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An enhanced jellyfish search 
optimizer for stochastic energy 
management of multi‑microgrids 
with wind turbines, biomass 
and PV generation systems 
considering uncertainty
Deyaa Ahmed 1, Mohamed Ebeed 2,3, Salah Kamel 4, Loai Nasrat 4, Abdelfatah Ali 5,6, 
Mostafa F. Shaaban 5 & Abdelazim G. Hussien 7,8,9*

The energy management (EM) solution of the multi-microgrids (MMGs) is a crucial task to provide 
more flexibility, reliability, and economic benefits. However, the energy management (EM) of the 
MMGs became a complex and strenuous task with high penetration of renewable energy resources due 
to the stochastic nature of these resources along with the load fluctuations. In this regard, this paper 
aims to solve the EM problem of the MMGs with the optimal inclusion of photovoltaic (PV) systems, 
wind turbines (WTs), and biomass systems. In this regard, this paper proposed an enhanced Jellyfish 
Search Optimizer (EJSO) for solving the EM of MMGs for the 85-bus MMGS system to minimize the 
total cost, and the system performance improvement concurrently. The proposed algorithm is based 
on the Weibull Flight Motion (WFM) and the Fitness Distance Balance (FDB) mechanisms to tackle 
the stagnation problem of the conventional JSO technique. The performance of the EJSO is tested on 
standard and CEC 2019 benchmark functions and the obtained results are compared to optimization 
techniques. As per the obtained results, EJSO is a powerful method for solving the EM compared to 
other optimization method like Sand Cat Swarm Optimization (SCSO), Dandelion Optimizer (DO), 
Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and the standard Jellyfish Search 
Optimizer (JSO). The obtained results reveal that the EM solution by the suggested EJSO can reduce 
the cost by 44.75% while the system voltage profile and stability are enhanced by 40.8% and 10.56%, 
respectively.
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The Micro-grid (MG) can be defined as a small power system that involves different distributed generators 
(DGs) and energy storage units for providing energy to a certain load like a microturbine, PVs, WTs, small hydro 
units, diesel, biomass generation systems as well as batteries, super capacitors, Compressed air energy storage, 
and flywheels1,2. The MGs can be classified according to their connection with the main electric system to the 
on-grid MGs and the off-grid or isolated MGs3. In the on-grid MGs, the DGs and the distribution networks are 
used to provide the energy to the load concurrently while in the isolated type, the load delivers the energy from 
the DGs only which means that the MGs operate independently4,5. Also, the MGs can be classified according to 
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the power system to AC and DC MGs. Furthermore, the AC MGs are divided into two types, single-phase MG 
and three-phase MGs.

The optimal operation and energy management of the MG has a great attention for a set of reasons includ-
ing reducing the operation and production energy costs, ensuring the reliable and stable operation state of the 
MGs, reducing the dependency on fossil fuel-based DGs, and attaining the most sustainable and eco-friendly 
operation by maximizing utilization of renewable energy (RE) systems. Thus, numerous optimization methods 
were proposed for the EM solution of the on-grid or off-grid MGs. In6, a hierarchical Genetic Algorithm (GA) 
was presented for the EM solution of a grid-connected MG involving PV/WT/Batteries for profit maximization 
with demand side response.

The Homer software and the particle swarm optimization were implemented to solve the EM of an isolated 
MG which consists of PV/diesel/WT/batteries for minimizing total net present cost (TNPC) while considering 
demand side response (DSR) and different battery technologies7. The EM of a DC microgrid consisting of PV 
and batteries was solved using a modified differential evolution (MDE) to alleviate the operation cost while 
considering the aging of batteries8. The Improved Walrus Optimization Algorithm (I-WaOA) was presented 
based on Cauchy mutation and the distance fitness balance for the EM of the IEEE 118-bus distribution system 
(DS) to reduce the all-over costs and system performance enhancement under the DSR and uncertainties of the 
system9. Hachemi et al. solved the EM of the 112‐bus Algerian real DS with the optimal installation of PV and 
WT-based DGs considering four uncertain parameters using the Modified reptile search algorithm for the cost 
and the performance system improvement10. A modified Capuchin Search Algorithm (MCapSA) was developed 
based on three modifications for the EM solution of the IEEE 33-bus and 69-bus DSs for multi-objective func-
tion including the all-over cost, the voltage deviations (VDs) reduction and under the load-power uncertainty11. 
Khunkitti et al. presented a significant study using the Marine Predators Algorithm (MaMPA) as an effective 
algorithm to solve the EM problem for many objective functions including the total cost, transmission losses, 
emissions, and the voltage stability index of the IEEE 30- and 118-bus systems12. The Prairie Dog Optimization 
Algorithm (PDO) has been formulated by AE Ezugwu el al. as an efficient algorithm where its experimental 
results proved its efficiency when compared with other algorithms with a good balance of exploitation and 
exploration in solving the EM problem13. In14, the authors presented a comprehensive review of applications for 
the Artificial Hummingbird Algorithm (AHA) for different optimization problems like energy management, 
image processing, optimal control, and engineering design applications. Krill herd optimization and the ant lion 
optimizer were employed to solve the EM of an MG consisting of PV/batteries /fuel cell (FC)/WT to reduce the 
cost15. The artificial hummingbird algorithm was utilized for the inclusion of PVs and WTs on the IEEE 33-bus 
network for reducing emissions, costs, VDs, and VS enhancement16. Shadman Abid et al. has been utilized for 
EM of DSs including IEEE 33-bus and 69-bus for multi-objective functions losses, voltage stability margin, 
economic savings, and VDs17. The EM of EEE 33-bus and 69-bus was solved with the integration of PVs, virtual 
synchronous generators, and WTs for alleviating the frequency deviation and maximizing energy saving using 
multi-objective PSO (MOPSO)18. The Equilibrium Optimizer was suggested for solving the EM for a 12-bus 
small DS for a multi-objective function involving the total cost, VD, and VS in the presence of the WTs and PVs 
under PV/WT/Load powers uncertainty19.

Recently, the new policy of the electric sectors has been to split the large-scale grids into small multi-micro 
grids to maximize the use of the DGs to ensure flexible operation and provide a simple and decentralized control 
ability20,21. The EM was solved for MMGs using a two-level framework based on reinforcement learning taking 
into consideration the time-varying of the generated power by PV panels and the load demand22.

Recently, the electric sectors have been prone to split large-scale grids into small multi-micro grids to maxi-
mize the use of the DGs to ensure flexible operation and provide a simple and decentralized control ability20,21. 
The EM of an MMG was solved using an improved sparrow search algorithm for cost and emissions reductions23. 
In24, a 33-bus DS was divided into three MMGs, and the EM was solved to diminish the total cost with DSR using 
the game theory. The EM of isolated MMG was solved using mixed integer linear programming with DSR and 
the uncertainties of the system were presented using the scenario-based method25. The authors in26 solved the 
EM of an MMG as a stochastic bi-level problem with the integration of multiple energy sources for reducing the 
total costs considering the uncertainties of the system.

Recently, the utilization of biomass energy sources has wildly increased as a renewable and sustainable energy 
source27. The authors in28 discussed the evolution of using biomass as a renewable energy resource during the 
eighteenth and nineteenth centuries. Thus, the biomass-based DGs are wildly allocated in the distribution and 
the MGs along with other sources29–35. Table 1 summarizes the recent papers on the EM solution.

The JSO optimizer was utilized for addressing several optimization techniques. However, it suffers from 
stagnation in the case of solving the high non-convex equations. An enhanced version of JSO was proposed for 
tackling this issue. The first modification is the FDB36 which was implemented to different optimization tech-
niques like the artificial rabbits optimization algorithm37, the Lévy flight distribution algorithm38, An adaptive 
gaining-sharing knowledge algorithm39, the Artificial Hummingbird Algorithm40, reptile search algorithm 10. 
Additionally, the second modification strategy is based on Weibull Flight Motion (WFM) which was implemented 
to improve the exploration strategy of optimization methods41.

The vital importance of this work is that solving the energy management of multi-microgrids with optimal 
integration of renewable energy sources can decrease the dependence of using conventional sources as well as 
enhance the performance of the system.

