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Discovery of urinary 
biosignatures for tuberculosis 
and nontuberculous mycobacteria 
classification using metabolomics 
and machine learning
Nguyen Ky Anh 1,2,5, Nguyen Ky Phat 1,5, Nguyen Quang Thu 1, Nguyen Tran Nam Tien 1, 
Cho Eunsu 1, Ho‑Sook Kim 1, Duc Ninh Nguyen 3, Dong Hyun Kim 1, Nguyen Phuoc Long 1* & 
Jee Youn Oh 4*

Nontuberculous mycobacteria (NTM) infection diagnosis remains a challenge due to its overlapping 
clinical symptoms with tuberculosis (TB), leading to inappropriate treatment. Herein, we employed 
noninvasive metabolic phenotyping coupled with comprehensive statistical modeling to discover 
potential biomarkers for the differential diagnosis of NTM infection versus TB. Urine samples from 
19 NTM and 35 TB patients were collected, and untargeted metabolomics was performed using rapid 
liquid chromatography‑mass spectrometry. The urine metabolome was analyzed using a combination 
of univariate and multivariate statistical approaches, incorporating machine learning. Univariate 
analysis revealed significant alterations in amino acids, especially tryptophan metabolism, in NTM 
infection compared to TB. Specifically, NTM infection was associated with upregulated levels of 
methionine but downregulated levels of glutarate, valine, 3‑hydroxyanthranilate, and tryptophan. 
Five machine learning models were used to classify NTM and TB. Notably, the random forest model 
demonstrated excellent performance [area under the receiver operating characteristic (ROC) 
curve greater than 0.8] in distinguishing NTM from TB. Six potential biomarkers for NTM infection 
diagnosis, including methionine, valine, glutarate, 3‑hydroxyanthranilate, corticosterone, and 
indole‑3‑carboxyaldehyde, were revealed from univariate ROC analysis and machine learning models. 
Altogether, our study suggested new noninvasive biomarkers and laid a foundation for applying 
machine learning to NTM differential diagnosis.

Keywords Nontuberculous mycobacteria, Tuberculosis, Differential diagnosis, Diagnostic biomarkers, 
Metabolomics, Machine learning

Nontuberculous mycobacteria (NTM) is a group of environmental bacteria consisting of more than 190 species 
and subspecies of Mycobacterium, except for Mycobacterium tuberculosis (Mtb) and Mycobacterium leprae1. 
NTM infection is an opportunistic disease with a wide range of virulence due to its species  diversity2. The inci-
dence of NTM pulmonary disease has increased in the last decade and is becoming a global health  crisis3,4. In 
a systematic review and meta-analysis study conducted in 2022 using global, culture-based, microbiologic data 
from 2000, the worldwide overall increase rate of NTM infection was found to be 4.1% per  year5. While curable, 
treating NTM infection requires a prolonged multidrug regimen with restricted options and significant risks of 
antibiotic resistance, reinfection, or  relapse1,2,6. Therefore, the initiation of NTM treatment should be carefully 
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considered and guided by an accurate diagnosis. However, clinical manifestations, smear microscopy, and medi-
cal imaging of NTM pulmonary disease and pulmonary tuberculosis (TB) largely  overlap7–9. This may lead to 
misdiagnosis of NTM infection as TB. The current gold standard for confirming NTM infection is mycobacterial 
culture, a time-consuming  process2,9. Except for fast growers, a majority of NTM species require 2–3 weeks to 
grow in  subculture9,10. These challenges prevent the timely diagnosis of NTM infection. Taken together, a quick 
and accurate diagnostic method is essential to overcome these difficulties and support the decision to initiate 
NTM treatment.

Advances in molecular diagnosis have allowed faster detection of NTM infection. Polymerase chain reaction 
(PCR)-based assays are the most widely used  methods11–13. For example, the Cepheid Xpert MTB/RIF assay can 
differentiate Mtb from  NTM14,15. Its negative result combined with a positive result on acid-fast bacilli smear 
microscopy can indicate the presence of  NTM14,16. However, Xpert MTB/RIF has a low sensitivity in paucibacil-
lary specimens and the risk of misdiagnosing NTM as Mtb in a high bacterial load  setting16–18. Compared to Xpert 
MTB/RIF, multiplex PCR sequencing of hsp65, rpoB, as well as 16S rRNA allows the fast detection of NTM with 
better specificity and identification of the NTM species in the  sample2,16,19. PCR-based tests and mycobacterial 
culture often utilize sample types such as sputum, bronchial wash, or bronchial lavage. The collection of these 
samples can be invasive or complicated, particularly for patients in the early stages of  infection20. Since NTM is 
naturally present in the environment, it can be challenging to distinguish an NTM-contaminated sample from a 
sample with an actual NTM infection using PCR-based  tests2,16. Overall, there is still room for developing new 
diagnostic tests using easily accessible samples to improve healthcare quality for NTM patients.

