs. For the open-pocket curve, the computation time can be kept below 20 μs in most cases, with a maximum 
not exceeding 50 μs. Although it requires five-axis coordinate transformation and solution of properties of two 
NURBS curves, the computation time for the open-pocket curve is still significantly less than butterfly-shaped 

Figure 10.  Butterfly-shaped curve simulation results: (a) feedrate in parameter domain; (b) feedrate in time 
domain; (c) tangential acceleration in time domain; (d) tangential jerk in time domain; (e) tracking error.
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curve. This difference in computation time may be due to the differing complexities of the curves. The butterfly-
shaped curve has 52 control points, while the open-pocket curve has 8 (Supplementary information).

Figure 18a illustrates the variation in computation time under different override the override was reduced 
when u was within [0.5,0.7]. Figure 18a shows that after the reduction of override, the average computation time 
decreased. A possible reason is that after feedrate has decreased, the look-ahead distance becomes shorter, which 
means a shorter parameter look-ahead interval and fewer iterations required to find the minimum velocity.

Figure 18 demonstrates the computational efficiency of the method proposed in this paper for both com-
plex planar tool paths and spatial five-axis tool paths, proving the great potential of the method for real-time 
applications.

Conclusion
High-precision direct interpolation of NURBS curves requires feedrate scheduling results satisfy the geometric, 
kinematic and dynamic constraints. Dynamic constraints are related to the current state of tool and cannot be 
directly constrained by velocity at sampling points. To achieve direct control of dynamic constraints, this paper 
proposes a dynamic look-ahead feedrate scheduling method based on sliding mode velocity control. The SMVC 
acceleration and deceleration method can control velocity to command velocity with any initial state and its 
stability has been proven. This paper also introduces the performance improvement method and end-point-
reachable method. This paper analyzes the common constraints and linearizes the tracking error into a linear 
combination of velocity, acceleration, and jerk. The braking distance is used to estimate the look-ahead distance. 

Figure 11.  Butterfly-shaped curve simulation results: (a) X-axis velocity; (b) X-axis acceleration; (c) X-axis jerk; 
(d) Y-axis velocity; (e) Y-axis acceleration; (f) Y-axis jerk.

Table 2.  Performance on dynamic constraints of butterfly-shaped.

Machine time (u ≥ 0.99999)
Acceleration exceeding 
constraint cycle number

Jerk exceeding constraint 
cycle number

Maximum exceeding 
constraint ratio for 
jerk

M1 12.908 s 0 112 X:58.5%/Y:62.07%

M2 15.362 s 0 2 X:0.49%
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Figure 12.  open-pocket curve.

Figure 13.  Open-pocket curve simulation results: (a) feedrate in parameter domain; (b) feedrate in time 
domain; (c) tangential acceleration in time domain; (d) tangential jerk in time domain; (e) tracking error of X,Y 
and Z; (f) tracking error of A and C.
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Figure 14.  Open-pocket curve simulation results: (a)(b)(c) X-axis velocity/acceleration/jerk; (d)(e)(f) Y-axis 
velocity/acceleration/jerk; (g)(h)(i) Z-axis velocity/acceleration/jerk; (j)(k)(l) A-axis velocity/acceleration/jerk; 
(m)(n)(o) C-axis velocity/acceleration/jerk.

Table 3.  Performance on dynamic constrain t s of open pocket curve

Machine time (u ≥ 0.99999)
Acceleration exceeding constraint cycle 
number Jerk exceeding constraint cycle number

Maximum exceeding constraint ratio for 
jerk

M1 5.9540 s 0 30 Y:7.43%/Z:0.8%/C:48.5%

M2 6.6420 s 0 51 C:0.03%

Figure 15.  Five-axis motion platform.
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The effectiveness of the proposed method in this paper is verified through simulation and experiment. In future 
research, selecting a smoother and more efficient sliding mode surface is a research direction The convergence 
speed at the endpoint also needs to be optimized, and further research is required on the selection of various 
coefficients.

Table 4.  Axis constraints and parameter of five-axis platform.

Max velocity Max acceleration Max jerk Max tracking error Kqe1 Kqe2 Kqe3

X 100 mm/s 1000 mm/s2 10,000 mm/s3 0.5 mm 0.01249 s/mm 1.1639E-6  s2/mm 3.9411E-8  s3/mm

Y 100 mm/s 1000 mm/s2 10,000 mm/s3 0.5 mm 0.01381 s/mm 3.5954E-5  s2/mm 6.0287E-7  s3/mm

Z 100 mm/s 1000 mm/s2 10,000 mm/s3 0.5 mm 0.01282 s/mm 4.3869E-5  s2/mm 2.3732E-7  s3/mm

A 1 rad/s 10 rad/s2 100 rad/s3 0.1 rad 0.01200 s/rad 1.6516E-5  s2/mm 4.4417E-8  s3/mm

C 0.5 rad/s 5 rad/s2 50 rad/s3 0.1 rad 0.02913 s/rad 3.1890E-4  s2/mm 1.6285E-7  s3/mm

Figure 16.  Experiment results of butter-shaped curve: (a) command and actual feedrate profile in time domain; 
(b) tracking error of axis.

Figure 17.  Experiment results of open-pocket curve: (a) command and actual feedrate profile in time domain; 
(b) tracking error of X, Y and Z; (c) tracking error of A and C.
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Data availability
The datasets used or analyzed during the current study are available from the corresponding author on reason-
able request.
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