This paper can fill the research gap where EJSO is implemented for EM of MMGs with the integration of PV, 
biomass, and WTs simultaneously under uncertainties of the loading and the output powers of the renewable 
energy resources (RERs) for both economic and technical objective functions. However, the novelties and the 
contributions can be depicted as follows:
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•	 The energy management of a multi of multi-microgrids of the 85-bus system is solved with optimal integra-
tion of a hybrid system including PV, WT, and biomass units.

•	 The uncertainties of the system such as wind speed, load power, and solar irradiance are considered in the 
energy management solution.

•	 Proposing A novel enhanced Jellyfish Search Optimizer (EJSO) for solving the EM based on (WFM) and 
(FDB) to tackle the stagnation problem of the conventional JSO technique.

The searching ability of the suggested EJSO is demonstrated using CEC -2019 and the traditional benchmark 
functions. In addition,a comprehensive comparison with SCSO, DO, GWO, the standard JSO, and WOA are 
achieved.

The remaining sections are listed as follows: "Problem formulation" section gives a deep clarification about 
the objective functions and the related constraints. "Uncertainty modeling" section describes the method of 
representing the uncertainties in the system. "Jellyfish search optimizer (JSO)" and "The enhanced jellyfish search 
optimizer (EJSO)" sections give the description and mathematical equations of JSO and the EJSO, respectively. 
The discussion of the yielded results is depicted in "Simulation results" section while the summarization of the 
conclusions is outlined in the final section.

Problem formulation
Objective functions
The cost reduction
The first function considered is the total cost ( TC ), which involves the cost of the energy supplied from the main 
grid ( C1 ), the energy loss cost ( C2 ), the PV cost ( C3 ), the WT unit cost ( C4 ), the biomass cost ( C5 ) and, the TC 
can be expressed as follows:

In which

(1)TC = C1+C2 + C3 + C4 + C5,

(2)C1 = 365× UGr ×
24
∑

h=1

PGr(h),

Table 1.   Methods of the EM solution.

Reference Optimizer

DGs

Uncertainty Description Functions YearWT PV Biomass
6 GA ✓ ✓ ✗ ✗ Centralized Cost 2020
7 Homer/PSO ✓ ✓ ✗ ✗ Centralized Cost 2020
8 MDE ✗ ✓ ✗ ✗ Centralized Cost 2015
9 I-WaOA ✓ ✓ ✗ ✓ Centralized Cost/VD/VSI 2023
10 MRSA ✓ ✓ ✗ ✓ Centralized Cost/VD/VSI 2023
11 MCapSA ✓ ✓ ✗ ✓ Decentralized Cost/VD/VSI 2023
15 KH, ALO ✓ ✓ ✗ ✗ Centralized Cost/emission 2018
16 AHA ✓ ✓ ✗ ✓ Centralized Cost/VD/VSI/emission 2023
17 AHA ✓ ✓ ✗ ✓ Centralized PL/VD/VSI 2022
18 MOPSO ✓ ✓ ✗ ✗ Centralized FD/Cost 2023
19 EO ✓ ✓ ✗ ✓ Centralized Cost/VD/VSI 2021
20 MMGEMS ✓ ✓ ✗ ✓ Decentralized FD/VD/VSI 2021
22 DSO, OPF ✓ ✓ ✗ ✓ Decentralized Cost /PL 2022
23 ISSA ✓ ✓ ✗ ✗ Decentralized Cost/emission 2022
24 Game theory ✓ ✓ ✗ ✓ Decentralized Cost 2022
25 MILP ✓ ✓ ✗ ✓ Decentralized Cost 2020
26 DNO ✓ ✓ ✗ ✓ Decentralized Cost 2014
27 SOA, SMA ✓ ✓ ✓ ✗ Centralized Cost/LPSP 2021
29 MOPSO ✗ ✗ ✓ ✗ Centralized Cost/LPSP 2021
31 MILP ✓ ✓ ✓ ✗ Centralized Cost 2011
32 RT_Lab ✗ ✓ ✓ ✓ Centralized Cost 2016
33 HOMER ✓ ✓ ✓ ✗ Centralized Cost 2015
34 ACO ✓ ✓ ✓ ✗ Centralized Cost/emission 2018
35 HOMER ✓ ✓ ✓ ✗ Centralized dumped energy 2009

Our work EJSO ✓ ✓ ✓ ✓ Decentralized Cost/VD/VSI
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where PGr , and  UGr are the delivered power from the grid and the cost of this power per kW, respectively.

where PT_L and UL are the power loss and its cost per kW, respectively.

where Cinv.
PV  denotes the investment cost of the PV panels, CO&M

PV  is its operation and maintenance cost.

where UO&M
PV  , UPV , PPV , Pr_PV refer to operation and maintenance cost, i.e., $/kWh, the investment cost, i.e., $/

kW, the output and rated powers of the PV panels, respectively. CF is the capital recovery factor. The WT’s cost 
can be expressed using (7).

where Cinv.
WT denotes the investment cost of the PV panels, CO&M

PV  is its operation and maintenance cost.

where UO&M
WT  , UWT , PWT , Pr_WT refer to the operation and maintenance cost of the WT in $/kWh, the investment 

cost in $/kW, and the output and rated powers of the PV panels, respectively.
The cost of the biomass system can be calculated as follows:

where UO&M
PV  , UPV , PPV , Pr_PV refer to operation and maintenance cost, i.e., $/kWh, the investment cost, i.e., $/

kW, the output and rated powers of the PV panels, respectively. CF is the capital recovery factor. The WT’s cost 
can be expressed using (7).

where Cinv.
WT denotes the investment cost of the PV panels, CO&M

PV  is its operation and maintenance cost.

where UO&M
WT  , UWT , PWT , Pr_WT refer to the operation and maintenance cost of the WT in $/kWh, the investment 

cost in $/kW, and the output and rated powers of the WT, respectively.
The cost of the biomass system cost can be expressed using (15).

where Cinv.
bio  denotes the investment cost of the PV panels, CO&M

bio  is its operation and maintenance cost.

(3)C2 = 365× UL ×
24
∑

h=1

PT_L(h),

(4)C3 = Cinv.
PV + CO&M

PV ,

(5)CO&M
PV = UO&M

PV ×
24
∑

h=1

PPV (h),

(6)Cinv.
PV = CF × UPV × Pr_PV

(7)C4 = Cinv.
WT + CO&M

WT ,

(8)CO&M
WT = UO&M

WT ×
24
∑

h=1

PWT (h),

(9)Cinst.
W = CF × EWT × Pr_WT ,

(10)CO&M
PV = UO&M

PV ×
24
∑

h=1

PPV (h),

(11)Cinv.
PV = CF × UPV × Pr_PV

(12)C4 = Cinv.
WT + CO&M

WT ,

(13)CO&M
WT = UO&M

WT ×
24
∑

h=1

PWT (h),

(14)Cinst.
W = CF × UWT × Pr_WT ,

(15)C4 = Cinv.
bio + CO&M

bio ,

(16)CO&M
bio = UO&M

bio ×
24
∑

h=1

Pbio(h),

(17)Cinst.
W = CF × Ubio × Pr_bio,
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where UO&M
bio  , Ubio , Pbio , Pr_bio refer to the operation and maintenance cost of the biomass system in $/kWh , 

the investment cost in $/kW, and the output and rated powers of the biomass system, respectively. The recovery 
factor can be obtained using (18).

NP is the lifetime of the generation unit. β is the interest rate.
The yielded power from the PV panels is formulated using (19)42:

where irstd and  ir denote solar irradiance and the standard deviations which equals 1000 W/m2.
The WT’s output power can be computed as follows43:

where, Wcout , Wcin and Wrs represent the cut-out, cut-in, and rated wind speed respectively.

Voltage profile enhancement
Minimizing the voltage deviations will improve the performance of the system. The voltage deviation can be 
expressed as follows:

where Nb refers to the number of buses in the MMGs.

Voltage stabilization improvement
Maximization of the voltage stability index (VSI) can improve the system performance43:

where Xn and Rn represent the reactance and the resistance of the n-th line, respectively. Pn and Qn  are the 
injected real and reactive powers, respectively.

The previous objective functions can be taken into consideration concurrently as depicted in (24).

Rs and Base are subscripts that refer to the system with and without PVs and WTs, respectively. a1, a2 and a3 
are parameters that were selected to be 0.5, 0.25, and 0.25, respectively44.

