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Finding multifaceted communities 
in multiplex networks
László Gadár * & János Abonyi 

Identifying communities in multilayer networks is crucial for understanding the structural dynamics 
of complex systems. Traditional community detection algorithms often overlook the presence of 
overlapping edges within communities, despite the potential significance of such relationships. In this 
work, we introduce a novel modularity measure designed to uncover communities where nodes share 
specific multiple facets of connectivity. Our approach leverages a null network, an empirical layer of 
the multiplex network, not a random network, that can be one of the network layers or a complement 
graph of that, depending on the objective. By analyzing real-world social networks, we validate 
the effectiveness of our method in identifying meaningful communities with overlapping edges. 
The proposed approach offers valuable insights into the structural dynamics of multiplex systems, 
shedding light on nodes that share similar multifaceted connections.

There are several algorithms to divide networks into groups to identify structural elements that are more likely 
to be connected to each other than the rest of the network1. However, none of them considers the optimization 
of overlapping edges within a cluster. The best representation of cooperating systems with interacting actors are 
networks, which are systematically multilayered due to the variety of connections2 in social networks3, author 
networks4 and organizational networks5. Among many network properties, the exploration of the mesostructure 
is a fruitful area of research to describe the characteristics of interactions. The emergence of relationships is not 
random, which is why it gives us the opportunity to investigate the deviation from chance when communities 
are obtained6. Modules are formed for various reasons because the likelihood of link formation between set of 
actors is influenced by some cost function. One of the most obvious cost factors is the physical distance7,8 in 
geographically distributed networks9, as well as when nodes tend to connect to similar10 or adventive peers11.

There are several algorithms for separating modules12, and in this article we present a modularity measure 
that separates communities by the overlapping edges in multilayer networks. The heart of the procedure is the 
calculation of the relative strength of the link in the modularity matrix13. Most often, the modularity matrix 
represents the number of actual connections relative to the expected values defined by a random consideration, 
which is used in Louvain14 or Leiden15 algorithms to detect modules. It has been further refined using multireso-
lution methods (e.g., RB16, AFG17) to detect smaller modules to improve the resolution limit18, which may have 
a community stability limitation19.

The methodological toolbox for exploring modules relative to random connections has been significantly 
extended with the modification of the negative term (the null network) to calculate the modularity matrix. 
Module discovery is carried out considering a goal-oriented baseline20, a benchmark, a null model21, or a penalty 
factor22,23, which has almost the same objective even in multilayer networks24. The negative term in the calcula-
tion of the modularity matrix is actually a null network, and the same null network can correspond to different 
null models25. In multilayer networks, the following strategies are used to obtain the community structure26: (1) 
collapse of layers into a single layer network, then the algorithm is applied27, (2) a single layer module search is 
performed on each layer, and then the communities obtained per layer are combined to form a consensus28, (3) 
a direct method simultaneously detecting both cross-layer and single-layer communities22. The performance of 
various community detection algorithms on multilayer networks can be evaluated by their capability to identify 
ground truth communities, the similarity of community structures obtained by different algorithms, and their 
scalability29. It should be highlighted here, our objective is not to devise a new algorithm or identify ground truth 
communities. Instead, we aim to uncover meaningful communities that can be explored through overlapping 
edges. Consequently, the similarity to ground truth and the scalability are not considered as metrics.

Our goal is to explore communities in which individuals share similar multifaceted relationships. This means 
that they form a network structure that is characterized by a greater likelihood of being connected with multiple 
edges within the community than with other actors in the network. There are solutions using generative mod-
els for the mesostructure in multilayer networks30. However, analyzing groups of nodes in a complex system 
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characterized by multifaceted relationships can be challenging for model-based community detection algorithms 
due to the intricate interplay between network layers. The emergence of communities is often based on similarity 
in attributes or continuous variables shared between vertices31, and the number of similarity criteria increases 
with the number of layers in the network. We use one or more layers of the network as a null network or reference 
for module discovery, rather than a model that approximates random relationships as expected connections. 
Thus, we exploit the wide range of information in multilayer networks.

In our approach, to achieve the aim, the modularity matrix is calculated with a positive (first) factor that 
defines the network under study, while the negative (second) term provides a reference against which we identify 
excess connections between nodes i and j. This simple framework facilitates the discovery of meaningful com-
munities characterized by overlapping edges. With our novel modularity measure for multiplex networks, we aim 
to contribute to a deeper understanding of community structures. Although some argue that completely novel 
insights into community structures are rare32, our approach offers a fresh perspective by focusing on overlapping 
edge groups. However, the absence of gold standard communities33 poses challenges, as the relative nature of the 
node groups complicates the optimization process for maximal modularity. Our exploratory module detection 
method operates within the constraints imposed by the null network. The modularity matrix can be used with 
any modularity optimization algorithm, and in this work, we employ the Louvain algorithm14. It is not our aim 
to compare and test other numerical optimization solutions to maximize modularity, but only to investigate the 
influence of the null network on the module structure. In this paper, we demonstrate how substituting a null 
network with a network layer leads to the emergence of new communities, with a focus on the degree of edge 
overlap within these communities.

The contribution of the community detection technique presented is its ability to prefer or avoid edge over-
laps within communities empirically. It categorizes similarly connected elements into a group based on the 
multifaceted relationship between them. By including or excluding edge overlaps within modules, we can reveal 
communities with special meanings. For example, we may identify working communities with a friendship sur-
plus between members of an organization. In the graphical abstract shown in Fig. 1, we illustrate the operation 
of modularity matrix which apply a network layer as null network for a simplified two-layer network. In the 
first case (Fig. 1a), the modification of the modularity matrix (B) aims to minimize the number of red edges in 
communities adjacent to the black edges. In the second case (Fig. 1b), the application of the complement graph 
attempts to include overlapping red edges within communities. In the bottom row, the third and fourth cases 
(Fig. 1c,d) illustrate the ability of the technique to prefer the inclusion of specific layers within communities in 
the context of a multilayer and weighted merged network. The method effectively groups similar elements based 
on their shared multifaceted relationships is shown with real world multilayer networks in the article.