The emergence of host-based biomarker research may introduce a novel approach to NTM  diagnosis21–25. 
Metabolomics is one of the most commonly employed methods for identifying new metabolic biomarkers of 
infectious  diseases23,26. Furthermore, various biological fluids, including blood and urine, can be employed for 
metabolomic  analysis27. This versatility warrants the development of diagnostic tests based on readily accessible 
samples. Previous studies have demonstrated the potential of using metabolomics approach to identify biomark-
ers for TB  diagnosis18,23,28. Investigating the metabolic profile of NTM and TB may shed light on the metabolic 
features that could differentiate NTM pulmonary disease from TB. To the best of our knowledge, there have been 
no documented reports on metabolic biomarkers that distinguish between TB and NTM infection. Addressing 
this research gap may open the opportunity to better understand the metabolic alteration underlying these two 
infections and develop novel diagnostic tools.

A urine-based assay has several advantages in clinical settings, especially as a triage test. Firstly, urine sampling 
is non-invasive, and patients can conveniently collect it. Secondly, urine is easy to store. Thirdly, urine is less 
hazardous than sputum, thus minimizing the need for biosafety  measures18,29. Moreover, urine is a rich source 
of metabolites, making it an appealing sample type for metabolomics  analysis30. Nevertheless, the concentra-
tion and composition of metabolites may vary significantly between urinary samples due to hydration levels or 
other factors such as diet, kidney diseases, and medications. This challenges metabolomics data interpretation 
and requires a standardized approach with careful technical considerations that can handle the variability in 
urinary  samples31. An automated platform could control laboratory variability, reduce delays, and lower the 
cost of analyzing  results16,18,32. The application of machine learning (ML), which is easy to automate, scale up, 
and update, for data analysis, can aid the establishment of an automated diagnostic  system33. In addition, ML is 
excellent in data mining, especially for handling complex relationships towards prediction. This characteristic 
makes ML suitable for omics-based large-scale, high-dimensional  datasets34,35. ML has also gained attention for 
improving the accuracy of clinical  diagnosis35,36. Indeed, ML has been used to accurately distinguish between 
NTM pulmonary disease and pulmonary TB (using CT image data)37. Finally, ML can prioritize important 
biomarker candidates by calculating the feature importance  score38.

This study aims to employ an ML-assisted metabolomics approach to investigate the differences in urinary 
metabolic profiles between patients with NTM pulmonary disease and those with TB. By investigating these 
differences, we seek to identify promising biomarker candidates that can classify NTM and TB patients. The 
findings from this work may establish a foundation for the development of non-invasive, urine-based diagnostic 
tests for NTM pulmonary disease to facilitate timely and appropriate treatment interventions.

Materials and methods
Study design and sample characteristics
The clinical study, which included urine samples and information of participants, was reviewed and approved 
by the Institutional Review Board of Guro Hospital, Korea University (No. 2017GR0012). All procedures were 
carried out in accordance with the Declaration of Helsinki. Written informed consent was obtained from all 
participants prior to study procedures. The diagnosis of TB followed the World Health Organization guideline 
for drug-susceptible TB, which considered clinical symptoms, sputum smear microscopy and culture tests, 
radiological examination, and GeneXpert MTB/RIF assay. The diagnosis of NTM infection was based on the 
clinical practice guideline of the American Thoracic Society, European Respiratory Society, European Society 
of Clinical Microbiology and Infectious Diseases, and Infectious Diseases Society of  America1. Briefly, patients 
were classified as NTM infection according to clinical pulmonary and systemic symptoms, radiographic infor-
mation, and microbiological criteria. For radiographic information, patients were considered NTM infection 
if they had nodular or cavitary opacities on chest radiograph or multifocal bronchiectasis with multiple small 
nodules on high-resolution computed tomography scan. For microbiological criteria, sputum culture result 
and mycobacterial histologic features were considered. Patients with NTM should meet at least one of the three 
criteria as described by the guideline. Patients with latent TB infection, malignant conditions, or who were 
receiving immunosuppressive therapy were excluded. The current study included 54 patients over 18 years of 
age, with 19 patients in the NTM infection and 35 patients in the control group diagnosed with pulmonary TB 
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Table 1.  Clinical characteristics of the subjects. Data are presented as N (%) or median (interquartile range). 
For P-value calculation, Wilcoxon rank-sum test was used for continuous variables while Fisher’s exact test was 
used for categorical variables. A P-value less than 0.05 was considered statistically significant.

