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Data‑driven prediction 
on critical mechanical properties 
of engineered cementitious 
composites based on machine 
learning
Shuangquan Qing 1* & Chuanxi Li 1,2

The present study introduces a novel approach utilizing machine learning techniques to predict the 
crucial mechanical properties of engineered cementitious composites (ECCs), spanning from typical 
to exceptionally high strength levels. These properties, including compressive strength, flexural 
strength, tensile strength, and tensile strain capacity, can not only be predicted but also precisely 
estimated. The investigation encompassed a meticulous compilation and examination of 1532 
datasets sourced from pertinent research. Four machine learning algorithms, linear regression (LR), 
K nearest neighbors (KNN), random forest (RF), and extreme gradient boosting (XGB), were used to 
establish the prediction model of ECC mechanical properties and determine the optimal model. The 
optimal model was utilized to employ SHapley Additive exPlanations (SHAP) for scrutinizing feature 
importance and conducting an in‑depth parametric analysis. Subsequently, a comprehensive control 
strategy was devised for ECC mechanical properties. This strategy can provide actionable guidance 
for ECC design, equipping engineers and professionals in civil engineering and material science to 
make informed decisions throughout their design endeavors. The results show that the RF model 
demonstrated the highest prediction accuracy for compressive strength and flexural strength, with  R2 
values of 0.92 and 0.91 on the test set. The XGB model outperformed in predicting tensile strength and 
tensile strain capacity, with  R2 values of 0.87 and 0.80 on the test set, respectively. The prediction of 
tensile strain capacity was the least accurate. Meanwhile, the MAE of the tensile strain capacity was a 
mere 0.84%, smaller than the variability (1.77%) of the test results in previous research. Compressive 
strength and tensile strength demonstrated high sensitivity to variations in both water‑cement 
ratio (W) and water reducer (WR). In contrast, flexural strength exhibited high sensitivity solely to 
changes in W. Conversely, the sensitivity of tensile strain capacity to input features was moderate and 
consistent. The mechanical attributes of ECC emerged from the combined effects of multiple positive 
and negative features. Notably, WR exerted the most significant influence on compressive strength 
among all features, whereas polyethylene (PE) fiber emerged as the primary driver affecting flexural 
strength, tensile strength, and tensile strain capacity.

Keywords Engineered cementitious composites, Machine learning, Mechanical properties, Random forest, 
XGBoost

Engineered cementitious composites (ECCs) represent a class of ultra-high-performance cementitious com-
posites that have significantly transformed the landscape of civil engineering. Since its inception by Li and 
colleagues in 1992, ECC has garnered substantial interest owing to its notable deformability and superior crack 
control  capabilities1,2. Numerous experimental studies on mechanical properties of ECC have been conducted 
worldwide, such as uniaxial  compression3, uniaxial  tension4,  flexural5,  shear6,  fatigue7 and  impact8, as well as a 
large number of structural or engineering  applications9–15. The importance of comprehending and forecasting 
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the mechanical characteristics of ECCs cannot be overstressed, as they directly influence the design and func-
tionality of civil engineering structures.

Prior studies have often necessitated numerous experimental trials to attain an optimal ECC mix ratio. This 
process not only consumes considerable time but also demands substantial financial resources. Li introduced 
strength and energy criteria as a means to ensure ECC materials achieve a stable state of cracking, thereby 
mitigating potential errors in  testing16. Based on numerous test results, empirical ranges for the strength and 
energy criteria have been established for various types of  fibers16,17. The double criteria are generally obtained by 
means of a three-point flexural test and a single-crack tensile  test18,19. However, the double criterion can only be 
used to determine whether a given mixture ratio can attain multiple cracks and cannot predict the mechanical 
properties of the mixture ratio.

Machine learning belongs to a sub-direction of artificial intelligence, including supervised and  unsupervised20. 
Machine learning has a wide range of applications in the strength prediction of civil engineering materials. Hu 
used six machine learning models to predict the compressive strength of FRP-concrete confined column and 
compared them with prevailing mathematical or empirical models. SHAP analysis was utilized to ascertain fea-
ture importance and model sensitivity. The findings indicate that the XGB model exhibited superior robustness 
and  accuracy21. At the same time, the problem of small experimental datasets was solved by using an innovative 
method of data augmentation, facilitating the achievement of a higher prediction accuracy for the punching shear 
strength of steel fiber-reinforced concrete  slabs22. Jayasinghe used eight machine-learning models to develop a 
framework for predicting the shear capacity of recycled aggregate concrete (RAC) beams, and the results revealed 
that the XGBoost model had the best prediction effect, with the coefficient of determination  R2 on the test set 
reaching 0.95 (slender beam) and 0.78 (deep beam)23. You utilized 48 datasets and three machine learning models 
to predict the bond strength between UHPC and deformed reinforcing bars. Among these models, the Adap-
tive Neuro-Fuzzy Interface System (ANFIS) emerged as the most accurate prediction model. The coefficient of 
determination  R2 on the test set reached 0.9824. Similarly, Zhang predicted FRP and concrete interfacial bond 
strength with six machine learning models. Here, the XGBoost model performed best, and the root mean square 
error was reduced by 73% compared with the original empirical  formula25. Liu predicted the creep compliance 
of concrete with four machine-learning models and found that the XGBoost was the optimal prediction model, 
with the  R2 on the test set reaching 92%26. Mai predicted the compressive strength of fiber-reinforced self-
compacting concrete with three machine-learning models. Among the three models, the categorical gradient 
boosting (CGB) model was the best, and the coefficient of determination was 0.986 for the test  dataset27. Zhu 
used an artificial neural network (ANN) and support vector machine (SVM) to predict the 7-day compressive 
strength of ultrahigh-performance concrete (UHPC). The findings indicate that the ANN model yields superior 
prediction results compared to the SVM  model28.