In the “Methods” section, we describe and formalize in detail how we investigate the relational surplus with 
respect to a layer of a multiplex network as a null network. In the “Results” section, we give empirical examples 
of how the methodology works on a real world network. The methodology is demonstrated in a multiplex 
organizational social network with different aspects of link types consisting of 67 employees and leaders. In the 
first subsection, we identify coworking communities with low probability of having trustfully friendship ties and 
are therefore potential threats to good collaboration. In the second subsection, we explore collaborative profes-
sional communities in which the professional knowledge of members is highly evaluated indicating a healthy 
professional cooperation between coworkers. In the third subsection, we evaluate the similarity of community 
structure obtained by the preference of a network layer in modules compared to the traditional community detec-
tion method, thus inferring similar community-shaping forces. In the last section, we conclude our experiences 
with the empirical null network. The method was tested on an additional open organizational network (AUCS 
network35) and on a large-scale network (Erasmus student network36) presented in the Supplementary materials.

Method to find multifaceted communities
After describing the network used, we present three methods that explore multifaceted communities in different 
ways by choosing an appropriate null network. In the first procedure, we employ the corresponding null network 
to investigate communities in which members are connected through links present in the observed network layer 
while avoiding connections from other layers, as illustrated in Fig. 1a. In the second procedure, we achieve the 
opposite by using the complement graph of the null network, forming communities with a high probability of 
containing null network connections in addition to the connections in the observed network layer, as depicted 
in Fig. 1b. In the third application, we use the weighted network obtained by merging the multilayer network 
to uncover communities where members exhibit a higher likelihood of interconnectivity through multifaceted 
edges compared to the rest of the network, as depicted in Fig. 1c,d.

The network
In the organizational network which is used to demonstrate the method, nodes are connected with labeled edges, 
reflecting how the members connected to work together, consider being a friend, get professional advice and 
evaluate each other’s high professional knowledge. Labeled and directed links define multidimensional edges 
and form a multidimensional network G = (V ,E,D) , where V represents the set of nodes, D the set of edge 
labels defines the dimensions of the edges, and E denotes the set of edges, E = {(u, v, d); u, v ∈ V , d ∈ D} . In 
the directed graph, the edges (u, v, d) and (v, u, d) are distinct.

As each edge label can be assigned to an independent network, the model can be interpreted as a mul-
tilayer network. A multilayer network is a pair M = (G, E) , where G = {Gα;α ∈ {1, ...,M}} is a family of 
graphs Gα = (Xα ,Eα) (called layers of M ) and E = {Eαβ ⊆ Xα × Xβ ;α,β ∈ {1, ...,M,α �= β} is the edge 
set between nodes of different layers Gα and Gβ with α  = β37. Eα are called intralayers and Eαβ(α  = β) are 
referred to as interlayer-connections. In this study there are no interlayer connections. In our case, the 
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multidimensional network G = (V ,E,D) is associated with a multiplex network with layers G1, ...,G|D| where 
α ∈ D, Gα = (Xα ,Eα), Xα = V , Eα = {(u, v) ∈ V × V; (u, v, d) ∈ E and d = α }. Nodes are permanent actors; 
thus, the network is multiplex, which is a special case of multilayer networks.

Consider an M multiplex network with N nodes and let the edge weights between pairs of nodes be 
{Aij|i, j ∈ {1, ...,N}} , that is, A = (Aij) ∈ R

N×N is the adjacency matrix of Gα . The adjacency matrix is asym-
metric in our case because the network is directed, so Aij  = Aji.

Different layers of the network are used to demonstrate the methodology presented below. In the first example 
one of the layers of the network represents the cooperation relationship between members of an organization. 
A directed edge from node i to node j represents the situation where node i has to work together with node j 
frequently. The second layer of the network is friendship, where the set of nodes is the same, and there is an edge 
from node i to node j if node i considers node j a friend.

In the second example the two layers of the network seek professional advice and graded professional knowl-
edge, where both layers of the network are a directed network. The advice network represents relationships in 
which node i starts a directed edge to node j when seeking professional advice from colleague j. In the network 
layer rating node i starts an edge to node j if i considers j to have a high professional knowledge in their own 
field of profession.

Figure 1.   The simplified introduction illustrates the application of one network layer as a null network in 
obtaining the community structure of an example multiplex network, where black edges represent connections 
in one network layer and red edges represent connections in another network layer. The variability of the null 
network in the modularity matrix leads to different meaningful module structures provides by edge overlap. the 
code for the community detection illustrated in the figure is available on the github page for this article34. (B: 
modularity matrix, A: adjacency matrix, Ā means the complement graph of adjacency matrix (0 if connected, 1 
if disconnected in the original graph).
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In the third example three layers of the network are used that represent a complex cooperation system of 
members of an organisation. The coworkers, the friendship, and the professional advice networks were merged 
into a weighted and directed network, in which the weights are proportional to the number of dimensions. The 
maximum number of weights (three) means that node i connects to node j in all types of connections. The weight 
of 2 means that one of the relationship types is missing in the link from node i to node j, and we know exactly 
which one. A weight of 1 means that node i is connected to node j by one of the three types of links. The network 
layers form a network on their own with the same set of nodes.