TB group (N = 35) NTM group (N = 19) P-value

Age, years 57 (45–65) 67 (59–75) 0.0024

BMI, kg.m-2 21.60 (19.20–23.35) 20.60 (19.45–22.65) 0.7788

Sex

Male 25 (71) 6 (32) 0.0087

Female 10 (29) 13 (68)

Comorbidity

Diabetes 6 (17) 0 (0) 0.0797

Hypertension 7 (20) 6 (32) 0.5061

NTM classification

M. avium – 6 (32)

M. intracellulare – 13 (68)

Radiographic findings

Cavities 3 (9) 4 (21)

No cavity 32 (91) 15 (79)

Smoking status

Never 13 (37) 15 (79) 0.0045

Former 14 (40) -

Current 8 (23) 4 (21)

Alcohol consumption

Yes 20 (57) 3 (16)

No 15 (43) 14 (74)

Unknown – 2 (10)

Figure 1.  Workflow of the study. (a) Subject enrollment. (b) Sample collection. (c) Untargeted metabolic 
profiling. (d) Conventional statistical analysis-based biomarker identification. (e) Machine learning-assisted 
biomarker discovery. NTM nontuberculous mycobacteria, TB tuberculosis, k-NN k-nearest neighbors, SVM 
support vector machine.
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(Table 1). Urine samples were collected before patients received antimicrobial treatment. The workflow of this 
study is depicted in Fig. 1.

Chemicals, reagents, and consumables
Liquid chromatography–mass spectrometry (LC–MS) grade acetonitrile (ACN), formic acid, methanol (MeOH), 
and water were obtained from Sigma-Aldrich (St. Louis, Missouri, USA). Six internal standards for metabo-
lomics, namely, L-tryptophan-(indole-d5), acetyl-L-carnitine-(N-methyl-d3), cholic acid-2,2,3,4,4-d5, L-phenyl-
d5-alanine, leucine enkephalin, and SM(d18:1/15:0)-d9 were provided by Sigma–Aldrich (St. Louis, Missouri, 
USA). ACQUITY UPLC HSS T3 pre-column (5 × 2.1 mm; 1.8 µm particle size) and ACQUITY UPLC HSS T3 
column (50 × 2.1 mm; 1.8 µm particle size) were purchased from Waters (Milford, MA, USA).

Sample preparation
The first urine in the morning of each patient was collected for the study. Then, the samples were stored at − 80 °C 
prior to the metabolite extraction. Urease pre-treatment was not performed as it might introduce artifacts into 
the  metabolites39. Metabolites from urine samples were extracted as follows. First, 50 µL of each urine sample was 
thawed on ice for approximately 30 min. The samples were vortexed briefly for 10 s. For protein precipitation, 
150 µL of MeOH (kept at − 80 °C) containing six internal standards, namely, L-tryptophan-(indole-d5), acetyl-L-
carnitine-(N-methyl-d3), cholic acid-2,2,3,4,4-d5, L-phenyl-d5-alanine, leucine enkephalin, and SM(d18:1/15:0)-
d9, was added to the samples. Then, the mixtures were vortexed vigorously for 30 s and centrifuged for 2 min at 
14,000 rcf and 4 °C. Next, 150 µL of the supernatant from each mixture was evaporated under a flow of nitrogen 
at room temperature. The dried residues were kept briefly at − 20 °C and used for subsequent analysis.