Several scholars have recently used machine learning to predict ECC strength. For instance, Shanmugasunda-
ram used the ANN model to predict the compressive strength of ECC mixed with fly ash and GGBS, respectively. 
Here, the minimum and maximum differences between the predicted and experimental values were 0.317% and 
11.4%,  respectively29. Mahjoubi employed three machine learning models to predict the compressive strength, 
tensile strength, and ductility of SHCC. The results showed that XGBoost performed best, and the coefficients 
of determination on the test set were 0.95, 0.97 and 0.93,  respectively30. Meng employed an artificial neural 
network algorithm to forecast both the compressive strength and tensile strength of PVA-ECC. The coefficients 
of determination on the test set were notably high at 0.98 for compressive strength and 0.99 for tensile strength, 
indicating significant prediction accuracy. However, the dataset in the described study was relatively small, 
with compressive strength ranging from 21.3 to 75.2 MPa and tensile strength ranging from 1.56 to 5.81  MPa31.

Moreover, the dataset used for machine learning is limited in scope, as it does not encompass high-strength 
and ultra-high-strength datasets. The algorithms with better results are XGBoost and artificial neural networks. 
However, artificial neural networks are prone to overfitting, and their training process is intricate. Despite this, 
there is a noticeable scarcity of predictions for the tensile strain capacity and flexural strength of ECC materi-
als. Existing studies primarily focus on predicting compressive and tensile strength, predominantly within the 
PVA-ECC domain. The preparation of ECC may use PE fibers, PP fibers, and PVA fibers, which are also divided 
into oil-film PVA fibers and oil-free PVA fibers. The influence of specimen size on ECC mechanical properties 
remains unexplored in machine learning literature, indicating a gap in comprehensive understanding within 
prior research.

Based on a more extensive range of data sets, the aim of the present study was to predict critical mechanical 
properties of ECC, including compressive strength, flexural strength, tensile strength, and tensile strain capacity. 
At the same time, the importance of the characteristics affecting the mechanical properties of ECC was explored. 
Finally, a design strategy for adjusting ECC components was proposed according to the specified mechanical 
properties.

Data processing
Data collection and preprocessing
In the present study, the dataset uniformly sets the cement ratio as 1, while expressing the proportions of other 
components relative to cement. To use machine learning to predict the mechanical properties of ECC, a total of 
1532 sets of data were collected from the existing  literature3,32–68, including 501 sets of compressive strength, 224 
sets of flexural strength, 404 sets of tensile strength, and 403 sets of tensile strain capacity. The experimental group 
containing CGP was completed by the present author. Owing to space limitations, the experiment details are not 
provided, but the data can be published, and the relevant experiments are to be published in other articles. There 
were a total of 13 input features and four output labels. The selection of input features was based on the research 
conclusions of the literature referenced in the database. The input features were water-cement ratio (W), silica 
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fume (SF), slag (SG), fly ash (FA), coal gangue powder (CGP), silica sand (SS), fiber content (FCO), water reducer 
(WR), fiber class (FC), fiber aspect ratio (FAR), compressive specimen size (CSS), cement grade (CG), and flex-
ural specimen size (FSS). The output labels were compressive strength (CS: 7.4–166 MPa), flexural strength (FS: 
2.6–34.6 MPa), tensile strength (TS: 0.95–18 MPa), and tensile strain capacity (TSC: 0.002% ~ 12.3%). Among 
them, FC was divided into surface oil-coating polyvinyl alcohol fiber (PVA-O), surface oil-free polyvinyl alcohol 
fiber (PVA-UO), ultra-high molecular weight polyethylene fiber (PE), fiber-free (NF) (There was a test group 
without fiber to analyze the effect of fiber), and polypropylene fiber (PP); CG was divided into PO.42.5 and 
PO.52.5; CSS was divided into 50 mm, 70 mm, and 100 mm; FSS was divided into three cases: four-point flex-
ural plate (PLATE), three-point flexural beam (3-XL), and four-point flexural beam (4-DL). Therefore, 19 input 
features were included in the present study. The test conditions from which the data set was derived needed to 
be specified. In the present study, only the datasets under 28-day standard curing conditions were considered, 
utilizing variable speed mixing methods. However, the input features did not encompass properties of raw mate-
rials, such as particle size distribution, particle shape, and chemical composition, which could potentially have 
influenced the mechanical properties of ECC. Nevertheless, these factors were omitted due to the challenge of 
quantitatively describing and simplifying them within the machine learning model.