Community structure in general
For studying the community structure of a network, we compare the observed network with an expected network 
in general. Null models and null networks are not exactly the same. One defines a null model as a probability dis-
tribution on the set of adjacency matrices and a null network as the expected adjacency matrix under a specified 
null model25. Null models serve as prior models by accounting for anticipated features within the system under 
investigation. They allow the consideration of known or suspected connectivity patterns that could potentially 
mask undiscovered connectivity patterns. It is common to consider the degree (or strength) of nodes in the 
null network as they are taken in the observed network, in social networks6. This consideration reflects the fact 
that connectivity is determined by the strength of the vertices, and the modularity function seeks connectivity 
surpluses regarding the null network, in the case of the vertex degree/strength. In spatial networks, nodes are 
geographically distributed, and the probability of links between them decreases with geographical distance7, 
except if the connection cost is financed by a third party38. The authors used null models considering spatial cost 
to uncover spatially independent communities9,39. Their null model allows the exclusion of the known spatial 
location attribute in order to explore the unknown vertex property (e.g. homophilic relations).

Classical modularity optimization-based community detection methods utilize f(C) metrics that are based 
on the difference between the internal number of edges and their expected number6,39.

Modularity measures the surplus of connections in the observed network compared to the null network. 
Mathematically, the modularity of a partition C in a directed network is calculated as

where δ(ci , cj) is the Kronecker delta, which is 1 if nodes i and j belong to the same module and 0 otherwise. Given 
the adjacency matrix A = (Aij) ∈ R

N×N of the observed network and the adjacency matrix P = (Pij) ∈ R
N×N 

of the reference null network, then QC is the modularity for partitioning C ∈ C , when the i and j nodes belong 
to the same C community. The B = A− P is the modularity matrix40.

Suppose that we have a community structure C of the network containing K disjoint sets of nodes { C1 , ..., 
CK }. We can define a mapping function, denoted as c(.), that assigns nodes of the set {1, . . . ,N} to integers in the 
set {1, . . . ,K} indicating the community. This mapping satisfies the condition c(i) = c(j) = k if and only if the 
nodes i and j belong to the same Ck community25. The modularity value of C can be positive, negative, or zero. 
Should it be equal to zero, when the community has as many links as the null model predicts, positive if the 
fraction of edges within communities is higher than the null model predicts, and negative otherwise. The posi-
tive modularity of the community indicates a more inner connection relative to the attribute of the null model. 
Despite the fact that there is a surplus of relationship information encoded by the null model, e.g. geographical 
distance. The modularity of the observed directed network1 for partitioning C is

where i, j ∈ C is the sum of pairs of nodes i and j belonging to the same community C ∈ C ; L = 
∑

Aij is the total 
number of weights in the network. In general, the observed and null network satisfy 

∑

Aij = 
∑

Pij = L for all i 
and j. When an algorithm classifies vertices into modules, it defines communities by maximizing the value of 
modularity (Q) in Eq. (3) without predefining how many modules the network contains. The number of K sets 
of communities depends on the optimization problem. If Aij < Pij for all i and j connections, then the optimal 
solution is N singleton communities, and if Aij > Pij for all i and j links, then the optimal solution is a single N 
node community25. Underestimated link probabilities are the sources of positive modularity, and when the null 
model more closely approximates the observed network, the modularity is expected to be lower8.

The probability of connection between any nodes i and j is described in P , which is a chance of link under 
the estimation of the null model. It is often a random network with certain constraints that correspond to known 
information39. Different null models can be created depending on the specific network being studied and the 
research objectives32. The most widely applied null model is the random configuration model, exactly the Chung-
Lu model41, which calculates the edge probabilities assuming a random graph conditioned to preserve the degree 
sequence of the original network, as

where ki and kj are the degree if node i and j.

(1)f (C) = (fraction of edges within communities)− (expected fraction of such edges).

(2)Q(C|A,P) = QC =
1

L

∑

i,j

(

Aij − Pij
)

δ
(

ci , cj
)

(3)Q =
1

L

∑

C∈C

∑

ij∈C

(

Ai,j − Pi,j
)

δ
(

ci , cj
)

(4)PNGij =
kikj

2m



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14521  | https://doi.org/10.1038/s41598-024-65049-6

www.nature.com/scientificreports/

Consequently, NG communities are obtained by maximizing the modularity described by the following 
equation.

The modularity function method is motivated by the idea that a network partition should be considered 
meaningful when there are more edges between nodes of the same group than would be expected in a random 
null model without communities42. The algorithm is blind to communities consisting of less than 

√
L/2− 1 

internal links18 and the problem was handled with improving the resolution limit, for example, with the RB16 
and AFG17 methods.

A good example of the variability of the null model is the uncovering of space-independent communities 
where the model considered the importance of the node and the empirically determined distance-dependent 
deterrence function39:

where Ni is a notion of importance of node i (such as the degree or GDP of a city if the nodes are cities) and dij 
is the empirically determined distance-dependent deterrence function. Subtracting the property known by the 
null model from the real network allowed clustering based on another property (language-based similarity).

This example illustrates how the community detection algorithm identifies similar elements and groups 
them into communities using the modularity matrix based on existing information coded in a null network as 
a viewpoint. The selection of this perspective impacts the resultant communities, which are then subjected to 
an in-depth analysis to gain insight into the network. The variability of the null network is utilized effectively in 
the network layer approach introduced in the next subsection.