Untargeted metabolomics
The dried extracts were redissolved in 200 µL of 50% MeOH for untargeted metabolomics. The mixtures were 
then vortexed and centrifuged at 14,000 rcf and 4 °C for 2 min. One hundred and fifty microliters of supernatant 
from each sample were used for subsequent analysis while 20 µL was taken for pooled quality control (QC) 
sample. The samples were kept at 4 °C in an autosampler prior to LC–MS analysis. A Shimadzu Nexera UPLC 
system (Kyoto, Japan) coupled with an X500R Quadrupole time-of-flight mass spectrometer (SCIEX, MA, USA) 
was utilized to separate and analyze the urine metabolome. Separation was achieved by an ACQUITY UPLC HSS 
T3 column (50 × 2.1 mm; 1.8 µm particle size) coupled to an ACQUITY UPLC HSS T3 pre-column (5 × 2.1 mm; 
1.8 µm particle size), with a gradient elution following established  method40. The binary mobile phases consisted 
of (A) water with 0.2% formic acid and (B) ACN with 0.1% formic acid. The total run time of each sample was 
5.5 min including the pre-injection step. For compound ionization, electrospray ionization (ESI) was employed. 
Information-dependent Acquisition mode was used to acquire the data. Injection volumes for positive ion (ESI+) 
mode and negative ion (ESI−) mode were set at 1.5 µL and 3 µL, respectively. To maintain the quality and con-
sistency of the analysis, mass calibration was carried out after every eight injections using the X500R calibration 
solution by a calibrant delivery system.

Data processing and alignment
MS-DIAL version 4.9.0 was utilized to preprocess the raw data (.wiff files)41. The parameters used for data pro-
cessing followed our previous  report42. An in-house library of more than 600 endogenous metabolites developed 
under the same analytical condition, taken from the mass spectrometry metabolite library of standards, was 
employed for metabolite annotation. Metabolites that matched the mass-to-charge ratio and retention time 
with the standards were annotated. Furthermore, the public libraries of MS-DIAL were used for MS/MS spectra 
inspection. Next, the aligned data were exported from MS-DIAL and were further processed using MetaboAna-
lystR version 4.0.0. First, features with a missing data rate of over 50% were removed. Then, the feature-wise 
k-nearest neighbors (k-NN) algorithm was used for missing value  imputation43. Next, features with a relative 
standard deviation greater than 25% in the QC group and near-constant features were excluded. The filtered data 
were subjected to normalization using creatinine and quantile normalization.

Data exploration and statistical analysis
Urinary metabolome data were explored using principal component analysis (PCA). For classification between 
the TB and NTM metabolomes, partial least squares–discriminant analysis (PLS-DA) was employed. The perfor-
mance of the PLS–DA models was assessed using five-fold cross-validation, and the optimal model was chosen 
using  Q2 value. PCA and PLS-DA analyses were conducted using MetaboAnalystR 4.0.044. Normalized data 
were log-transformed and Pareto scaled prior to these analyses. The PCA and PLS-DA results were visualized 
using plotly (version 4.10.3).

Univariate analysis using linear models with covariate adjustment was conducted to discover differential 
metabolites (DMs) between NTM and TB. First, normalized data were log-transformed. Then, the age-, BMI- 
and sex-adjusted linear model was then used to identify DMs between the NTM and TB groups. A |fold change 
(FC)| of 1.5 and a false discovery rate (FDR) of 0.05 were applied as the thresholds for significantly altered 
metabolites. FDR was calculated using Benjamini–Hochberg procedure. Univariate receiver operating charac-
teristic (ROC) analysis was applied to examine the ability of metabolites to differentiate between NTM infection 
and TB. Metabolites with an area under the curve (AUC) ≥ 0.7 and P-value < 0.05 were considered to have good 
performance in classifying the two groups. The univariate analyses were conducted using MetaboAnalyst 5.045.
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ML models for biomarker identification
ML was used to classify NTM and TB and identify biomarkers that significantly contribute to the classification 
performance. The dataset used for ML-assisted biomarker discovery comprised non-overlapping (between two 
ion modes) normalized annotated metabolic features and demographic information (age, sex, BMI). Continuous 
variables were scaled using the standard scaler method (the training and test sets were scaled separately). In addi-
tion, categorical variables were one-hot  encoded46. We considered five commonly used classification methods, 
including k-NN, linear support vector machine (SVM), random forest (RF), extreme gradient boosting (XGB), 
and neural network (NN). The five-fold nested cross-validation procedure was conducted for model validation, 
wherein the outer loop involved splitting the data into training and testing sets, while the inner loop focused 
on finding the optimal hyperparameters. The AUC value of the ROC curve was used to evaluate model perfor-
mance. The caret package (version 6.0-94) was used in R version 4.3.2 for model building and  validation47. To 
determine which variables are potential biomarker candidates, a voting strategy was applied. In detail, importance 
scores of variables were computed for each model. Then, variables were ranked in descending order based on 
the importance score. The top 10% of the most important variables for each model were selected and subjected 
to a Venn analysis. A variable was considered significant for distinguishing NTM from TB if the Venn analysis 
results showed that it ranked within the top 10% of variables based on importance scores for at least three models.