The constraints
Inequality constraints

(18)CF =
βPV ,WT ,bio × (1+ βPV ,WT ,bio)

NPPV ,WT ,bio

(1+ βPV ,WT ,bio)
NPPV ,WT ,bio − 1

,

(19)PPV (ir) =















Pr_PV

�

ir2

ir2std×Xs

�

for 0 < ir2 ≤ Xsp

Pr_PV

�

ir
irstd

�

for Xs ≤ ir2 ≤ irstd

Pr_PV irstd ≤ ir2

(20)PW (W) =











0 for W < Wcin and W > Wo

Pr_w

�

W−Wcin
Wrs−Wcin

�

for (Wcin ≤ W ≤ Wrs)

Prated_wind for (Wrs < W ≤ Wcout)

(21)
∑

VD =
24
∑

k=1

Nb
∑

n=1

|(Vn − 1)|

(22)VSIn = |Vn|4 − 4(PnXn − QnRn)
2 − 4(PnXn + QnRn)|Vn|2,

(23)
∑

VSI =
24
∑

h=1

NB
∑

n=1

VSIn,

(24)ft = a1 × fun1 + a2 × fun2 + a3 × fun3,

(25)fun1 =
CoRs

CoBase
,

(26)fun2 =
∑

VDRs
∑

VDBase

,

(27)fun3 =
1

∑

VSIRs
.

(28)VMin ≤ Vi ≤ VMax ,
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where the upper and the lower limits for the voltage are Vmin , and Vmax , respectively, while. PLoad and QLoad 
denote the real and reactive power for the load respectively. Imax,n is the maximum limit of the current at the 
n-th line. PFMin_w and PFMax_w refer to the minimum and the maximum boundaries for the power factors for 
the WT, while PFMin_bio and PFMax_bio are the upper and lower limitations for the biomass power factor. NT is 
the number of the TLs.

Equality constraints

 where, PS, PPV , PWind and Pbio are the purchased powers of the utility network, the PV units, the units WTs, 
and the biomass, respectively. QS,QWind and Qbio are the reactive powers for the main substation, the WTs, and 
the biomass units respectively.

Uncertainty modeling
In this work, energy management is solved by taking into consideration three stochastic parameters. The prob-
ability density functions (PDFs) are utilized for the representation uncertainties of these parameters.

The first stochastic parameter is the loading which is varied at each time discrete t and it is represented 
in terms of the Normal PDF based on the standard deviation ( σPL ) of the load and its average value ( µPL ) as 
follows45,46:

The wind speeds in any area vary randomly. Weibull distribution is utilized for describing the random vari-
ation of the wind speed. Weibull distribution pdf at time discrimination t is described using two parameters 
including the shape ( kt ) and the scale ( ct ) factors that are driven by the standard deviation ( σ v

t  ) and average ( µv
t  ) 

of the wind speed as follows47,48:

in which

The third uncertain parameter is the solar irradiance which is modeled using Beta PDF as depicted in (39). 
The Beta PDF is described using two parameters including the shape factors (α, β) which can be assigned using 
the average and the standard deviation of the irradiance ( µt

S , σ
t
S)49:

(29)PPV_r + Pwind_r+Pbio_r ≤
NB
∑

i=1

PLoad,i ,

(30)PFMin_w ≤ PF ≤ PFMax_w ,

(31)PFMin_bio ≤ PF ≤ PFMax_bio,

(32)In ≤ Imax,nn = 1,2, 3 . . . ,NT ,

(33)PS + PPV + PWind + Pbio =
NT
∑

i=1

PLosses,i +
NB
∑

i=1

PLoad,i ,

(34)QS + QWind + Qbio =
NT
∑

i=1

QLosses,i +
NB
∑

i=1

QLoad,i ,

(35)f (PL) =
1

√
2πσPL

exp

(

−
(PL − µPL)

2

2×σ 2
PL

)

.

(36)fWT
t (v) =

kt

ct

(

vt

ct

)kt−1

exp

(

−
(

vt

ct

)kt
)

,

(37)kt =
(

σ v
t

µv
t

)−1.086

,

(38)Ct =
µv
t

Ŵ(1+ (1/kt))
,

(39)f ts (s) =
Ŵ
(

αt + βt
)

Ŵ
(

αt
)

· Ŵ
(

βt
) ·

(

st
)αt−1 ·

(

1− st
)βt−1

for αt > 0;β t > 0,
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The means and the standard deviations of the demand, the irradiance, and the wind speed during the day 
ahead are presented in Figs. 1, 2, and 3, respectively.

For each time segment t, The Monte Carlo simulation (MCS) method is employed to obtain 1000 scenarios 
of the uncertain parameters50. Then the scenario-based reduction (SBR) method is employed to minimize the 
generated scenarios to 25 scenarios51. Figure 4 shows the 1000 created scenarios by MCS, while Fig. 5 shows the 
reduced scenarios by the SBR method.

Jellyfish search optimizer (JSO)
Jellyfish live all over the world in the water, at different depths and different degrees of temperature. Where jel-
lyfish have different types, but these types differ in size and shape. The behavior of obtaining food differs between 
jellyfish, as some types of jellyfish obtain food by hunting prey, and other types bring their food by using their 

(40)βt =
(

1− µt
S

)

×

(

µt
S

(

1+ µt
S

)

(

σ t
S

)2
− 1

)

,

(41)αt =
µt
S × βt

(

1− µt
S

) .

Figure 1.   The average load demands and the corresponding standard deviation. 

Figure 2.   The average wind speed and the corresponding standard deviation.

Figure 3.   The mean solar irradiance and the corresponding standard deviation.
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tentacles, while the last types obtain their food through filter feeding as they feed on any food carried by the 
current. It is noted that Jellyfish are known to be weak swimmer organisms, while their orientation concerning 
currents is the way to their prosperity. Many factors govern the formation of jellyfish swarms, which are those 
factors related to available nutrients, oxygen availability, and temperatures. The most important factor of these 
factors is the ocean currents, which work to collect the swarms of jellyfish. In addition to the fact that jellyfish 
change their location in a swarm or follow ocean currents, jellyfish use a specific mechanism to set the time. The 
regulation of switching among these types of movement depends on this mechanism. Here, an optimizer was 
enhanced based on the attitude of jellyfish in searching for food. The jellyfish optimization technique simulates 
the active and passive motion of the swarm of the jellyfish and its transition between these movements. The 
suggested algorithm depends on three ideal principles as follows52:

1.	 Jellyfish move with the current of an ocean or move within a swarm.
2.	 Jellyfish move in searching for food in the ocean, where jellyfish are attracted to those sites that have an 

abundance of food.
3.	 The food’s quantity is explained according to the place and corresponding to the objective function.

Ocean current
Jellyfish are carried away by ocean currents, where the direction of ocean currents is expressed as (DR). This is 
done by calculating the average vector between jellyfish location within the ocean and the best location of jel-
lyfish, and this can be illustrated as follows:

(42)
DR =

1

nPop

nP
∑

i=1

DRi =
1

nP

nPop
∑

i=1

(Xb − ecXi)

= Xb − ec

∑nP
i=1 Xi

nP
= Xb − ecµ

(43)Set df = ecµ

Figure 4.   The 1000 generated scenarios by MCS of the load demand at 12:00 PM.

Figure 5.   The reduced scenarios by the SBR method of the load demand at 12:00 PM.
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where, Xb represents the optimal position of jellyfish in the swarm, nPop is the jellyfish number, ec denotes the 
governing attraction factor, µ denotes the mean location for all jellyfish and df  represents the difference between 
the mean place and the current optimal place of the jellyfish. Due to the common distribution of all positions, 
the jellyfish distance  ±βσ  is the distance around the average site which contains a given certain probability of 
all jellyfish. Hence, df  can be expressed as:

By substitution of df  from (41) into (40). ε denotes a variable that is generated randomly from where ε ~ 
Bernoulli(p), with p = 1/2.

Based on the foregoing, the new position of the jellyfish can be illustrated as follows:

By substituting of DR from (45) in (47).

The Jellyfish swarm
Two kinds of motions govern the movement of jellyfish in the group. The two kinds of these movements can be 
described as follows:

Motion A is the passive movement, and the second type B is the active movement. Jellyfish begin to transfer 
according to the first type (A), and over time, Jellyfish follow the second type of movement (B). The jellyfish 
move its position can be presented as follows:

where Uup and Llow denote the upper boundary and lower boundary of the variables, respectively. γ > 0  refers 
to the movement factor.