Proposed null networks for finding multi‑ or single faceted communities: a multiplex network 
layer
Two main factors are encouraged to propose null networks. (1) The modularity of a network is measured by the 
deviations from well-mixed random expectations to understand their properties as introduced by Ref.43. But the 
null model is varied to be goal-oriented to control a feature of the observed network to conclude a phenomenon. 
The variability of null models improves researchers in attaining inferential criterion, however, it has limitations42. 
One lesson is that by selecting an appropriate viewpoint provided by the null model or benchmark graphs, struc-
turally similar nodes belong to the modules differently44. (2) Multifaceted relationships between actors increase 
the complexity of networks. The uncovering of communities in multilayer networks is challenging, and there 
are several solutions. One of the problems in the construction of null models is the large number of possible 
empirical features in multilayer networks30, and the other is the interrelated connection between layers45, but it 
is not relevant in our example. Another lesson is that the range of possibilities to obtain the community structure 
of multilayer networks is growing as information grows.

Taking advantage of the opportunity to change the benchmark, we propose using the following null networks 
to make better use of the information available by multiplex network layers. In contrast to synthetic and/or ran-
dom null networks, we suggest and test in this paper that one of the empirical layers of the network be included 
as a viewpoint to the modular structure of the network. In this way, a network layer has a new role in multilayer 
networks. The null model does not assume to be measured by a benchmark under random consideration. The 
null network, which is also a network layer, is empirical information that contributes to the meaningful meso-
structure of a multilayer network. A different community structure is formed depending on the variability of 
null network, and we can test the affect and similarity of each layer information on the community structure.

The advantages of using the network layer as a null network are as follows.

•	 The method allows for the exploration of smaller groups of nodes with similar connectivity patterns, provid-
ing deeper insights into the most important patterns regarding the functions and mechanisms driving link 
formation.

•	 The null network is an empirical network, correlated with the observed network5,46, 47, a property that is 
exploited in this article. The method is obviously influenced by the degree of overlap of the edges between 
layers. We take advantage of the fact that edge overlap is not uniformly and randomly distributed throughout 
the network, and communities will reflect this.

•	 The aim of the presented method is not to find the ground-truth community structure. It is about finding 
meaningful communities with a specific purpose.

•	 By changing the null network, which is a network layer, the expert can control the meaning of modules 
promoting or avoiding layer overlaps in communities of multiplex networks. This allows domain experts to 
intentionally study the community structure of the network.

•	 The method is independent of the modularity maximization algorithm, since only the null network is modi-
fied. It can be used with any numerical optimizer.

Considering edge overlap, there are three possible cases for edges between nodes i and j (shown in Table 1): (1) 
there is an edge in the observed network layer and there is another edge in the null layer (2) there is an edge in the 
observed network layer and there is no edge in the null layer, (3) there is no edge in the observed network layer 
and there is an edge in the null layer. The fourth possible case that there is no edge between vertices in either layer 

(5)QNG =
1

L

∑

C∈C

∑

ij∈C

(

Ai,j −
kikj

2m

)

δ
(

ci , cj
)

(6)P
Spa
ij = NiNjf (dij)
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is irrelevant. Consequently, when a deviation from the null network layer is calculated, the modularity matrix 
will have values of (1) moderately decreasing the edge weight of observed network, (2) remaining the same as in 
the observed network, and (3) drastically decreasing and making the edge weight below zero, respectively. The 
affect of the null network layer can be adjusted with the ( γ ) parameter when calculating the modularity matrix.

Three types of null networks are presented below that can be used for different tasks.The formalized modular-
ity matrices B = A− P are described below.

The first case, when the modularity matrix guides the algorithm to find communities that avoid edge overlap 
in clusters, is the following.

where the observed network layer is denoted by lk and the null network is denoted with lm are in the same G 
multiplex network, where m  = k , and Glk ,Glm ∈ G . Equation (7) attempts to exclude the edges of the lm layer 
along the edges of the lk layer when communities are obtained. Taking into account Eq. (3), the modularity of 
the network is denoted by Qexclusion in this work, reflecting that a pair of network layers is used.

In our example in the “Results” section, we look at communities of colleagues in a workplace. It is reason-
able to assume that work relationships combined with friendship tend to be stronger and more trustworthy48. 
We are looking for communities where the friendship layer overlaps with the coworker network layer is less 
likely, indicating that members collaborate but are unlikely to be friends. This information supports the leader, 
who can expect that members in such communities probably distrust each other, and the situation may lead to 
rivalry or conflict.

In the second case the modularity matrix helps in finding communities where relationships are multidimen-
sional and excludes those where connections are simpler as follows:

where Ālm �=k

ij  is the adjacency matrix of the complement graph of the Glm network, that is,

In graph theory, the complement graph of a given graph is a new graph that has the same set of vertices, 
but edges connecting pairs of vertices that are not connected in the original graph. The complement graph is 
obtained by removing the existing edges and adding the missing edges49. The complement graph was used to 
the balanced Max-Cut NP complete problem to obtain modules in a multiplex by analyzing the edges between 
partition classes50. Another application was the creation of a measure called Max–Min modularity to minimize 
unrelated pairs of nodes in the same community51. Here, we introduce a novel application of complement graphs 
to obtain communities with layer overlap.

The null network P is a matrix in which the values 0 and 1 are the complement graph of the original rating 
network, that is, if node i evaluates j with high professional knowledge, then the edge between i and j ( Pij ) has 
a weight 0 and otherwise 1. Using Eq. (8), the adjacency matrix of the complement graph as a null network 
reveals communities in which the relations within the module tend to be multidimensional. In this case, the null 
network ”penalizes” the missing edges of the original (not complement) null network. Equation (8) promotes 
the emergence of communities in which the edge dimension coded by the null network layer is more likely to 
occur together at the edges of the observed network layer and attempts to include the edges of the lm layer along 
the edges of the lk layer when communities are obtained. Considering the Eq. (3), the modularity of network is 
denoted with Qinclusion here, reflecting that a complement graph of the network layer is used as null network.