The machine learning data set was derived from the reference literature, and the mix ratios with missing 
values were excluded when collecting data. Before training the model, the classification features were processed 
by means of one-hot encoding, and the input features of the non-tree model were normalized using min–max 
scaling.

Data analysis
Figure 1 shows the relationship of all continuous characteristic parameters and compressive strength. Figure 2 
shows the correlation heat map between all features (including classification features). However, the main focus 
was primarily on the correlation between each feature and the mechanical properties. Correlations with coef-
ficients between −0.4 and 0.4 were disregarded as they were considered insignificant for the  analysis26. According 
to Figs. 1 and 2, there was a negative correlation between (W, FA) and CS and a positive correlation between 
(CG, SF) and CS; a negative correlation between FAR and FS; a positive correlation between W and FS; a nega-
tive correlation between W and TS; and a positive correlation between (FAR, FC, CG, SF) and TS. There was no 
negative correlation between feature parameters and TSC, but a positive correlation between (FAR, FC) and TSC.

Methodology
The technology route of the present study can mainly be divided into three steps: the first step is data collection 
and division. The training set accounted for 80%, and the test set accounted for 20%. In the second step, the 
tenfold cross-validation was used to optimize the hyperparameters and reduce overfitting, as shown in Fig. 3. 
The third step involved predicting the test set and analyzing the importance of features. Figure 4 shows the 
specific technology route.

Machine learning
Machine learning models
Numerous machine learning algorithms are available for predicting the mechanical properties of concrete. In 
the present study, four representative algorithms were employed to predict the mechanical properties of ECC: 
linear regression (LR), K nearest neighbors (KNN), random forest (RF), and extreme gradient boosting (XGB).

LR model
LR is the simplest and most basic supervised learning algorithm in machine learning. It has good interpretability 
and is widely used in engineering. The calculating function can be expressed as follows:

hθ(x1, x2, …, xn) = θ0 + θ1x + … + θnxn, hθ(x1, x2, …, xn) is a mechanical indicator, θ0, θ1, ... θn are regression 
parameters, and x1, x2, …, xn are characteristic parameters.

KNN model
KNN is also a simple algorithm in machine learning. It calculates the K nearest sample points based on Euclidean 
distance and derives the final result by averaging these K sample points.

Supposing there are two points P and Q, P = {p1, p2, … pn}, Q = {q1, q2, … qn}, n = 1, 2, 3, …, the Euclidean 
distance between P and Q is d =

√

(p1 − q1)2 + (p2 − q1)2 + · · · + (pn − qn)2.

RF model
RF is an ensemble algorithm belonging to the tree model. A random forest comprises multiple decision trees, and 
there is no correlation between each decision tree in the  forest69. The main advantages of random forests lie in 
their ability to handle high-dimensional data without the need for dimensionality reduction or feature selection. 
Additionally, they can provide insight into feature importance. However, one disadvantage is that random forest 
models are generally less powerful for regression problems compared to classification problems.

The working mechanism of the RF algorithm is as follows: firstly, M samples (M ≤ N) are randomly drawn 
from the training set with a size of N for each tree; if a total of K times are randomly selected, then the randomly 
selected training set is put into K trees for separate training; in the final prediction, the final output of the test 
set is determined by each decision tree in the forest. For the regression problem, the mean output values of all 
decision trees are used as the final output. Figure 5 shows the learning flow chart of RF.
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XGB model
An essential difference between XGB and RF lies in how their decision trees are constructed. In XGB, the decision 
trees are interrelated, offering certain advantages. The XGB algorithm boasts high accuracy and rapid training 
speed, and it exhibits robustness to missing values. Nevertheless, it comes with the drawback of high space 
complexity, necessitating more storage  memory70.

The working mechanism of the XGB algorithm is as follows: firstly, a weak learner W1 is trained on the train-
ing set by using the initial weight, and the weight of the training sample is updated according to the residual error 
left by the weak learner 1. The weight is increased when the residual is large, and the weight is reduced when the 
residual is small. After updating the weights based on the residuals left by the weak learner 1, the new adjusted 
weights are used to train the weak learner 2. The described process is repeated until the number of weak learners 
reaches the preset value. Finally, all weak learners are integrated through a set strategy to obtain the final strong 
learner. Figure 6 shows the learning flow chart of XGB.