Results
Clinical characteristics of the study population
The study population (N = 54) consisted of 19 NTM patients infected with Mycobacterium avium complex and 
35 TB patients. Regarding the NTM group, the median age was 67 [interquartile range (IQR) = 59–75] and 
median BMI was 20.60 (IQR = 19.45–22.65) kg.m−2. In the TB group, the median age was 57 (IQR = 45–65) and 
median BMI was 21.60 (IQR = 19.20–23.35) kg.m−2. In the NTM group, the percentage of females was 68%, 
while it was 29% in the TB group. There were significant differences in age (P-value = 0.0024) and sex ratio 
(P-value = 0.0087) between the two groups. Of note, 32% of the patients in the NTM group had hypertension, 
no patients had diabetes, and 21% were smokers at the time of diagnosis and sample collection. The percent-
age of patients with diabetes in the TB group was 17%, 20% had hypertension and 23% were current smokers 
(Table 1). Notably, there was a significant difference in the percentage of smoking status between the two groups.

Multivariate models of urinary metabolomics data
PCA was used to explore sample variance regardless of sample origin. In the PCA of all samples (including 
QC samples), the QC samples clustered tightly, as shown in the scores plots of both ESI+ mode and ESI− mode 
(Supplementary Fig. S1). The results indicated a consistent data acquisition process, which enabled subsequent 
analysis. In the PCA of NTM and TB samples, the scores plot of the ESI+ mode showed no apparent separation 
between the two groups (Fig. 2a). Consistent with the ESI+ mode, no clear separation between NTM and TB 
groups was observed in the ESI− mode scores plot (Fig. 2b). It is worth noting that in the analysis of both ion 
modes, the first two principal components only explained less than 20% of the variance in the data, implicating 
that the relationships between features were complex.

PLS-DA was conducted to differentiate the NTM and TB groups. In the ESI+ mode, the PLS-DA scores 
plot showed a separation between the two groups (Fig. 3a). However, the predictive performance of the model 
was limited, as indicated by the cross-validation process (accuracy = 0.72,  R2 = 0.56,  Q2 = 0.17) (Supplementary 

Figure 2.  Principal components analysis scores plots of metabolome of NTM and TB patients. (a) Positive ion 
mode. (b) Negative ion mode. NTM nontuberculous mycobacteria, TB tuberculosis.
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Fig. S2). The performance of the ESI − mode model was consistent with the ESI+ mode model (accuracy = 0.8, 
 R2 = 0.81,  Q2 = 0.18) as shown in Fig. 3b and Supplementary Fig. S2. Similar to PCA, the first and second principal 
components of the PLS-DA models explained less than 15% of the data variance.

To identify the DMs between NTM and TB groups, a linear model with clinical covariates adjustment was 
employed (Supplementary Fig. S3). In the analysis of the ESI+ mode, a total of 302 features had a P-value less 
than 0.05. Notably, the level of tetradecenoylcarnitine had a 2.7-fold increase in the NTM group compared to 
TB. Methionine, hypoxanthine, and acetylserotonin were also upregulated by 1.8-fold. In contrast, the level of 
4-guanidinobutanoate had a nearly three-fold decrease while adenosine, cystine, and acetylcholine reduced by 
approximately 1.7-fold. However, no feature remained significant when considering the FDR criteria of less than 
0.05. In the analysis of the ESI- mode, 287 features had a P-value < 0.05. Among them, levels of glutarate and tar-
trate increased 1.8- and 2.7-fold in the NTM group, respectively, while the level of 4-imidazoleacetate decreased 
2.3-fold. Similar to the ESI+ mode, no feature qualified the FDR < 0.05 criteria in the ESI- mode analysis. The 
P-value and FDR of pre- and post-covariates-adjustment were depicted in Supplementary Fig. S4. Together, 
the univariate and multivariate analyses implicated the complexity of the data. Linear models might not be the 
optimal solution for identifying the differences between the NTM and TB groups.