In this article, we show how the formula works on a two-layer network in the Results section. The network 
under study is a directed network of professional advice ( Glk ) from coworkers. The null network is the com-
plement graph of the high professional knowledge rating network ( Glm ). Our aim is to uncover professionally 
cooperative communities in which members probably value the professional knowledge of their collaborating 
partners, which is a source of healthy professional cooperation.

(7)Bexclusion =

{

A = A
lk
ij

P = γ A
lm �=k

ij

(8)Binclusion =

{

A = A
lk
ij

P = γ Ā
lm �=k

ij

(9)Ālm
ij =

{

0 if the original Alm
ij = 1 meaning nodes i and j are connected,

1 otherwise.

Table 1.   Cases of connectivity surplus in the observed network layer compared to the null network layer. In 
practice, the values of Pij are 0 and 1 if the density of the observed network and the null network are the same, 
see Eq. (13).

Aij Pij Bij Explanation

1 1 0 There is no connectivity surplus compared to the null network layer

1 0 1 High connectivity surplus compared to the null network layer

0 1 −1 High connectivity deficit compared to the null network layer

0 0 0 Irrelevant.
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In the third case, we want to identify the layer with the greatest effect on the traditional NG community struc-
ture in a merged multilayer weighted and directed network. The network under consideration is a multilayer 
merged network with edges that are directed and weighted. The null network is formed by taking one or more 
layers of the observed weighted network and forming its weighted complement graph as follows.

where the null network layer(s) is (are) part of the combined multiplex network, G = {Gli ; i ∈ 1, ...,m}} and we 
study the contribution of Glk (or Glk + · · · + Gll combined multilayer network) to the traditional NG community 
structure of G . The complement graph concept needs to be adjusted in the weighted case. The matrix represen-
tation of the original network layer is conversed similarly than in Eq. (8), because in this way we can promote 
overlapped relationships and penalize non-overlapped relationships in the modularity matrix. Since the adjacency 
matrix of the null network is subtracted from the adjacency matrix of observed network when calculating the 
modularity matrix, the promotion means that the edge in the original null network with the maximum number 
of dimensions should be 0, while the penalty is performed by converting the missing connections to the maxi-
mum of the edge weights in the complement graph. For links with a nonmaximum number of dimensions, the 
edge weight of the complement graph will be the residual with respect to the maximum. The edge weights of the 
complement graph in weighted case is the following.

For a pair i and j, Alk
ij can be 0 or 1, but maxij(A

lk+···+l
ij ) is the maximum value of the matrix that describes the 

merged multiplex network. The modularity of the network is denoted by Qmulti in this article, reflecting that a 
merged multilayer network is used.

Since the network does not have a ground truth community structure and our objective is not to identify 
it, we defined NG communities of merged weighted multilayer network as a reference by maximizing QNG and 
observed the extent of change in the mesostructure when maximizing Qmulti . The similarity in the community 
structure is measured with the traditional Normalized Mutual Information (NMI) proposed by Ref.52 as follows 
considering the confusion matrix.

where X and Y are the class labels of the nodes, cX and cY the number of communities found, the sum of row i 
of the confusion matrix Nij is denoted Ni. and the sum of the column j is denoted N.j . The function assesses the 
distance between two community structures. If the community structure denoted by X and Y is the same, then 
NMI(X,Y) = 1 , and if completely different, then NMI(X,Y) = 0.

We assume that the information of a complement network layer as null network that less changes the com-
munity structure of NG means that the two viewpoints are close to each other.

The overlapped network layers are not equal in terms of density and number of vertices involved. Also, if edges 
are present in one layer, they may not be present in the other layer. In all cases, γ is the adjustment parameter 
that controls the strength of the null network consideration. Similarly to other community structure algorithms, 
as is expected from the null network, to fulfill the following equality:

where L is the number of edges in the directed network. Taking Eq. (13) into account ensures that the observed 
and null networks are regarded with the same weight and the difference in average weight does not affect the 
detection of the community.

To determine the community structure, a greedy Louvain algorithm14 was used that is implemented in R53 
as part of the NetworkToolbox package54 with little modification. Modifications to the cited function included 
the optional change of the modularity matrix as input and expanded the output parameters to calculate the 
modularity of the modules. All codes and databases used in this article are freely available34 to ensure reproduc-
ibility and transparency.

The proposed null network modification method with the Louvain algorithm was evaluated on three net-
works, two containing fewer than 100 nodes, and a network with close to 2000 vertices. The scaleability of our 
method is the same as that of the Lovain algorithm. Our experience revealed that the algorithm’s performance 
deteriorated as the size of the larger network increased. Specifically, the runtime on the small network was neg-
ligible when executed on a local PC (Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz, 3401 Mhz processor, with 
RStudio in Windows 10), while on the larger network, it took approximately 10 s.

Ethical statement
Participation in the investigation required the completion of a questionnaire. Respondents voluntarily partici-
pated in the research and they were informed consent prior to their participation. The authors declare that there 
are no ethical issues with the results presented. The research was carried out following the procedures outlined 
in the Declaration of Helsinki. All research participants worked according to the protocols declared in the Code 

(10)Bmulti =

{

A = A
l1+2+···+m
ij

P = γ Ā
lk+···+l
ij , where k ≤ m and l ≤ m

(11)Ā
lk+···+l
ij = maxij(A

lk+···+l
ij )− A

lk+···+l
ij

(12)NMI(X,Y) =
−2

∑cX
i=1

∑cY
j=1 Nijlog(

NijN

Ni.N.j
)

∑cX
i=1 Ni.log(

Ni.
N )+

∑cY
j=1 N.j log(

N.j

N )

(13)
∑

i,j

Aij =
∑

i,j

Pij = L
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of Ethics of the University of Pannonia, Veszprém, Hungary. Ethics approval by the institutional committee is 
not required specifically for this research.