Figure 1.  The relationship between features and mechanical properties [(a) CS, (b) FS, (c) TS, (d) TSC].
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Evaluation indicators
In the present study, the four evaluation indications most widely used in machine learning were adopted to 
compare the prediction accuracy of different models: mean square error (MSE), root mean square error (RMSE), 
mean absolute error (MAE), and coefficient of determination  (R2). The detailed expressions are shown in Eqs. 
(1–4), representing the predicted value, actual value, and the average of the actual value.

(1)MSE =
1

m

m
∑

i=1

(yi − ŷi)
2

Figure 1.  (continued)
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(2)RMSE =

√

√

√

√

1

m

m
∑

i=1

(yi − ŷi)2

(3)MAE =
1

m

m
∑

i=1

∣

∣(yi − ŷi)
∣

∣

(4)R2
= 1−

∑

(ŷi − yi)
∑

(ŷi − yi)

Figure 2.  Correlation heat map between all features [(a) CS, (b) FS, (c) TS, (d) TSC].

Figure 3.   10-fold cross-validation.
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Results and discussion
Compressive strength
Table 1 lists the optimal parameter values of the model after hyperparameter optimization, and the defini-
tion of each parameter is also shown, in which the LR model has no hyperparameter. Table 2 shows the three 
evaluation indicator values of the four models after hyperparameter optimization on the training and test sets. 
An observation can be made that the  R2 values of the LR model on the train and test set were 0.72 and 0.70, 
respectively, which was the lowest among the four models, while the RMSE and MAE of the LR model on the 
training and test set were the largest. These indications suggest that the LR model is experiencing underfitting. 
The  R2 of the KNN model was significantly higher than that of the LR model, and the RMSE and MAE values 
were also significantly reduced.

The RF and XGB models were superior to the LR and KNN models. The RF model had the best generaliza-
tion ability, and its  R2 was the highest among the four models, at 0.99 and 0.92 on the training and test sets, 

Figure 4.  Machine learning technology route for the prediction of ECC mechanical properties.

Figure 5.  Process of random forest algorithm.

Figure 6.  Process of XGB algorithm.
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respectively. The XGB model exhibited signs of overfitting, evident from the  R2 of 1.00 on the training set and  R2 
of 0.89 on the test set. As such, the XGB model was deemed inappropriate under the division of the compressive 
strength data set in the present study.

From the  R2 comparison of the aforementioned models on the training set and the test set, it can be found 
(Table 2) that the  R2 values of the LR and KNN models on the two data sets were small. Both models exhibited 
underfitting in compressive strength prediction. The LR model reached its limit state as it lacked hyperparameters 
to optimize, and thus was unable to enhance its accuracy in predicting the compressive strength of ECC further. 
While the KNN model’s prediction accuracy for compressive strength may not have matched that of XGB and 
RF models, it offered simplicity with only one hyperparameter, resulting in faster training speed. Despite this, 
the KNN model demonstrated acceptable performance on the test set. Overall, in terms of compressive strength 
prediction accuracy, the RF model emerged as the top performer.

Figure 7 shows the predicted and actual compressive strength values on the test set. The predicted values of 
the LR model, KNN model, XGB model, and RF model gradually became more aggregated on both sides of the 
straight line, indicating that the RF model has the best generalization level on the compressive strength test set.

While ensemble learning methods often exhibit exceptional accuracy, they lack transparency in explaining 
their output, leading to what is known as the “black box” of machine learning. To address this challenge, the 
SHapley Additive exPlanations (SHAP) approach was introduced. SHAP is a mathematical framework developed 
to elucidate the underlying prediction mechanisms of machine learning models. This methodology originated 
from Shapley game theory and was initially proposed by Lundberg and  Lee71.

Figure 8 shows the results of the feature importance analysis of the RF model (analyzing the optimal model). 
The SHAP value of a feature indicates its contribution to the target value. When the SHAP value is closer to 0, 
it suggests that the feature has a smaller impact on the target value. Conversely, when the SHAP value is farther 
from 0, it indicates a more significant contribution of the feature to the target value. An observation can be made 
from Fig. 8 that the water-cement ratio, silica fume, and water reducer contributed the most to the prediction 
of compressive strength. In contrast, the size of the compressive specimen, PVA fiber, and CGP contributed 
the least to the prediction of compressive strength. Although the feature importance of Fig. 8 can illustrate the 
contribution of feature parameters, it cannot indicate whether the feature had a positive or negative impact on 
the prediction results. However, the Global SHAP value in Fig. 9 can demonstrate how each feature positively 
or negatively affected the compressive strength. In Fig. 9, each point represents a sample, with red representing 
a high eigenvalue and blue representing a low eigenvalue. Taking ’W’ as an example, the high eigenvalue (red) 
made a negative contribution to the model output, and the low eigenvalue (blue) made a positive contribution to 
the model output. A lower eigenvalue (blue) would cause a higher SHAP value, indicating that the water-cement 
ratio and compressive strength had a negative impact. Contrarily, the high eigenvalue (red) positively contrib-
uted to the model output, and the low eigenvalue (blue) negatively contributed to the model output. A higher 
eigenvalue (red) would cause a higher SHAP value, indicating that silica fume positively affected compressive 
strength. This pattern applies to other features analyzed similarly.