To characterize B movement, two jellyfish (j, i) have been chosen where j ≠ i. Where the movement of jellyfish 
can be described according to the availability of the amount of food. When the available food is high for j-th 
jellyfish more than that for i-th jellyfish, this jellyfish moves towards j-th jellyfish. The opposite happens if the 
amount of food is little, the jellyfish (i) shifts away from the j-th jellyfish. Based on the above, this movement 
can be described as follows:

where,ST  denotes the distance and can be expressed as follows:

where, Ei is the direction of jellyfish motion.
Note that the mechanism of the controlled time is used to explain the kind of movement all over time. As 

it is not only controlling the motions of A and B within the swarm, but also controlling the motions of jellyfish 
towards the ocean currents, and this is what will be presented in the next section.

Mechanism of time control
The transition motion of jellyfish between all types of motions (type A, type B, ocean current) can be explained 
by the function of time control as expressed in (54).

where cont represents the time control function and it fluctuates from 0 to 1 which compared with a constant 
value C0 where, C0 = 0.5 . itmax refers to the maximum number of iterations. In case the value of the count(t) is 
more than C0 , jellyfish move with the ocean current. It is worth noting here that, the jellyfish populations are 
randomly generated based on a stochastic and logistic map to enhance the initial population diversity and this 
can be explained as follows:

(44)DR = Xb − df

(45)df = β × µ× ε

(46)DR = Xb − β × µ× ε

(47)Xi(t + 1) = Xi(t)+ ε × DR

(48)Xi(t + 1) = Xi(t)+ ε × (Xb − β × µ× rand)

(49)Xt+1
i = Xt

i + γ × ε ×
(

Uup − Llow
)

(50)ST = Xt+1
i − Xi

(51)ST = rand × Direction

(52)Xt+1
i = Xt

i + ST

(53)Ei =
{

Xj(t)− Xi(t) if f (Xi) ≥ f
(

Xj

)

Xi(t)− Xj(t) if f (Xi) < f
(

Xj

)

(54)cont(t) =
∣

∣

∣

∣

(

1−
t

itmax

)

× (2× ε − 1)

∣

∣

∣

∣

(55)ξ ′ = µζ(1− ξ)
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where ξ  denotes a stochastic value that is generated at the start of the iteration in the range [0–1]. µ has a fixed 
value where its value equals 4 and ξ ′ is a stochastic and a logistic value where ξ ′ �= {0.0, 0.25, 0.75, 0.5, 1.0}.

The enhanced jellyfish search optimizer (EJSO)
The EJSO depends upon two improvement approaches including the WFM and the FDB to boost the searching 
capability of the presented algorithm. The WFM is conceptualized from Weibull Distribution which is based 
on the scale and the shape factors as explained before53. The motion of the jellyfish based on the Weibull flight 
can be described as follows:

in which

where rb refers to a variable that is randomly obtained from the Weibull distribution. Sign () generates a vector 
of –1 and + 1. The second strategy is the FDB selection method which was applied to improve several36,54–57. The 
FDB is utilized for enriching the population’s diversity. The FDB is determined by the distance between the best 
population and the candidates’ solution. Initially, the candidate populations and the corresponding objective 
functions vector are represented using Eqs. (59) and (60).

The distance between the best population and the candidate populations is calculated as follows:

The fitness distance vector

The populations’ scores in the FDB are calculated based on the normalized distance and the normalized 
objective function as follows:

 where w represents a weight parameter in the range 0 and 1. The flow chart of the proposed algorithm is shown 
in Fig. 6. It should be highlighted here that the objective function is calculated after updating the position of the 
population to assign the best solution and keep the best-updated population because the FDB strategy is based 
on the distance between the population and the best solution. Thus, it is mandatory to assign the best solution 
after updating the populations. The pseudocode of the proposed optimizer can be described in Algorithm 1 

(56)Xi(t + 1) = Xi(t)+ ξ ′ × (Ub − Lb)

(57)xnew,i = xnew,i + St

(58)St= rb (1,1,[1,D]) · ×sign(rand(1,D)− 0.5),

(59)P ≡







x11 · · · x1n
...

. . .
...

xm1 · · · xmn







mxn

,

(60)F ≡







f1
...
fm







mx1

,

(61)DPi =
√

(

x1[i] − x1[ best ]
)2 +

(

x2]i] − x2[best ]
)2 + · · · +

(

xn[i] − xn[best ]
)2
,

(62)DP ≡







d1
...
dm







mx1

(63)SPi = w × normFi + (1− w)× normDPi



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:15558  | https://doi.org/10.1038/s41598-024-65867-8

www.nature.com/scientificreports/

Evaluate the value of cont
using (55)

Start

Define the parameters of the
proposed algorithm

Define the profile of the load, wind speed and the
irradiance

Generate the positions of the jellyfish randomly

Set t = 0

Calculate the objective function for each
updated jellyfish position and identify the

best solution

t=
t
+1

No

Is t > tMAX ?

End

Obtain the best Locations and ratings of
the PVs, WTs, and biomass units as well
as the corresponding objective fnction

Yes

1

1

Update the positions of jellyfishes
based on the Weilbull Flight strategy

Calculate the objective function for
each updated jellyfish position and

identify the best solution

Is c ≥ 0.5

Update the jellyfish
location using (52)

Update the jellyfish
location using (48)

Calculate the objective function for
each updated jellyfish position and

identify the best solution

Yes
No

Is rand ≥ 1-c

Update the jellyfish
location using (49)

Yes
No

Update the positions of jellyfishes
based on the DFB methodology

Calculate the objective function for
each updated jellyfish position

Th
e
pr

op
os

ed
M
od

if
ic
at
io
n

Define the system data of the 85-bus system and
the rating of the PVs, WTs and biomass units

Figure 6.   The schematic flow chart of the EJSO.
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Algorithm 1.   The pseudocode of EJSO..

Simulation results
The suggested EJSO is employed for the EM solution of the MMGs. The obtained results have been compared 
to well-known other optimizers the grey wolf optimizer GWO58, whale optimization algorithm (WOA)59, sand 
cat search optimizer (SCSO)60, dandelion optimizer (DO)61 and Jellyfish search optimizer (JSO)52. The EJSO 
was written by the MATLAB software and the simulations were conducted on a PC with Intel i5, 4 GB RAM, 
2.5 GHz CPU.

Solving of the standard and CEC‑2019 benchmark functions
In this section, the suggested EJSO has been applied to the 33 benchmark functions in which F1 to F 23 are the 
standard functions while CEC 01 to CEC10 are the CEC 2019 functions. The parameters of optimization meth-
ods are provided in Table 2. The standard functions including the unimodal, multimodal, and fixed-dimension 
benchmark functions have been described in Tables 3, 4 and 511,62,63, respectively while the description of CEC 
2019 functions have been depicted in Table 664. The results were presented over 25 run trails.

Analysis of the statistical results
Here, the performance of EJSO has been compared with GWO, DO, WOA, SCSO, and the standard JSO in terms 
of the worst, the best, the mean, the Wilcoxon p-values, and the standard deviation (SD) values as depicted in 
Table 7 for the standard and the CEC-2019 functions. The bolded values in this table refer to the best statistical 
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results. As per the results of Table 7, the proposed EJSO algorithm has superior results in the most objective 
functions. However, the results are similar with SCSO for F11, JSO for F14, all optimizers for F16, all optimizers 
except WOA for F17, DO and JSO for CEC02, and all optimizers for CEC03. Furthermore, some optimizers give 
results better than the EJSO like SCSO for F10 and DO for CEC01, DO for CEC10. According to the Wilcoxon 
test, the p-values are less than 0.05 which verified there is a notable difference between the obtained results from 
the suggested algorithm and the other optimization methods. The p-values for F9, F11, and F17 are not available, 
this means that the results are identical for all trail runs. The computational time for SCSO, GWO, WOA, DO, 
JSO, and EJSO algorithms are 61.4, 91.2, 150.8, 208.6, 368.3 and 1780.6 respectively. It should be highlighted 
here that the computational time of the proposed algorithm EJSO is slightly more than the original algorithm, 
this is due to the added modifications to the original algorithm. However, the EJSO needs more time, but the 
accuracy of the obtained results is the best.

Table 2.   The parameters of the optimization methods.