Results and discussion
The results are demonstrated using a real-world multilayer network of an organization where 67 coworkers are 
connected in various aspects. The network layers represent the relational dimensions between the members and 
leaders of an organization as follows.

•	 l1 : cooperation with colleagues,
•	 l2 : friendship,
•	 l3 : professional advice,
•	 l4 : evaluation of high professional knowledge.

The three applications outlined below address practical challenges. In the first application, we identify com-
munities where members collaborate ( l1 ) without considering the peer a friend and sharing the same beliefs or 
interests ( l2 ). Collaborative communities without trust capital can be a threat to harmonious relations. In the 
second application, we focus on professional communities where members seek advice from colleagues ( l3 ) while 
valuing their professional knowledge ( l4 ). In the third application, we analyze the merged collaborative network 
created by combining the layers of collaboration, friendship, and professional advice ( l1 , l2 , l3 ) to determine which 
edge overlap promotion within the modules is closest to the NG community structure of the merged network.

Uncover communities with exclusion of overlapping edges
In the first approach, our goal is to obtain communities that have a lower probability of edge overlap. We prove 
that the null network referenced by Eq. (7) is capable of doing that. The null network weakens the modularity 
matrix at the elements for which it is true that the edges of the null network appear together with the edges of 
the observed network. That is, when maximizing modularity Qexclusion , overlapping edges are given less weight 
in the modularity matrix.

where the observed network is the cooperation network of coworkers ( l1 ), and the null network is the friend-
ship network ( l2 ) of the same set of nodes. In Fig. 2 and Table 2, we demonstrate that the approach discovers 
collaborative communities of coworkers in which the co-occurrence of friendships is excluded within modules 
as much as possible in the community structure C2 where γ = 1 and C3 where γ = 2.

As a crucial indicator, we have focused on the probability of edge overlap between the null network and the 
observed network within the modules. Given the absence of a ground truth module structure and our objective 
is not to identify it, we used the NG community structure as a reference for comparison ( C1 ), where Aij values 
come from the l1 network layer and Pij values comes from the configuration model. We observed the connec-
tions between the grouped vertices in the l2 network layer and calculated the edge overlaps within the module.

(14)Qexclusion =
1

L

∑

C∈C

∑

ij∈C

(

Al1
ij − γAl2

ij

)

δ
(

ci , cj
)

Figure 2.   Transformation of communities explored by different null models. The size of the lanes is 
proportional to the number of people. The observed network layer is l1 : cooperation network. The null network 
in community structure C1 (blue) obtained with the configuration model (Eq. 5). In the community structure C2 
(green) the null network is the friendship network layer ( l2 ) at γ = 1 (Eq. 14), and in the community structure 
C3 (light green) the null network considered stronger at γ = 2 (Eq. 14).
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For instance, in Module 1, there is a probability of 0.492 that the edges of the null network overlap with the 
edges in the observed network. This indicates that within Module 1, roughly half of the observed network’s edges 
are adjacent to an edge of the null network. After partitioning Module 1 of C1 into Modules 101 and 102 of the 
community structure C2 , calculated using Eq. (14), the probability of edge overlap reduces to 0.411 in Module 
102. This transformation is achieved by excluding an actor from Module 1 to Module 101 which has relatively 
low in- and out-degrees, but every edge overlapped with edges from the null network. Additionally, two actors 
from Module 1 regrouped into Module 103 and one actor into Module 104. Regrouped actors have connections 
with nodes of other communities through edges of the observed network, but fewer connections in the null 
network layer. Consequently, the local modularity value of Module 102 remains high ( Qc = 0.100 ) while the 
edge overlap rate decreases. The further partition of Module 102 into Modules 202, 203, and 204 of C3 involves 
cuttings along the overlapping edges, retaining those edges between the modules that increase the overlap of 
the edges within the modules.

In conclusion, maximization of modularity Qexclusion is successful by reducing edge overlaps within modules. 
Maximization is achieved by reassigning network actors to other modules or by exclusion of them from the 
module. It is worth noting that using the null network to adjust the γ parameter results in substantial interference 
with the community structure. This is attributed to the potential correlation between the null network and the 
observed network, coupled with their comparable densities. Specifically, there is a probability of 55.08% of edge 
overlap between the null network ( l2 ) and the observed network ( l1 ). Furthermore, the observed network con-
tains 305 connections, while the null network contains 440 connections. Adjusting the null network strength to 
match that of the observed network, according to Eq. (13), produces relatively high Pij values, causing significant 
changes in the modularity matrix compared to the adjacency matrix of the observed network. Consequently, 
even minor adjustments to the γ value result in a further decomposition of the modules and the formation of 
numerous small modules.

Uncover communities with inclusion of overlapping multidimensional edges
In the second case, our objective differs from the previous subsection, as we aim to identify communities char-
acterized by a high degree of overlapping edges. To achieve this, we compare the community structure obtained 
by maximizing Qinclusion using Eq. (15) with the traditional NG community structure, which is uncovered by 
maximizing Qconf  (Eq. 5).