Univariate receiver operating characteristic curve analysis for biomarker discovery
Univariate ROC analysis was performed to identify potential biomarkers for the classification of NTM infec-
tion and TB (Table 2). In the ESI+ analysis, 9 annotated features had an AUC ≥ 0.7 and P-value < 0.05. Among 
them, valine, indole-3-carboxyaldehyde, and corticosterone demonstrated the best performance with an AUC of 
approximately 0.8. In the ESI− analysis, eight metabolites had an AUC greater than 0.7. Particularly, tryptophan 
and glutarate demonstrated a good performance with an AUC of approximately 0.8. Interestingly, the metabolites 
that showed good classification performance were amino acids such as valine, histidine, tyrosine, and tryptophan.

ML models for biomarker discovery
The results from the data exploration and conventional statistical analyses indicated a subtle difference in 
metabolic profiles between NTM infection and TB. Therefore, we applied ML to better capture the difference 
between the metabolomes of these two groups. The RF model performed excellently in classifying NTM and TB 
patients (AUC of ROC curve and standard deviation from the five-fold nested cross-validation = 0.828 ± 0.101) 
(Fig. 4a). The classification performance of three other models (SVM, XGB, and NN) was acceptable (AUC > 0.7) 
(Fig. 4b–d). However, k-NN model performed poorly with high variability (AUC = 0.696 ± 0.171) (Fig. 4e). There-
fore, the variable importance score estimated from the k-NN model was not considered for biomarker selection.

Venn analysis was conducted between the variables ranked in the top 10% based on the importance scores of 
SVM, RF, XGB, and NN (Fig. 4f and Supplementary Fig. S5) to identify potential biomarker candidates. There 
were seven variables that overlapped between the four considered models, including six annotated metabolic fea-
tures (3-hydroxyanthranilate, corticosterone, glutarate, methionine, valine, and indole-3-carboxyaldehyde) and 
one demographic variable i.e., age. Moreover, the other six annotated metabolic features were ranked as the top 
10% most important variable for three out of five models. These included succinate and acetylcholine (SVM, RF, 
XGB); histidine and tartrate (SVM, RF, NN); kynurenate (SVM, XGB, NN); N-acetyltryptophan (RF, XGB, NN).

Of note, given that age was significantly different between the two groups, it also appeared to be one of the 
most important variables for all considered models. To investigate the potential confounding effect of the age 

Figure 3.  Partial least squares discriminant analysis scores plots of metabolome of NTM and TB patients. (a) 
Positive ion mode. (b) Negative ion mode. NTM nontuberculous mycobacteria, TB tuberculosis.
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variable, we assessed the model performance after removing it from the models. The results showed no statisti-
cally significant improvement in performance for all investigated models (Supplementary Fig. S6, Supplemen-
tary Table S1). This finding implied a negligible confounding effect of age on model performance. In general, 
ML showed promising results for distinguishing NTM from TB. In total, we identified 12 annotated metabolic 
features as potential biomarker candidates for the differential diagnosis of NTM infection.

Discussion
The prevalence of NTM lung disease has been increasing  globally5. Misdiagnosis of NTM lung disease versus TB 
remains a challenge, leading to inaccurate treatment and unfavorable  outcomes48,49. In this study, we identified 
several metabolic noninvasive biomarkers that may aid in the differential diagnosis of these two diseases, using 
untargeted metabolomics and ML. Previous studies have utilized metabolomics to discover metabolic biomarkers 
for differentiating NTM infection patients from healthy  controls24, or between NTM-positive and NTM-negative 
cystic fibrosis  patients50. However, to our knowledge, this is the first study to explore the potential of urinary 
metabolic biomarkers for the differential diagnosis of NTM infection versus TB. When considered for clinical 
application, especially for a triage test, urine samples have several advantages, such as simplicity, comfort, and 
noninvasiveness in sample collection. Of note, the World Health Organization has endorsed a urine-based assay 
for TB  diagnosis29. Here, the application of a rapid data acquisition method showed the potential to measure 
urinary biomarkers using a fast LC–MS assay, which further facilitates the translation of such biomarkers for 
clinical application.