Method Parameter Value

SCSO60

Population numbers 30

itmax 250

Range of sensitivity (rg) [2,0]

Range of phases control (R) [− 2rg, 2rg]

WOA59

Population numbers 30

itmax 250

a1 [2,0]

a2 [2, 0]

C 2. rand (0,1)

l [− 1,1]

b 1

GWO58

Population numbers 25

itmax 250

a [2, 0]

A [2, 0]

c 2

DO61

Population numbers 25

itmax 250

α [0,1]

k [0,1]

JSO52

Population numbers 30

itmax 250

c 0.5

γ [0.05 1]

EJSO

Population numbers 25

itmax 250

c 0.5

w 0.5

Table 3.   Unimodal functions.

Function Range Fmin

f1(h) =
∑n

j=1h
2
j [− 100, 100] 0

f2(h) =
∑n

j=1

∣

∣hj
∣

∣+
∏n

j=1

∣

∣hj
∣

∣ [− 10, 10] 0

f3(h) =
∑n

j=1

(

∑j
i−1hi

)2 [− 100, 100] 0

f4(h) = maxj
∣

∣hj
∣

∣, 1 ≤ j ≤ n [− 100, 100] 0

f5(h) =
∑n−1

j=1 [100
(

mj+1 − h2j

)2
+

(

hj − 1
)2] [− 30, 30] 0

f6(h) =
∑n−1

j=1

(

[hj + 0.5]
)2 [− 100, 100] 0

f7(h) =
∑n

j=1h
4
j + random(0,1) [− 1.28, 1.28] 0
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The convergence analysis
The convergence characteristics of the proposed EJSO, GWO, DO, WOA, SCSO, and the standard JSO are 
illustrated in Fig. 7. It is evident from the convergence characteristics, that the EJSO has good convergence for 
the unimodal, the multimodal, the fixed-dimension, and the CEC-2019 functions. However, the convergence 
of the DO is the best for CEC10.

The analysis of the boxplot
Boxplot is the best way to display the distribution of the data. The boxplots of the EJSO and the other optimizers 
are shown in Fig. 8. According to the boxplots, EJSO has the narrowest boxplot compared to the other optimiz-
ers for the standard and the CEC 2019 functions compared to GWO, DO, WOA, SCSO, and the standard JSO.

Application of the EJSO for EM solution
In this section, the suggested algorithm EJSO has been modified and applied in IEEE 85–bus which is divided into 
three micro-grids. The description of the IEEE 85-bus is listed in Table 8. The topology of IEEE 85-bus MMGs 

Table 4.   Multimodal functions.

Function Range Fmin

f8(k) =
∑n

j=1−kjsin
(
√

∣

∣kj
∣

∣

)

[− 500, 500] − 418.9829*5

f9(k) =
∑n

j=1

[

k2j − 10cos(2πkj + 10)
]
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f10(k) = −20exp

(

−0.2
√

1
n

∑n
j=1k

2
j

)

− exp
(

1
n

∑n
j=1cos(2πkj)+ 20+ e

)
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f11(k) = 1
4000

∑n
j=1k

2
j −

∏n
j=1 cos

(

kj√
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)

+ 1 [− 600, 600] 0
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{

10sin(πz1)+
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)2[
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(
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+
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Table 5.   Fixed dimension functions.

Function Dim Range Fmin

f14(h) = 1
500 +

∑25
i=1

1

i+
∑2

j=1(hj−aji )
6

2 [− 65, 65] 1

f15(h) =
∑11

j=1

[

bj −
hj(b

2
j +bjh2)

b2j +bjh3+h4

]2

4 [− 5, 5] 0.00030

f16(k) = 4h21 − 2.1h41 +
1
3 h

6
1 + h1h2 − 4h22 + 4h42 2 [− 5, 5] − 1.0316
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5
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is depicted in Fig. 9 and lines and bus data are provided in60. The studied distribution network has been divided 
into three microgrids and due to this division, every microgrid contains its RERs (PV, WT, and Biomass) where 
each network has one PV unit, one WT, and one biomass unit. The captured results by EJSO have been compared 
with the obtained results by the conventional JSO. For a fair comparison, the populations and the maximum 
iterations number have been adjusted to be 25 and 80, respectively. The purchasing energy price of the market 
is explained in Fig. 10 while the day ahead of the loading demand is illustrated in Fig. 1165. Figures 12 and 13 
show the expected irradiance and wind speed respectively66. Three hybrid RERs are incorporated optimally in 
which each hybrid system consists of a PV plant, a WT, and a biomass generation unit. The system constraints 
as well as the costs of the PV, WT, and biomass units are listed in Table 9.

The aim of the EM is total annual cost reduction and the system’s performance improvement. Table 10 lists 
the numerical results that have been obtained at the base case and with the inclusion of the hybrid PVs, biomass, 
and WTs using the JSO and the EJSO. The numerical results have been depicted in Table 10 which have been 
obtained by the JSO and the EJSO for the EM solution with or without RERs. In the base case, the cost, the VDs, 
and the VSI are 4.1642E+06 USD, 119.7076 p.u. and 1.5844E+03 p.u. respectively while the annual purchased 
energy and the annual energy losses are 6.4879E+06 kWh and 6.5982e+05 kWh.

As per the results in Table 10, the total costs have been reduced to 2.3726E+06 p.u. and 2.3008E+0 using the 
JSO and the EJSO, respectively. Likewise, the summation of VDs has been reduced from 119.7076 p.u. to 70.8672 
p.u. and the voltage stability has been enhanced from1.5844E+03 p.u. to 1.7517E+03 p.u. The sites of the three 
hybrid generation systems that were allocated by JSO are at buses 4, 49, and 69 while the assigned placements 
by the EJSO are at buses 7, 55, and 68. The optimal ratings of the PV units of the 1st, the 2nd, and the 3rd hybrid 
systems that have been determined by the EJSO are 157 kW, 151 kW, and 209 kW, respectively. Likewise, the 
rating of the WTs in the MMGs are 450 kW, 500 kW, and 500 kW, respectively while the rating of the biomass 

Table 6.   The CEC 2019 functions.

Function Optimal fitness Boundaries

Fu.CEC1 = f1 + f2 + f3

f1 =
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Fun Algorithms Mean Best Worst SD P-value