(15)Qinclusion =
1

L

∑

C∈C

∑

ij∈C

(

Al3
ij − γ Āl4

ij

)

δ
(

ci , cj
)

Table 2.   Characterisation of modules shown in Fig. 2. Qc is the local modularity of the module. The P(l2|l1) 
means the probability of edges of null network that occur together with edges of observed network within 
modules.

C1 C2 C3

Module
id

Number of
members Qc

P(l2|l1)
within module

Module
id

Number of
members Qc

P(l2|l1)
within module

Module
id

Number of
members Qc

P(l2|l1)
within module

1 13 0.135 0.492 101 1 201 1

102 16 0.100 0.411 202 2 0.003 0.000

203 8 0.023 0.273

204 7 0.026 0.188

2 14 0.084 0.615 103 21 0.079 0.449 205 14 0.051 0.095

206 2 0.003 0.000

207 4 0.013 0.000

208 2 0.003 0.000

209 1

210 1

3 8 0.059 0.714

4 9 0.077 0.645 104 16 0.087 0.522 211 6 0.020 0.222

212 5 0.022 0.273

5 3 0.019 0.500

6 17 0.138 0.452 105 7 0.054 0.333 213 7 0.038 0.176

214 1

106 1 215 1

107 2 0.003 0.000 216 2 0.003 0.000

QC1 = 0.512 QC2 = 0.323 QC3 = 0.195

QC1 = QNG
l1

= 1
L

∑

C∈C

∑

ij∈C

(

Al1
i,j −

k
l1
i k

l1
j

2m

)

δ
(

ci , cj
)

QC2 = Q
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∑
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)

δ
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QC3 = Q
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where the observed network layer is the professional advice network ( l3 ), and the null network layer is the com-
plement graph of the evaluation of the high professional knowledge network ( l4 ) of the same set of nodes. We 
derive the null network from the directed network that arises from evaluations of high professional knowledge. 
Our goal is to identify professional communities where expertise is highly valued. In network science terms, 
this implies communities with a high probability of overlapping edges. The proposed null network reduces the 
values of the entries in the adjacency matrix of the l3 network layer when computing the modularity matrix, in 
cases where there is no connection in the l4 network layer.

Figure 3 illustrates the transitions in actor placements within modules as we move from the C1 community 
structure, produced by the NG null model considering Equation 1, to the C2 structure, created by considering 
Eq. (8) ( γ = 1 ). Additionally, with greater consideration of the null model, it demonstrates how the nodes within 
the modules of the C2 community structure are further decomposed into the partition C3 , considering Eq. (8) 
with γ = 2 . To complement this visual representation, Table 3 provides details on the number of vertices in each 
module, the local modularity, and the probability of null network edges coinciding with edges in the observed 
network layer within each module.

The combination of Module 1 and the part of Module 2 in the community structure C1 resulted in Module 
101 in community structure C2 . The degree of edge overlap in Module 101 is lower than in Module 1, but slightly 
higher than in Module 2. However, the local modularity was increased, considering a different modularity 
equation. The overlap measure decreases when Module 1 and Module 3 are transforming, while increasing 
when Module 2 is separating. Furthermore, the local modularity of these modules is increasing. Module 101 is 
divided into Module 201, Module 202 and Module 203 within the community structure C3 , where γ increases 
to 2 in Eq. (15). The overlap of l4 adjacent to l3 in Module 201 and Module 202 is greater than in Module 101. As 
γ increases in Eq. (15), the methodology identifies modules in which the edges within each module have more 
multidimensional characteristics.

In addition, Table 3 illustrates a strong correlation between local modularity and the size of modules. Smaller 
modules tend to contribute less to the overall modularity of the community structure, whereas larger modules 
have a more significant impact.

Revealing the layers that contribute to the community structure
In this subsection, we demonstrate a different application diverging from the previous two. Initially, we merged 
the three-layer network and established the NG community structure of the weighted and directed network by 
maximizing QNG (Eq. 5) as our baseline reference because there is no ground truth and our objective is not to 
identify it. We first take note of the shift in the community structure that occurs when Qmulti

l1
 is maximized, which 

can be expressed formally as follows.

where Al1+l2+l3
ij  is the adjacency matrix of the observed network which is the merged three-layer network, while 

the null network was the adjacency matrix of the complement graph of Al1 . In this way, the algorithm favored 
the creation of communities that promote the edges of the l1 layer within the modules. The similarity between 

(16)Qmulti
l1

=
1

L

∑

C∈C

∑

ij∈C

(

Al1+l2+l3
ij − γ Āl1

ij

)

δ
(

ci , cj
)

Figure 3.   Transformation of communities explored by different null models. The size of the lanes is 
proportional to the number of people. The null model in community structure C1 (blue) obtained with null 
model of the configuration model (Eq. 5), the C2 (green) obtained with the adjacency matrix of complement 
network of l4 layer at γ = 1 (Eq. 15), and the C3 (light green) obtained with stronger consideration at γ = 2 
(Eq. 15).
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the NG and the l1 layer promoted community structure measured by NMI, which is 0.790. The procedure was 
performed with each layer and each pair of layers preferred. The results are summarized in Table 4.

When optimizing Qmulti (Eq. 16), there is a preference for the presence of a single layer or multilayer defined 
by the null network P within the modules, leading to module cuts that ideally minimize the impact on edges in 
the null network. Despite two distinct optimization approaches (maximizing QNG and Qmulti ) producing different 
community structures, their similarity indicates that similar cohesive ”forces” shape the modules, characterized 
by dense connections. As seen in Table 4, the NMI values suggest that the formation of complex workplace com-
munities, compared to the configuration model, is more influenced by the friendship layer, while the cooperation 
connections have slightly less influence. The interviews indicated that friendships are an important factor in the 
functioning of the workplace that was studied.