SHAP offers the capability to observe both local (individual) interpretability as well as global interpret-
ability, a feature not achieved by traditional variable importance algorithms. In Fig. 10, the SHAP values of 
a randomly selected single sample from the training model are depicted. The colors, blue and red, represent 
negative and positive contributions, respectively. Each feature is represented by a bar, with the length indicating 

Table 1.  The optimal parameter values of the model (CS).

Model Parameter Definition Value

KNN n_neighbors Number of nearest neighbors 3

RF

n_estimators Number of decision trees 19

max_depth Maximum depth of each decision tree 15

max_features Maximum number of features 8

XGB

n_estimators Number of decision trees 64

min_child_weight Minimum sum of instance weight 6

max_depth Maximum depth of each decision tree 8

gamma Minimum amount of loss required for further branching 0.3

Table 2.  Three evaluation indicators on the training set and the test set (CS).

Model

Train set Test set

R2 RMSE MAE R2 RMSE MAE

LR 0.72 14.43 10.55 0.70 15.28 11.24

KNN 0.89 8.98 6.15 0.86 10.43 7.52

RF 0.99 3.23 2.34 0.92 7.90 5.40

XGB 1.00 1.41 1.01 0.89 9.50 6.23



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:15322  | https://doi.org/10.1038/s41598-024-66123-9

www.nature.com/scientificreports/

its contribution to the prediction result. Red bars signify features that increase the prediction value, while blue 
bars indicate features that decrease the prediction value. Notably, in this specific example, quartz sand exhibited 
the longest red bar, indicating its significant contribution to increasing compressive strength, while silica fume 
had the longest blue bar, suggesting its substantial role in decreasing compressive strength. Additionally, SHAP 
can illustrate partial dependence plots, which differ from traditional ones by using SHAP values on the y-axis 
rather than the target value. Figure 11 shows the SHAP partial dependency plots. As shown, the compressive 
strength was positively correlated with silica fume and water reducing agent and negatively correlated with water 

Figure 7.  Comparison between predicted value and actual value of CS [(a) LR, (b) KNN, (c) RF, (d) XGB].



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15322  | https://doi.org/10.1038/s41598-024-66123-9

www.nature.com/scientificreports/

cement ratio. In addition, the relationship between silica fume and compressive strength was almost linear. In 
contrast, the relationship between the water-cement ratio of the water-reducing agent and compressive strength 
was virtually logarithmic. From Fig. 11b, it can be observed from Fig. 11b that when W < 0.5, the SHAP value 
decreased with the increase in W, and the compressive strength was highly sensitive to the change of W. When 
W > 0.5, although W was still inversely correlated with compressive strength, the sensitivity was significantly 

Figure 8.  Feature importance of RF modeling.

Figure 9.  Global SHAP values of RF modeling.
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weaker than W < 0.5. According to Fig. 11c, it can be found that when WR < 0.1, the SHAP value increased with 
the increase in W, and the compressive strength was highly sensitive to the change of WR; when WR > 0.1, the 
sensitivity of compressive strength to WR was significantly weakened.

Flexural strength
Table 3 shows the optimal parameter values of the model after hyperparameter optimization. Table 4 shows the 
evaluation indicators of the four models on the training and test sets. An observation can be made that the  R2 
values of the LR model and KNN model on the training set were smaller than those on the test set, which sug-
gests the presence of data leakage, potentially leading to overly optimistic  results72. The RF and XGB models 
performed better, with  R2 of 0.97 on the training set and  R2 of 0.91 on the test set. The RMSE and MAE of the 
RF model on the training set were 1.16 and 0.80, and the RMSE and MAE on the test set were 2.32 and 1.62, 
smaller than the XGB.

Figure 12 shows the predicted and actual flexural strength values on the test set. The four models had good 
prediction results on the test set, but the LR and KNN models exhibited data leakage phenomena that could not 

Figure 10.  SHAP values of an individual sample.

Figure 11.  SHAP partial dependency plots for the CS.

Table 3.  The optimal parameter values of the model(FS).

Model Parameter Definition Value

KNN n_neighbors Number of nearest neighbors 6

RF

n_estimators Number of decision trees 229

max_depth Maximum depth of each decision tree 18

max_features Maximum number of features 6

XGB

n_estimators Number of decision trees 13

min_child_weight Minimum sum of instance weight 4

max_depth Maximum depth of each decision tree 9

reg_alpha Penalty coefficient of L1 Regularization 0.5

Table 4.  Three evaluation indicators on the training set and the test set (FS).