F1

SCSO 2.7275E−53 2.8051E−61 6.7149E−52 1.3422E−52 1.4157E−09

GWO 8.4143E−11 3.7517E−12 3.2150E−10 8.6162E−11 1.4157E−09

WOA 3.2804E−33 4.2420E−40 7.3260E−32 1.4600E−32 1.4157E−09

DO 8.2000E−3 3.2000E−3 1.8100E−2 4.4000E−3 1.4157E−09

JSO 1.0639E−09 1.1833E−17 2.6592E−08 5.3183E−09 1.4157E−09

EJSO 1.1007E−85 6.8664E−95 2.7393E−84 5.4775E−85 –

F2

SCSO 8.1121E−29 1.2420E−33 1.1483E−27 2.3280E−28 1.4157E−09

GWO 3.3928E−07 1.4614E−07 7.5505E−07 1.3911E−07 1.4157E−09

WOA 3.9408E−24 5.8900E−28 2.8426E−23 6.5247E−24 1.4157E−09

DO 3.5100E−02 1.2500E−02 8.1000E−02 1.3900E−02 1.4157E−09

JSO 5.8713E−05 1.6972E−09 1.4000E−03 2.8110E−04 1.4157E−09

EJSO 2.0814E−44 9.2086E−50 3.1682E−43 6.3475E−44 –

F3

SCSO 9.1005E−46 1.6835E−54 2.0017E−44 4.0122E−45 1.4157E−09

GWO 4.4750E−01 2.8300E−02 1.76720 4.7400E−01 1.4157E−09

WOA 8.1218E+04 4.2435E+04 1.2485E+05 1.9389E+04 1.4157E−09

DO 4.0318E+02 6.9377E+01 1.4826E+03 3.2045E+02 1.4157E−09

JSO 6.0060E+01 9.6000E−03 7.7111E+02 1.6228E+02 1.4157E−09

EJSO 1.2636E−56 1.4834E−68 3.1201E−55 6.2371E−56 –

F4

SCSO 7.9730E−24 4.2127E−28 1.2269E−22 2.5036E−23 1.4157E−09

GWO 1.2100E−02 2.6000E−03 3.4100E−02 7.1000E−03 1.4157E−09

WOA 7.1145E+01 1.7419E+01 9.0217E+01 1.8344E+01 1.4157E−09

DO 9.72860 2.08010 2.7369E+01 6.09170 1.4157E−09

JSO 8.7169E−09 1.3561E−09 5.7025E−08 1.1709E−08 1.4157E−09

EJSO 5.8937E−42 2.7748E−45 9.9598E−41 2.0287E−41 –

F5

SCSO 2.8555E+01 2.7071E+01 2.8850E+01 5.0770E−01 1.4157E−09

GWO 2.7701E+01 2.6407E+01 2.8840E+01 7.4120E−01 1.4157E−09

WOA 2.8633E+01 2.8027E+01 2.8821E+01 1.6430E−01 1.4157E−09

DO 5.9578E+01 2.5420E+01 2.2625E+02 5.2945E+01 1.4157E−09

JSO 1.45720 1.9700E−02 1.4347E+01 2.96670 2.5677E−08

EJSO 9.9620E−01 3.2970E−06 2.4900E+01 4.98000 –

F6

SCSO 2.65690 1.26970 4.25910 7.0620E−01 1.4157E−09

GWO 1.33930 7.4580E−01 2.28380 3.3090E−01 1.4157E−09

WOA 1.42080 3.8930E−01 2.06310 4.9880E−01 1.4157E−09

DO 2.1000E−03 5.1005E−04 7.0000E−03 1.5000E−03 1.4157E−09

JSO 5.0373E−05 1.4586E−06 5.3563E−04 1.0959E−04 1.4157E−09

EJSO 5.3181E−11 1.9616E−12 2.5064E−10 6.4500E−11 –

F7

SCSO 4.0512E−04 1.0472E−05 2.5000E−03 5.6652E−04 4.1349E−04

GWO 5.4000E−03 1.9000E−03 1.5200E−02 3.2000E−03 1.4157E−09

WOA 7.4000E−03 1.6201E−04 2.5500E−02 6.9000E−03 5.0255E−07

DO 5.2800E−02 2.9000E−02 1.0240E−01 1.7100E−02 1.4157E−09

JSO 1.1000E−03 8.2861E−05 6.3000E−03 1.3000E−03 1.9360E−01

EJSO 6.9187E−04 2.1439E−04 1.5000E−03 3.5810E−04 –

F8

SCSO − 6.5434E+03 − 7.6880E+03 − 4.7898E+03 7.4889E+02 1.4157E−09

GWO − 5.7629E+03 − 7.4258E+03 − 2.6197E+03 1.0016E+03 1.4157E−09

WOA − 9.6917E+03 − 1.2566E+04 − 5.8162E+03 1.9222E+03 4.6094E−05

DO − 7.1133E+03 − 8.2335E+03 − 5.4329E+03 6.8754E+02 1.4157E−09

JSO − 8.2338E+03 − 1.1051E+04 − 5.6912E+03 1.5397E+03 2.8980E−09

EJSO − 1.1926E+04 − 1.2569E+04 − 1.0178E+04 7.1042E+02 –

F9

SCSO 0.00000 0.00000 0.00000 0.00000 N/A

GWO 1.1719E+01 1.1981E−05 3.0952E+01 6.95840 9.7285E−11

WOA 4.5475E−15 0.00000 5.6843E−14 1.5739E−14 1.6140E−01

DO 4.0734E+01 6.34330 1.2993E+02 2.8498E+01 9.7285E−11

JSO 1.6740E−01 1.9000E−03 9.5300E−01 2.7780E−01 9.7285E−11

EJSO 0.00000 0.00000 0.00000 0.00000 –
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F10

SCSO 8.8818E−16 8.8818E−16 8.8818E−16 0.00000 3.3710E−01

GWO 1.4145E−06 6.0982E−07 4.8316E−06 9.6452E−07 1.3762E−10

WOA 1.1831E−14 8.8818E−16 4.3521E−14 1.1231E−14 6.7484E−10

DO 2.1540E−01 1.2400E−02 1.65140 4.3900E−01 1.3762E−10

JSO 4.3903E−07 1.2681E−09 6.1150E−06 1.2948E−06 1.3762E−10

EJSO 1.0303E−15 8.8818E−16 4.4409E−15 7.1054E−16 –

F11

SCSO 0.00000 0.00000 0.00000 0.00000 N/A

GWO 5.2000E−03 8.6030E−12 3.7700E−02 1.0300E−02 9.7285E−11

WOA 1.6600E−02 0.00000 4.1600E−01 8.3200E−02 3.3710E−01

DO 3.5100E−02 5.4000E−03 9.7900E−02 1.9900E−02 9.7285E−11

JSO 3.1796E−12 0.00000 4.9023E−11 1.1316E−11 2.4574E−04

EJSO 0.00000 0.00000 0.00000 0.00000 –

F12

SCSO 1.6120E−01 5.9600E−02 4.4350E−01 7.8700E−02 1.4157E−09

GWO 9.6100E−02 3.3800E−02 2.7010E−01 5.5300E−02 1.4157E−09

WOA 9.9000E−02 3.0800E−02 2.0910E−01 5.4300E−02 1.4157E−09

DO 4.3620E−01 2.1374E−05 2.81400 6.8150E−01 1.4157E−09

JSO 5.4011E−07 1.7945E−08 2.6155E−06 5.7871E−07 1.4157E−09

EJSO 9.7064E−13 3.0439E−14 4.3430E−12 1.1550E−12 1.4157E−09

F13

SCSO 2.71630 2.06620 2.97960 1.9540E−01 1.4157E−09

GWO 9.8660E−01 4.4710E−01 1.48740 2.8930E−01 1.4157E−09

WOA 1.10370 4.6500E−01 1.85140 3.3200E−01 1.4157E−09

DO 3.3660E−01 4.8706E−04 7.24750 1.44140 1.4157E−09

JSO 4.8289E−04 1.4660E−06 1.1800E−02 2.4000E−03 1.4157E−09

EJSO 3.4772E−11 4.5481E−13 6.2433E−10 1.2307E−10 –

F14

SCSO 3.97970 9.9800E−1 1.2671E+1 3.7786 9.7285E−11

GWO 4.40960 9.9800E−1 1.2671E+01 3.95880 9.7285E−11

WOA 3.54760 9.9800E−01 1.5504E+01 3.68890 9.7285E−11

DO 1.51300 9.9800E−01 5.92880 1.10880 9.6829E−11

JSO 9.98E−1 9.98E−1 9.98E−1 1.7554E−16 9.2584E−05

EJSO 9.98E−1 9.98E−1 9.98E−1 0.00000 –

F15

SCSO 4.6449E−04 3.0749E−04 1.2000E−03 1.9961E−04 1.3641E−09

GWO 5.6000E−03 3.0969E−04 2.0400E−02 8.6000E−03 1.3641E−09

WOA 7.0728E−04 3.1175E−04 2.3000E−03 5.1214E−04 1.3641E−09

DO 3.7000E−03 3.0766E−04 2.0400E−02 7.4000E−03 1.3641E−09

JSO 3.1172E−04 3.0749E−04 3.9780E−04 1.7998E−05 1.3641E−09

EJSO 3.0749E−4 3.0749E−4 3.0749E−4 1.8081E−19 –

F16

SCSO − 1.03160 − 1.03160 − 1.03160 7.2179E−09 3.8499E−10

GWO − 1.03160 − 1.03160 − 1.03160 1.0750E−07 3.8499E−10

WOA − 1.03160 − 1.03160 − 1.03160 8.4348E−08 3.8499E−10

DO − 1.03160 − 1.03160 − 1.03160 5.3660E−12 3.8499E−10

JSO − 1.03160 − 1.03160 − 1.03160 5.7332E−16 2.0300E−02

EJSO − 1.03160 − 1.03160 − 1.03160 6.4099E−16 –

F17

SCSO 3.9790E−1 3.9790E−1 3.9790E−1 1.2146E−07 9.7285E−11

GWO 3.9790E−1 3.9790E−1 3.9790E−1 2.1425E−06 9.7285E−11

WOA 3.9800E−1 3.9790E−1 3.9830E−1 1.1302E−04 9.7285E−11

DO 3.9790E−1 3.9790E−1 3.9790E−1 3.3212E−10 9.7285E−11

JSO 3.9790E−1 3.9790E−1 3.9790E−1 0.00000 N/A

EJSO 3.9790E−1 3.9790E−1 3.9790E−1 0.00000 –

F18

SCSO 3.00010 3.00000 3.00040 9.5900E−05 5.6367E−10

GWO 3.00020 3.00000 3.00080 1.9779E−04 5.6367E−10

WOA 7.32850 3.00000 3.0113E+01 1.0121E+01 5.6367E−10

DO 9.48000 3.00000 8.4000E+01 2.2428E+01 5.6367E−10

JSO 3.00000 3.00000 3.00000 1.5622E−15 –

EJSO 3.00000 3.00000 3.00000 1.0415E−15 5.6367E−10
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F19