Conclusions
We have demonstrated that in the context of multilayer networks, employing one layer as a null network allows 
us to find communities where edges overlap.

The contribution of this work is a novel modularity measure that reveals meaningful communities based on 
edge overlap in multiplex networks. We explored the significance of the null network in the context of multilayer 
networks. As demonstrated in several previous sections, a null network based on a model represents a known 
information set against which the revealed communities signify a surplus of relationships. Thus, it becomes 
possible to selectively ”remove” the desired information from the observed network with the null network. Our 
work reinforces this concept through the application of an empirical null network.

Table 3.   Characterisation of modules shown in Fig. 3. Qc is the local modularity of the module, and P(l4|l3) 
means the probability of the edges of the null network that occur together with the edges of the observed 
network within the modules.

C1 C2 C3

Module
id

Number of
members Qc

P(l4|l3)
within module

Module
id

Number of
members Qc

P(l4|l3)
within module

Module
id

Number of
members Qc

P(l4|l3)
within module

1 6 0.050 0.533 101 9 0.059 0.473 201 2 0.007 0.500

202 6 0.043 0.571

203 1 0.000

2 6 0.045 0.462 102 19 0.203 0.623 204 12 0.099 0.684

3 11 0.087 0.697 205 3 0.021 0.333

4 14 0.097 0.513 103 15 0.122 0.476 206 11 0.074 0.484

207 5 0.016 0.286

5 16 0.107 0.625 104 11 0.077 0.640 208 6 0.046 0.421

209 5 0.030 0.889

105 1 0.000 211 1 0.000

6 7 0.044 0.692 106 2 0.016 1.000 210 4 0.025 1.000

107 3 0.019 0.400 212 3 0.017 0.400

QC1 = 0.430 QC2 = 0.496 QC3 = 0.378

QC1 = QNG
l3

= 1
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∑

C∈C

∑
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Table 4.   The similarity between NG community structure generated by configuration model and community 
structures obtained by different null network that promote network layer(s) within communities.The γ 
adjusting parameter is 1 in all cases.

Null network promoted network layer A P Modularity (Q) NMI

NG l1 + l2 + l3 Al1+l2+l3
ij

kikj
2m

QNG=0.389 1

l1 (Cooperation) Al1+l2+l3
ij Āl1

ij Qmulti
l1

=0.461 0.790

l2 (Friendship) Al1+l2+l3
ij Āl2

ij Qmulti
l2

=0.461 0.837

l3 (Professional advice) Al1+l2+l3
ij Āl3

ij Qmulti
l3

=0.452 0.799

l1 + l2 Al1+l2+l3
ij Āl1+l2

ij Qmulti
l1+l2

=0.461 0.850

l1 + l3 Al1+l2+l3
ij Āl1+l3

ij Qmulti
l1+l3

=0.458 0.829

l2 + l3 Al1+l2+l3
ij Āl2+l3

ij Qmulti
l2+l3

=0.459 0.799
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There exists an intriguing duality when investigating modules. The modularity matrix uses the null network 
to weaken the edges in the observed network, allowing play with the strength of the edges while determining 
the membership of nodes in the modules. During the clustering process, the null network identifies weak ties 
within the observed network. It offers a viewpoint in which certain connections appear weakened, while others 
retain their strength, influenced by the null network. When maximizing modularity, the links weakened by the 
null network may become cutting points that separate nodes to modules. Meanwhile, strong links persist within 
the modules, contributing significantly to the overall modularity value (Q). In Eq. (7), the modularity matrix 
classifies the links of the observed network that overlap with the links of the null network as weak. In contrast, 
the modularity matrices defined in Eqs. (8) and (11) classify the overlapping links as strong. Essentially, Eq. (7) 
increases, whereas Eqs. (8) and (11) decrease the likelihood of break points along the overlapping edges.

In the first empirical case (illustrated by Eq. (7)), we employed a network layer as a null network to eliminate 
the information set from the communities coded by the network layer, resulting in relatively low layer overlaps 
within them. In the second empirical case, we subtract the information set of a complement graph of network 
layer as null network from the observed network, effectively retaining the connections of the observed network 
layer that overlap with the null network, which allows us to obtain communities with high likelihood of edge 
overlaps within them. In the third case of merged multilayer networks, a community structure can be displayed 
where the appearances of individual layers within communities are favored.

As a minor recognition, our empirical evidence indicates that the edge density of the null network influences 
the degree of interference in community formation by the benchmark network. (1) When searching for modules 
based on a null network layer. The edge density of the null network closely approximates that of the observed 
network. Consequently, when we align the strengths according to Eq. (13), we obtain high values for Pij , while 
the modularity matrix displays low values where subtraction occurs. This leads to a significant alteration in the 
community structure, particularly with an increase in the value of γ . However, the algorithm aims to exclude 
edge overlaps within communities, which can also result in significant changes, since edge overlaps may be 
correlated. (2) When we utilized the complement network as the null network, characterized by high density, 
the values of Pij are significantly lower when the strengths are set equal to those of the observed network. Con-
sequently, the values of the modularity matrix closely resemble those of the adjacency matrix of the observed 
network, reducing the disruptive influence of the null network. An increase in the γ value results in only minor 
changes, as shown in Fig. 3.

We have demonstrated the practical significance of this approach using a network of organizational coworkers 
interconnected in various aspects. However, this method can be applied to study any system that can be modeled 
as a multilayer network, particularly in cases where it is advantageous to identify cooperative communities that 
collaborate in multiple aspects or not.

Data availability
The raw data analyzed during this study are anonimized and available on Github34.
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