ML provides a valuable approach for biomarker  discovery51. ML is widely employed to select biomarker 
candidates because of its ability to learn the complex relationships between features and rank them based on 
their contribution to model performance. However, the prioritization of the “potential biomarkers” varies sig-
nificantly among ML algorithms and depends considerably on the quality and quantity of the datasets used for 
training and  validation52,53. Therefore, the shortlist of potential biomarkers derived from a single ML model 
might not be generalized well in cross-study  validation53. Covariates commonly found to be important features 
among algorithms are expected to have higher translational value. To overcome this disadvantage of using a 
single ML model, we proposed a list of the most promising biomarker candidates based on the consensus of 
multiple ML models. Remarkably, typical chemometric modeling (i.e., PCA and PLS-DA) and simple k-NN 
failed to provide valid classifications due to the high variability in their performance. This finding, along with the 
unsatisfied results of univariate linear regression method and the promising performance of more sophisticated 
ML algorithms, implied the complex nature of our data and justified our approach of using ML for biomarker 
identification to differentiate NTM infection and TB. Of note, our choices for ML were representatives from 
multiple classes of algorithms, ranging from the naive one (i.e., k-NN) to the state-of-the-art one for numeric 
data (e.g., neural network). This selection was a way to confirm that there were no simple solutions for TB-NTM 
differential diagnosis. Among the five ML models used, only the k-NN model displayed invalid classification 
with high variability of the AUC value. This phenomenon could be explained by the susceptibility of the k-NN 
model to high-dimensional data, especially in a dataset with a small sample size. Additionally, k-NN may not 
perform well when the outcome variable is  imbalanced54.

The current study revealed metabolic alterations in NTM patients compared to TB patients. Amino acids 
such as methionine were elevated, while valine, histidine, tyrosine, and tryptophan were less abundant. Amino 

Table 2.  Univariate receiver operating characteristic analysis of the biomarker candidates for nontuberculous 
mycobacteria. POS Positive ion mode, NEG Negative ion mode. Fold change is presented as the ratio of analyte 
abundance in the NTM group compared to the TB group.  1 Metabolite detected in both ion mode.