SCSO − 3.85950 − 3.86280 − 3.85490 3.7000E−03 9.7285E−11

GWO − 3.86050 − 3.86280 − 3.85490 2.9000E−03 9.7285E−11

WOA − 3.77550 − 3.86270 − 3.07570 1.7030E−01 9.7285E−11

DO − 3.86280 − 3.86280 − 3.86280 1.9504E−06 9.7285E−11

JSO − 3.86280 − 3.86280 − 3.86280 2.0431E−15 3.5268E−05

EJSO − 3.86280 − 3.86280 − 3.86280 2.2662E−15 –

F20

SCSO − 3.22960 − 3.32200 − 3.08670 7.6100E−02 1.9275E−09

GWO − 3.25680 − 3.32200 − 3.09090 7.8800E−02 6.6476E−09

WOA − 3.18310 − 3.31990 − 2.81780 1.3250E−01 4.0711E−09

DO − 3.27920 − 3.32200 − 3.20300 5.8300E−02 1.0784E−08

JSO − 3.32200 − 3.32200 − 3.32200 1.7864E−09 8.7795E−08

EJSO − 3.31250 − 3.32200 − 3.20310 3.2900E−02 –

F21

SCSO − 5.27670 − 1.0153E+1 − 8.8100E−01 2.58840 7.5434E−10

GWO − 9.14170 − 1.0152E+1 − 2.62970 2.39830 7.5434E−10

WOA − 7.61240 − 1.0147E+1 − 5.03730 2.51610 7.5434E−10

DO − 7.03060 − 1.0153E+1 − 2.63050 3.18340 7.5434E−10

JSO − 1.0129E+1 − 1.0153E+1 − 9.82130 6.9900E−02 7.5434E−10

EJSO − 1.0153E+01 − 1.0153E+01 − 1.0153E+01 4.7277E−15 –

F22

SCSO − 6.38070 − 1.0403E+01 − 9.0810E−01 3.60010 6.0586E−10

GWO − 1.0183E+01 − 1.0402E+01 − 5.12040 1.05460 6.0586E−10

WOA − 6.89230 − 1.0380E+01 − 2.72780 3.07880 6.0586E−10

DO − 6.92540 − 1.0403E+01 − 1.83760 3.50130 6.0586E−10

JSO − 1.0403E+1 − 1.0403E+1 − 1.0403E+1 1.5348E−05 1.5048E−09

EJSO − 1.0403E+1 − 1.0403E+1 − 1.0403E+1 3.1611E−15 –

F23

SCSO − 6.91180 − 1.0536E+01 − 1.67650 3.16260 2.4606E−10

GWO − 1.0099E+01 − 1.0535E+01 − 5.12830 1.48940 2.4606E−10

WOA − 5.85920 − 1.0439E+01 − 1.66300 2.85680 2.4606E−10

DO − 5.76080 − 1.0536E+01 − 1.67660 3.76480 2.4606E−10

JSO − 1.0536E+01 − 1.0536E+01 − 1.0536E+01 7.8504E−05 4.2863E−10

EJSO − 1.0536E+01 − 1.0536E+01 − 1.0536E+01 1.7007E−15 –

CEC01

SCSO 4.6954E+04 4.0723E+04 6.3404E+04 5.2221E+03 2.2967E−08

GWO 9.0113E+08 1.1120E+06 5.7758E+09 1.4482E+09 1.4157E−09

WOA 4.8776E+10 7.3342E+06 1.8118E+11 4.5772E+10 1.4157E−09

DO 1.2377E+09 4.9996E+06 5.4237E+09 1.3986E+09 1.4157E−09

JSO 1.2525E+08 1.8745E+06 1.0246E+09 2.3207E+08 1.4157E−09

EJSO 3.8005E+04 3.3570E+04 4.6743E+04 2.8006E+03 –

CEC02

SCSO 1.8395E+01 1.8343E+01 1.8708E+01 1.1950E−01 1.3762E−10

GWO 1.8345E+01 1.8344E+01 1.8346E+01 6.5801E−04 1.3762E−10

WOA 1.8423E+01 1.8346E+01 1.8681E+01 8.8500E−02 1.3762E−10

DO 1.8343E+01 1.8343E+01 1.8343E+01 5.6652E−05 1.3762E−10

JSO 1.8343E+01 1.8343E+01 1.8343E+01 4.2456E−10 1.3762E−10

EJSO 1.8343E+01 1.8343E+01 1.8343E+01 7.1423E−15 –

CEC03

SCSO 1.37030E+1 1.3702E+1 1.3704E+01 3.7308E−04 6.5661E−10

GWO 1.3702E+1 1.3702E+1 1.3702E+1 8.8487E−06 6.5661E−10

WOA 1.3702E+1 1.3702E+1 1.3702E+1 3.5753E−06 6.5661E−10

DO 1.3702E+1 1.3702E+1 1.3702E+1 2.2921E−10 6.5661E−10

JSO 1.3702E+1 1.3702E+1 1.3702E+1 9.0260E−10 –

EJSO 1.3702E+1 1.3702E+1 1.3702E+1 2.0041E−14 6.5661E−10

CEC04

SCSO 1.1813E+03 5.4198E+01 4.8614E+03 1.3034E+03 1.4157E−09

GWO 1.7482E+02 4.8579E+01 2.4705E+03 4.7877E+02 1.8002E−09

WOA 9.9568E+02 3.2253E+02 2.5192E+03 6.4843E+02 1.4157E−09

DO 5.5684E+01 1.4015E+01 1.7256E+02 3.2425E+01 2.8526E−04

JSO 1.8445E+02 5.3872E+01 9.0704E+02 1.8243E+02 1.4157E−09

EJSO 2.9680E+01 1.1946E+01 4.9753E+01 1.0662E+01 –
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generation systems are 3.6448E+03 kW, 2.3768E+03 kW, and 2.7403E+03 kW, respectively. The output power of 
PV units has been illustrated in Fig. 14 according to the solar irradiance as well as Fig. 15 illustrates the output 
power of the WT units which varied due to the wind speed variation. Figure 16 displays the optimal powers of 
the biomass system. Figure 17, and Fig. 18 show the voltage profile of the MMG without and with RERs, respec-
tively. From Figs. 17 and 18, it is evident that the voltage profile has been enhanced in the presence of RERs in 
the proposed hybrid system. As per Fig. 19, the losses were significantly decreased with the installation of the 
RERs into the system.

Conclusions
The key findings of this paper can be summarized as follows: firstly, a novel enhanced Jellyfish Search Optimizer 
(EJSO) was proposed, incorporating Feedback Disturbance Based (FDB) and Weighted Fitness Mechanism 
(WFM) to address the stagnation issues present in the conventional Jellyfish Search Optimizer (JSO). This 
enhancement aims to improve the optimization performance and convergence speed of the algorithm.

Secondly, the proposed EJSO was employed for the energy management (EM) of multi-microgrids within 
an 85-bus system. The optimization process took into consideration various critical factors, including the total 
cost, voltage profile, and overall stability of the system. The optimal allocation strategy within each microgrid 
included a hybrid system comprising photovoltaic (PV) systems, wind turbines (WT), and biomass units, which 
together enhance the efficiency and sustainability of the microgrids.