Model

Train set Test set

R2 RMSE MAE R2 RMSE MAE

LR 0.82 3.12 2.27 0.92 2.21 1.73

KNN 0.85 2.83 2.00 0.90 2.48 1.82

RF 0.97 1.16 0.80 0.91 2.32 1.62

XGBoost 0.97 1.33 0.87 0.91 2.32 1.73
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be used to make accurate predictions. Thus, only the generalization ability of the RF and XGB models on the 
test set was deemed practical, and the RF model was the most superior in terms of predicting flexural strength.

In summary, under the premise of the present study’s flexural strength data set, the LR and KNN models 
exhibited data leakage, and thus were not feasible for ECC flexural strength prediction. The XGB and RF models 
demonstrated exceptional prediction accuracy for the flexural strength of ECC, effectively addressing a gap in 
the literature where previous studies did not predict the flexural strength of ECC.

Figure 12.  Comparison between predicted value and actual value of FS [(a) LR, (b) KNN, (c) RF, (d) XGB].
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Figure 13 shows the importance of analyzing RF model characteristics of flexural strength. It indicates that 
PE fiber, water-cement ratio, and fiber aspect ratio contributed the most to the prediction of flexural strength. 
In contrast, other fiber types contributed the least to the prediction of compressive strength.

Figure 14 shows that PE fiber positively affected flexural strength, while the water-cement ratio had a negative 
effect. Other characteristics can also be analyzed according to the Global SHAP value. Figure 15 shows the SHAP 

Figure 13.  Feature importance of RF modeling.

Figure 14.  Global SHAP values of RF modeling.
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values of a random single sample of the training model. The most extensive red bar was coal gangue powder, 
which would increase the flexural strength for the specific sample of coal gangue powder. The most extensive 
blue bar was fiber content, which would reduce the flexural strength in this particular sample of fiber content.

In Fig. 16, the SHAP dependency partial plots reveal several key observations regarding the relationship 
between input features and flexural strength. Notably, flexural strength exhibited a positive correlation with 
fiber aspect ratio and the presence of PE fiber, while showing a negative correlation with the water-cement 
ratio. Moreover, the relationship between fiber aspect ratio and flexural strength appeared to be roughly linear, 
indicating that flexural strength increased with higher fiber aspect ratios. Conversely, the relationship between 
water-cement ratio and flexural strength appeared to be almost logarithmic. It can be found from Fig. 16b that 
when W < 0.75, the SHAP value decreased rapidly with the increase in W, indicating that the flexural strength 
was highly sensitive to the change of W in this range. When W > 0.75, although W was still inversely correlated 
with flexural strength, the sensitivity had almost disappeared.

Tensile strength
Table 5 lists the optimal parameter values of the model after hyperparameter optimization. Table 6 shows the 
evaluation indicator values of the four models on the training and test sets. The  R2 values of the LR model on 
the training and test sets were only 0.71 and 0.63, which shows that the LR model could not predict the tensile 
strength well. The  R2 values of the KNN model on the training and test sets were 0.89 and 0.75, which indicates 
overfitting. The  R2 values of the RF model on the training and test sets were 0.96 and 0.84; although RF exhibited 
slight overfitting, the prediction accuracy on the test set was relatively good. The  R2 values of the XGB model on 
the training and test sets were 0.97 and 0.87.  R2 was the largest among the four models, and the RMSE and MAE 
on the test set were only 1.04 and 0.68, the smallest among the four models.

From the collected data sets, it is evident that the variability of tensile strength in ECC surpassed that of com-
pressive strength. In Table 6, it is apparent that both LR and KNN models exhibited underfitting. In the dataset 
used in the present study, the LR and KNN models failed to accurately predict the tensile strength of ECC. This 
could be attributed to the models’ simplicity and the considerable variability in tensile strength test values. As 
such, machine learning struggled to fully capture the underlying relationships within the data, necessitating 

Figure 15.  SHAP values of an individual sample.

Figure 16.  SHAP partial dependency plots for the FS.

Table 5.  The optimal parameter values of the model(TS).

Model Parameter Definition Value

KNN n_neighbors Number of nearest neighbors 2

RF
n_estimators Number of decision trees 9

max_depth Maximum depth of each decision tree 15

XGB

n_estimators Number of decision trees 37

min_child_weight Minimum sum of instance weight 2

max_depth Maximum depth of each decision tree 5

gamma Minimum amount of loss required for further branching 0.3

reg_alpha Penalty coefficient of L1 regularization 0.05
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improvements in model complexity. This is why RF and XGB models achieved more accurate predictions. Despite 
their increased complexity, tree models yielded superior prediction results.

Figure 17 shows the predicted and actual tensile strength values on the test set. The RF and XGB data were 
considerably aggregated near the line, indicating exceptional generalization ability of the two models for tensile 
strength. Comparatively, the XGB model was superior.