Analyte Mode AUC Fold change P-value

Valine POS 0.788 0.59 0.0009

Indole-3-carboxyaldehyde POS 0.772 0.63 0.0015

Corticosterone POS 0.762 0.66 0.0018

Methionine POS 0.747 2.63 0.0020

Histidine POS 0.739 0.54 0.0032

Acetylcholine POS 0.726 0.57 0.0460

N-Acetylserotonin POS 0.725 1.78 0.0074

Adenosine POS 0.710 0.19 0.0250

Tyrosine1 POS 0.702 0.62 0.0189

Tryptophan NEG 0.771 0.76 0.0049

Glutarate NEG 0.765 1.22 0.0003

Oxoglutarate NEG 0.725 1.35 0.0059

Caffeate NEG 0.716 1.39 0.0071

Tyrosine1 NEG 0.710 0.85 0.0105

3-Hydroxyanthranilate NEG 0.708 0.78 0.0133

Succinate NEG 0.707 1.33 0.0365

3-Methoxytyrosine NEG 0.706 0.66 0.0059
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Figure 4.  Using machine learning to identify biomarker candidates for NTM and TB classification. (a) Receiver 
operating characteristic curve of the random forest model. (b) Receiver operating characteristic curve of the 
extreme gradient boosting model. (c) Receiver operating characteristic curve of the linear support vector 
machine model. (d) Receiver operating characteristic curve of the neural network model. (e) Receiver operating 
characteristic curve of the k-nearest neighbors model. (f) Venn analysis between top 10% variable based on 
importance score of random forest, linear support vector machine, extreme gradients boosting, and neural 
network models. NTM nontuberculous mycobacteria, TB tuberculosis, RF random forest, SVM support vector 
machine, XGB extreme gradient boosting, NN, neural network.
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acids play an essential role in the host innate and adaptive immune response to  infections55. Particularly, the 
alteration of methionine could be related to the host oxidative stress responses to  pathogens56. On the other hand, 
histidine alteration may be caused by a complex crosstalk effect between the host and  pathogens57. The altera-
tions of amino acids observed in our study may be related to the differences in host immune responses between 
NTM infection and TB. Interestingly, we detected the reduction of 3-hydroxyanthranilate, an intermediate in 
the tryptophan metabolism  pathway58. A study comparing the sputum of NTM-positive and NTM-negative 
cystic fibrosis patients also found a low level of tryptophan and its metabolite, anthranilate, in the NTM-positive 
 group50. Another study in an animal model found a decrease of plasma tryptophan level in the group infected 
with Mycobacterium avium59. In contrast, the urinary level of 3-hydroxyanthranilate has been reported to be 
higher in TB patients compared to healthy individuals. Kynurenate, another metabolite in the tryptophan cata-
bolic pathway, was among the top features of our ML models. The tryptophan catabolism pathway is known 
to regulate the host immune response to  pathogens60. Our findings align with previous reports on NTM and 
may implicate heterogeneous catabolism of tryptophan between NTM infection and TB. Furthermore, indole-
3-carboxyaldehyde, a derivative of tryptophan derived from the gut microbiota, was found to suppress IL-6 
cytokine production of murine macrophages in response to stimulation by Mtb61. Previous reports have also 
correlated the gut microbiome with host immune responses to Mtb  infection62 and NTM  infection63. The altera-
tion of indole-3-carboxyaldehyde in our study may be partially explained by the role of tryptophan metabolism 
mediated by gut microbiome in the immune responses to NTM infection and TB.

The age of the NTM patients in our cohort was significantly older than that of the TB patients, which is 
consistent with previous  reports64,65. A study showed that age older than 50 years is a potential predictive factor 
in classifying NTM and  TB64. This finding aligns with our results, which showed that age appears to be one of 
the most important features contributing to the classification of NTM and TB for all models considered. The 
increased risk of NTM infection in elderly individuals may be explained by the decline in immunity with age 
and a higher likelihood of receiving medical  treatments66,67.

Some weaknesses of the study due to its exploratory nature and sampling limitations need to be discussed. 
First, the lack of quantitative concentrations of urinary metabolites in our study may hamper the direct transla-
tion of these biomarkers in clinical settings. A targeted absolute quantification assay is needed to facilitate the 
clinical application of these biomarkers. Second, given that the sample size of our study was small, no external 
validation could be performed. However, our robust nested cross-validation could be sufficient to ensure the 
validity of the biomarker candidates and warrants further investigation. Inter-cohort cross-validation with a 
larger sample size and more diverse population is still required to fine-tune the signature and ensure its gener-
alizability. Finally, it is of potential interest to examine the role of the biomarker candidates by including other 
groups, such as healthy controls and patients with cystic fibrosis. It may help expand the usability of our assay 
beyond the differential analysis of NTM and TB. It is worth mentioning that diagnostic biomarkers might also 
be applied for other purposes, such as predicting the risk of disease progression or monitoring  treatment28. A 
multiple-purpose signature could be employed to comprehensively monitor the status of patients from infection 
to treatment, advancing personalized medicine for NTM  infection68. Hence, the capacity of our biomarkers in 
these applications should be evaluated in future studies.

Conclusion
In conclusion, we applied a fast LC–MS untargeted metabolomics approach to discover urinary biomarkers for 
diagnosing NTM pulmonary disease. Between NTM infection and TB, metabolic alterations in amino acid levels 
and tryptophan metabolism were revealed. These findings implicate the differences in host immune response 
and host–pathogen metabolic crosstalk between these two Mycobacteria infections. Using univariate and mul-
tivariate analyses, incorporating ML algorithms, we identified several potential biomarkers for differentiating 
between NTM infection and TB, including valine, corticosterone, glutarate, 3-hydroxyanthranilate, and indole-
3-carboxyaldehyde. These biomarkers may aid the accurate diagnosis of NTM infection versus TB. Our ML 
strategy provided a robust approach to prioritize biomarker candidates in a scenario where the data have a com-
plex underlying structure and small sample size. In addition, integrating fast LC–MS method and ML modeling 
demonstrate the potential of a semi-automated platform for convenient and scalable diagnostics. Altogether, 
our study can serve as a foundation for facilitating the use of urinary biomarkers and ML in diagnosing NTM 
pulmonary disease.

Data availability
Data is provided within the supplementary information file.
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