Fun Algorithms Mean Best Worst SD P-value

CEC05

SCSO 2.50280 2.20680 4.07350 3.6290E−01 1.5967E−09

GWO 2.57030 2.12570 2.92050 2.5580E−01 2.5742E−09

WOA 3.04430 2.52000 4.20470 3.4750E−01 1.4157E−09

DO 2.30360 2.05250 2.99190 2.3090E−01 1.3090E−07

JSO 2.14300 2.05700 2.26130 5.8800E−02 1.4298E−04

EJSO 2.08420 2.00990 2.20680 3.9400E−02 –

CEC06

SCSO 9.29800 6.64800 1.2204E+01 1.53440 3.2134E−06

GWO 1.2497E+01 9.99700 1.4186E+01 8.4170E−01 1.4157E−09

WOA 1.0812E+01 8.85120 1.2589E+01 1.02520 2.2857E−09

DO 7.82560 4.49030 1.1254E+01 1.79980 2.4400E−02

JSO 1.2267E+01 1.0273E+01 1.4005E+01 9.4420E−01 1.4157E−09

EJSO 6.70840 4.10290 9.19120 1.37470 –

CEC07

SCSO 3.7211E+02 1.2258E+02 9.5967E+02 1.6998E+02 1.5967E−09

GWO 6.2014E+02 2.7831E+01 1.2781E+03 3.1125E+02 2.8980E−09

WOA 7.2703E+02 3.0951E+02 1.3911E+03 2.5970E+02 1.4157E−09

DO 3.0527E+02 − 1.1300E+02 7.0535E+02 2.4187E+02 1.1153E−06

JSO 9.3766E+02 6.5135E+02 1.1517E+03 1.6396E+02 1.4157E−09

EJSO − 2.4068E+01 − 2.5143E+02 1.2594E+02 8.7525E+01 –

CEC08

SCSO 5.62600 4.24860 6.87150 6.9070E−01 1.9933E−07

GWO 5.60510 3.87950 7.05130 8.1640E−01 6.1473E−07

WOA 6.22490 4.92950 7.18380 5.0800E−01 2.0288E−09

DO 5.35370 3.92920 6.16280 5.7390E−01 8.2938E−07

JSO 5.71180 3.90810 6.64120 6.0840E−01 2.5677E−08

EJSO 4.22420 2.93780 5.33730 6.4740E−01 –

CEC09

SCSO 5.7994E+01 4.42630 6.5593E+02 1.5405E+02 1.4157E−09

GWO 1.6765E+01 4.03200 2.7495E+02 5.3797E+01 1.4157E−09

WOA 2.8145E+01 5.40420 1.2262E+02 2.4971E+01 1.4157E−09

DO 3.99840 3.45460 5.06820 4.5120E−01 6.5743E−09

JSO 4.30450 3.64800 5.44870 4.0870E−01 1.4157E−09

EJSO 3.41640 3.35430 3.56390 4.7400E−02 –

CEC10

SCSO 2.1193E+01 2.0999E+01 2.1494E+01 1.3780E−01 9.5133E−08

GWO 2.1555E+01 2.1321E+01 2.1719E+01 1.0580E−01 1.4157E−09

WOA 2.1399E+01 2.1156E+01 2.1618E+01 1.0800E−01 1.4157E−09

DO 2.0343E+01 2.66490 2.1453E+01 3.68450 5.1234E−06

JSO 2.1298E+01 1.4694E+01 2.1730E+01 1.38170 2.2967E−08

EJSO 2.0364E+01 5.01720 2.1025E+01 3.19730 –

Table 7.   The statistical outcomes of the standard and CEC 2019 functions. Bold values refer to the optimal 
obtained values compared to other values.
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Moreover, the performance of the proposed EJSO was benchmarked against several other optimization algo-
rithms, including the Sine Cosine Search Optimizer (SCSO), the conventional Jellyfish Search Optimizer (JSO), 
Differential Evolution (DO), and the Whale Optimization Algorithm (WOA), using both standard test functions 
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Figure 7.   The convergence of benchmark functions by different optimizers.
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and the CEC-2019 benchmark suite. The comparative analysis demonstrated the superiority of EJSO in terms 
of solution quality and robustness.

In practical terms, the application of the proposed EJSO for energy management with the optimal integra-
tion of hybrid Renewable Energy Sources (RESs) significantly reduced the total cost from 4.1642E+06 USD to 
2.3008E+06 USD compared to the base case. Additionally, the voltage deviation (VD) was lowered from 119.7076 
p.u. to 70.8672 p.u., and the voltage stability index was improved from 1.5844E+03 p.u. to 1.7517E+03 p.u. These 
results indicate substantial improvements in both economic and technical performance of the microgrid system.

Looking forward, future work associated with this research includes expanding the scope of energy manage-
ment solutions by integrating electric vehicle (EV) stations into distribution systems. Furthermore, it suggests 
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Figure 7.   (continued)



22

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15558  | https://doi.org/10.1038/s41598-024-65867-8

www.nature.com/scientificreports/

the optimal incorporation of various types of energy storage systems, such as compressed air energy storage 
(CAES) and superconducting magnetic energy storage (SMES), to further enhance the flexibility and reliability 
of the energy management systems.
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Figure 8.   The boxplot of different optimizers.
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Figure 8.   (continued)

Table 8.   Descriptions of the IEEE 85-bus MMGs.

Parameters Value

Number of the buses 85

Number of the branches 86

Minimum voltage @ bus 0.87134@ 54

Minimum voltage @ bus 0.99568@2

The real demand 2570 (kW)

The reactive demand 2622 (kVAR)

The real power loss 315 (kW)

The reactive power loss 198.528 (kVAR)

VD 119.7076 (p.u)

VSI 1.5844e+03 (p.u)
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Figure 9.   The topology of the IEEE 85-bus MMGs.

Figure 10.   The market energy price.



27

Vol.:(0123456789)

Scientific Reports |        (2024) 14:15558  | https://doi.org/10.1038/s41598-024-65867-8

www.nature.com/scientificreports/

Figure 11.   The expected load profile.

Figure 12.   The expected irradiance.

Figure 13.   The expected wind speeds.
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Table 9.   The cost parameters and the limitations.

Parameter Value

PV cost67

 UPV 770 $ /kW

 UO&M
bio

0.01 $ /kWh

 βPV 10%

 NPPV 20

WT cost68

 UWT 1400 $ /kW

 UO&M
bio

0.01 $ /kWh

 βWT 10%

 NPWT 20

Biomass cost69

 Ubio 976 $ /kW

 UO&M
bio

0.046 $ /kWh

 βBio 10%

 NPBio 20

 KLoss
70 0.06 $/kWh

The system constraints

 The voltage 0.9p.u ≤ V ≤ 1.1p.u

 Size of PV units 0 ≤ PPV_r ≤ PLoad

 Size of WTs 0 ≤ Pwind_r≤PLoad
 Size of biomass unit 0 ≤ Pbio_r ≤ 200kW

 P.F. of the WT 0.7 ≤ P.F ≤ 1

P.F. of the Biomass 0.7 ≤ P.F ≤ 1

Table 10.   The results of the energy management solution for the MMGs.

Without RERs JSO EJSO

The energy losses (kWh) 1.1671E+06 6.5982E+05 5.2420E+05

The energy loss cost ($) 7.0027E+04 3.9589E+04 3.1452E+04

The purchased energy (kWh) 1.6164E+07 6.4879E+06 6.1429E+06

The cost of the purchased energy ($) 4.0941E+06 1.7013E+06 1.6239E+06

The optimal rating of the PVs (kW) –
162
226
173

157
151
209

The optimum rating of WTs (kW) and P.F –
500/0.7635
450/0.8457
450/0.7273

450/0.8710
500/0.7779
500/0.7094

The optimum size (kW)/P.F of the biomass –
2.5573E+03/0.8480
2.7357E+03/0.7693
3.1334E+03/0.8607

3.6448E+03/0.7676
2.3768E+03/0.7718
2.7403E+03/0.7018

Optimal site of the first hybrid system – 4 7

Optimal location of the second hybrid system – 49 55

Optimal location of the third hybrid system – 69 68

Cost of DGs

 Cost of the first hybrid RESs ($) – 2.1221E+05 2.0187E+05

 Cost of the second hybrid RESs ($) – 2.0930E+05 2.0798E+05

 Cost of the third hybrid RESs ($) – 2.1021E+05 2.3559E+05

Total cost ($) 4.1642E+06 2.3726E+06 2.3008E+06
∑

VD(p.u) 119.7076 80.9545 70.8672
∑

VSI (p.u) 1.5844E+03 1.7165E+03 1.7517E+03
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Figure 14.   The generated powers from PVs.

Figure 15.   The generated powers from WTs.

Figure 16.   The output power of biomass units.
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Figure 17.   The voltage profile without RERs.

Figure 18.   The voltage profile with RERs.

Figure 19.   The active losses of the system.
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Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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