In the dataset used in the present study, the LR and KNN models failed to predict the tensile strength of ECC 
accurately. This could be attributed to the models’ simplicity and the considerable variability in tensile strength 
test values. As such, machine learning struggled to fully capture the underlying relationships within the data, 
necessitating improvements in model complexity. This is why RF and XGB models achieved more accurate pre-
dictions. Despite their increased complexity, tree models yielded superior prediction results.

Figure 18 shows analysis of the XGB model’s feature importance for tensile strength. PE fiber, water-cement 
ratio, and water reducer contributed the most to predicting tensile strength, while other fibers contributed 
minimally.

Figure 19 shows that PE fiber positively affected tensile strength, while the water-cement ratio had a nega-
tive effect. Other characteristics could also be analyzed according to the Global SHAP value. Figure 20 shows 
the SHAP value of a random single sample of the training model. The most extensive red bar was slag. For this 
specific sample, the slag would increase the tensile strength. The most extensive blue bar was PE fiber. In this 
particular sample, PE fiber would reduce the tensile strength.

Figure 21 shows the SHAP dependency partial plots. An observation can be made that the tensile strength 
was positively correlated with the water-reducing agent and whether PE fiber was present or negatively correlated 
with the water-cement ratio. In addition, the water-cement ratio and water-reducing agent were almost logarith-
mically related to the tensile strength. Figure 21a shows that when W < 0.5, the SHAP value decreased rapidly 
with the increase in W, indicating that the tensile strength was highly sensitive to the change of W in this range. 
When W > 0.5, although W was still inversely related to the tensile strength, the sensitivity became considerably 
weak. An observation can be made from Fig. 21b that when WR < 2, the SHAP value increased rapidly with the 
increase in WR, indicating that the tensile strength was highly sensitive to the change of WR in this range. When 
WR > 2, the sensitivity of tensile strength to WR changes in this range became significantly weaker.

Tensile strain capacity
Table 7 lists the optimal parameter value of the model after hyperparameter optimization. Table 8 shows the 
evaluation indicator values of the four models on the training and test sets. The LR model was the weakest since 
the  R2 values were only 0.63 and 0.61 on the training and test sets. The  R2 values for the KNN model were 0.85 
and 0.70 on the training and test sets, respectively, indicating a slight degree of overfitting. However, the model’s 
generalization ability on the test set remained moderate. The  R2 of the RF model reached 0.92 on the test set, but 
was only 0.72 on the test set, indicating overfitting of the model. The XGB model was the best, although slight 
overfitting existed. The  R2 values of the XGB model were 0.95 and 0.80 on the training and test set. As shown in 
previous  research73, the variation range of tensile strain capacity in the test was [± 0.56%, ± 1.77%]. However, the 
MAE on the test set of the XGB model in the present study was only 0.84%, which is entirely within a reason-
able error range.

Figure 22 shows the predicted values and the actual values of tensile strain capacity on the test set. Among 
them, the XGB model prediction data was relatively more aggregated near the line and had the best effect on the 
prediction of tensile strain capacity. Notably, the prediction of tensile strain capacity could not be better than the 
other three mechanical indicators. This discrepancy can be attributed to the close relationship between tensile 
strain capacity and the uniform defects within the matrix of ECC. Many test groups do not introduce uniform 
artificial defects, leading to significant variability in tensile strain capacity test  values74–76.

In Fig. 23, the analysis of the importance of features for the XGB model reveals that PE fiber, fiber content, and 
oil film PVA fiber made the most significant contributions to predicting tensile strain capacity, while other fibers 
contributed minimally. Figure 24 shows that PE fiber, fiber content, and oil film PVA fiber positively impacted 
tensile stress capacity. Additionally, other characteristics can be further analyzed based on Global SHAP values.

Figure 25 shows the SHAP values of a random single sample of the training model. The most extensive red 
bar was fly ash. For this specific sample, fly ash would increase the tensile strain capacity. The most extensive blue 
bar was the fiber content. In this particular sample, the fiber content would reduce the tensile strain capacity. 
Figure 26 shows the SHAP dependency partial plots. An observation can be made that the tensile strain capacity 
was positively correlated with the water-cement ratio, fiber content, and whether there was PE fiber. In addition, 
the three features were roughly linear with the tensile strain capacity, and the sensitivity between tensile strain 
capacity and input features was moderate and stable.

Table 6.  Three evaluation indicators on the training set and the test set (TS).

Model

Train set Test set

R2 RMSE MAE R2 RMSE MAE

LR 0.71 1.46 1.06 0.63 1.73 1.25

KNN 0.89 0.89 0.60 0.75 1.41 0.91

RF 0.96 0.56 0.38 0.84 1.13 0.74

XGB 0.97 0.44 0.32 0.87 1.04 0.68
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Control strategy of ECC mechanical indicator
According to the feature importance and SHAP analysis, there are different strategies to improve each mechani-
cal indicator of ECC.

Reducing the water-cement ratio, increasing silica fume content, and selecting PE fiber are the most effec-
tive strategies for compressive strength. For flexural strength and tensile strength, selecting PE fiber, reducing 
the water-cement ratio, and increasing the fiber aspect ratio are the most effective methods. For tensile strain 
capacity, increasing the fiber aspect ratio, selecting PE fiber, and increasing fiber content will be the most effective 

Figure 17.  Comparison between predicted value and actual value of TS [(a) LR, (b) KNN, (c) RF, (d) XGB].
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Figure 18.  Feature importance of XGB modeling.

Figure 19.  Global SHAP values of XGB modeling.

Figure 20.  SHAP values of the individual sample.
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methods. The control methods of ECC mechanical properties are shown in Table 9. An observation can be made 
that there are effective methods to improve the four mechanical properties, such as the use of PE fibers and the 
reduction of the water-cement ratio, thereby providing effective guidance for the design of ECC.

Conclusion
Based on the analysis using four machine-learning models, the four most critical mechanical properties of ECC 
were predicted, encompassing a wide range from ordinary to high compressive strength. Leveraging SHAP 
analysis technology, the feature importance of the optimal model was investigated and the sensitivity of feature 
parameters was thoroughly examined. Finally, based on the results of machine learning research, control sug-
gestions for ECC mechanical properties were established. These findings are directly applicable to enhancing the 
design of ECC, facilitating its real-world application. The main conclusions are as follows:

• The RF model performed best for compressive and flexural strength prediction, followed by the XGB model. 
For compressive strength, the  R2 of the RF for the training set was 0.99, and the  R2 and MAE for the test set 
were 0.92 and 5.40. For the flexural strength, the  R2 of the RF for the training set was 0.97, and the  R2 and 
MAE for the test set were 0.91 and 1.62. Therefore, RF is the most recommended model for predicting ECC’s 
compressive and flexural strength.

• In predicting tensile strength and tensile strain capacity, the XGB model performed best, followed by the 
random forest model. For the tensile strength, the  R2 of the XGB model for the training set was 0.97, and the 
 R2 and MAE for the test set were 0.87 and 0.68. For the tensile strain capacity, the  R2 of the XGB model for 
the training set was 0.95, and the  R2 and MAE for the test set were 0.80 and 0.84. Therefore, the XGB model 
is the most recommended model for predicting the tensile strength and tensile strain capacity of ECC.

• Compressive strength was positively correlated with silica fume and water reducing agent and negatively 
correlated with water cement ratio. PE fiber positively affected flexural strength, and the water-cement ratio 

Figure 21.  SHAP partial dependency plots for the TS.

Table 7.  The optimal parameter values of the model.

Model Parameter Definition Value

KNN n_neighbors Number of nearest neighbors 3

RF

n_estimators Number of decision trees 13

max_depth Maximum depth of each decision tree 9

max_features Maximum number of features 6

XGBoost

n_estimators Number of decision trees 24

min_child_weight Minimum sum of instance weight 4

gamma Minimum amount of loss required for further branching 0.3

Table 8.  Three evaluation indicators on the training set and the test set.

Model

Train set Test set

R2 RMSE MAE R2 RMSE MAE

LR 0.63 1.62 1.24 0.61 1.54 1.16

KNN 0.85 1.05 0.75 0.70 1.34 1.03

RF 0.92 0.76 0.56 0.72 1.28 0.94

XGBoost 0.95 0.57 0.42 0.80 1.10 0.84
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had a negative effect on flexural strength. PE fiber positively affected tensile strength, while the water-cement 
ratio negatively affected tensile strength. PE fiber, fiber content, and oil film PVA fiber positively impacted 
tensile stress capacity.

• Compressive strength and tensile strength were highly sensitive to the change of W and WR, and the flexural 
strength was highly sensitive to the change of W. The sensitivity between tensile strain capacity and input 
features was moderate and stable.

Figure 22.  Comparison between predicted value and actual value of TSC [(a) LR, (b) KNN, (c) RF, (d) XGB].
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Figure 23.  Feature importance of XGB modeling.

Figure 24.  Global SHAP value of XGB modeling.

Figure 25.  SHAP values of the individual sample.
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From the perspective of the ECC mechanical index control strategy, the application of PE fiber is a very effec-
tive method to improve each mechanical index, and the second is to reduce the parameter of the cement ratio. In 
the design of ECC in practical engineering, these two characteristic parameters should be adjusted first to obtain 
the maximum effect with the least test. It avoids the repeated adjustment of each parameter in the mix ratio in 
the previous ECC design, which greatly reduces the test and time cost. At the same time, this paper only obtains 
the potential relationship between the characteristic parameters and the target values from many test data sets. 
In the future, we can consider the test data set and collect enough microstructure parameters of the fiber and 
matrix as the characteristic parameters to expect higher prediction accuracy.

Data availability
The datasets used and/or analyzed during the current study are available from supplementary information files.
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