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Natural tristability of a confined 
helical filament with anisotropic 
bending rigidities
Zicong Zhou 

We find that when c
0
R ∼ 0.5 and τ

0
R < 0.11 < c

0
R , confining a helical filament with anisotropic 

bending rigidities within a cylindrical tube of radius R can create a natural tristable status which is 
consisted of two low-pitch helices and one high-pitch helix, where a helical filament is referred to as 
a filament that has both an intrinsic curvature ( c

0
 ) and an intrinsic twist rate ( τ

0
 ). The formation of 

the tristable status also requires that the filament has a significant difference between two bending 
rigidities and a large twisting rigidity. The relative heights of two low-pitch helices in a tristable status 
are close to zero, and the smaller the intrinsic twisting angle, the smaller the difference between 
these two heights. Moreover, at a large intrinsic twisting angle, two low-pitch helices display a large 
energy difference, and the energy difference increases with decreasing τ

0
 . Meanwhile, the relative 

height of the high-pitch helix is always close to that of a straight line. Finally, at some specific intrinsic 
parameters, the tristable status can include an isoenergic status with two helices of the same energy 
but distinct pitches.

Keywords  Metamaterial, Chiral multistable states, Confined material, Semiflexible biopolymer, Phase 
diagram

Metamaterials have attracted considerable attentions for decades owing to their fantastic properties and widely 
applications, such as for energy storage1–5, logical operation6–8, shape reconfigurable intelligent material9–11, 
electromagnetic material12,13, photonic material14,15, mechanical4–7 and thermal16–18 materials, etc. For 
instance, mechanical metamaterials can exhibit some unusual properties such as negative stiffness or nega-
tive compressibility19,20, negative Poisson’s ratio21,22, twisting under stretching or expanding under twisting23,24, 
ultralight25,26, ultra-stiff27, and ultra-strong with recoverability28,29. The extraordinary properties of metamateri-
als are based on multistability, i.e., a metamaterial can stay steadily in more than one stable or metastable states 
and switch among them. For instance, a stretching force or field can induce a switch of a multistable material 
from a stable or metastable state with a large size to a stable or metastable state with a small size, resulting in 
contraction or negative stiffness19–22. Similarly, such a material may also exhibit negative thermal expansion. 
However, in many cases a material requires external force or energy to maintain a deformed configuration, and 
such a requirement imposes limitation on its application. A typical example is that the twisted nematic liquid 
crystal requires an external field to maintain its parallel configuration30,31. A natural multistable material can 
overcome this problem since it can stay in several different stable or metastable configurations in absence of 
external forces so offers an ideal green energy material. However, identifying new natural multistable materials 
is a significant challenge.

On the other hand, confined materials often exhibit significantly different properties from their three-dimen-
sional (3D) counterpart. A typical example is that a two-dimensional solar cell has usually a higher efficiency than 
that of the bulk one. Confinement may be even more crucial for biopolymers, as the cell is essentially a crowded 
system. For instance, MreB and its homologs appear in all cylindrical bacteria, and they are intrinsically straight, 
with a persistence length 5 to 10 times longer than the bacterial cell size32,33. However, within the cell, MreB 
can form either a helix or a ring and play crucial roles in many cellular functions, such as regulating cell shape, 
chromosome segregation, determining cell polarity, and organizing membranous organelles33–35. It was also 
reported that boundary constraint can result in unusual folding behaviors in responsive helical bilayer strips36.

Furthermore, helices and helical structures are ubiquitous and crucial owing to their valuable mechanical 
property or remarkable optical property30,31,36–46. The combination of helical and non-helical structures can also 
create some fantastic materials. For instance, the discovery of the alignment transition in nematic liquid crystal 
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molecules from a parallel normally white mode to a twisted helical mode has led to the development of liquid 
crystal color displays30,31. Helix is also one of the simplest conformations of a filament. Therefore, the property 
of a helical filament in 3D space has been studied extensively36,39–46. Here a helical filament is referred to as a 
filament with both a finite intrinsic twisting rate (ITR) and a finite intrinsic curvature (IC)39, since the natural or 
force-free ground-state configuration (GSC) of its centerline is uniquely a helix40, and such a helix is also referred 
to as a free-standing helix. Microscopic filaments such as nanotubes and semiflexible biopolymers often possess 
finite IC and ITR43–52. For instance, a double-stranded DNA (dsDNA) has a finite ITR and special sequence order 
in a short dsDNA chain favors a finite IC47–50. Similarly, a long-range correlation in sequence can induce an IC 
for a dsDNA chain51. Moreover, helical configurations are metastable intermediates in the process of cholesterol 
crystallization in the native gallbladder bile43–45,52.

A natural question is then: what will happen if we confine a helical filament? It has been reported that confin-
ing a helical filament with isotropic bending rigidity inside a cylinder can create a natural bistable status which is 
consisted of two isoenergic stable helices or one stable helix and the other a metastable helix53,54. Here, isotropic 
bending rigidity means that two bending rigidities associated with the two principal axes inertia of the crosssec-
tion of the filament are the same, as seen in a uniform filament with a circular or square crosssection. However, 
a filament is not necessary required to have isotropic bending rigidities, even if it is uniform, as it may have a 
non-circular or non-square crosssection. For instance, many fibers are flat. Another example is that a dsDNA 
has a non-circular crosssection since it is consisted of two nucleotide bases connected by hydrogen bonds41,44. It 
then raises another intrigue question: would anisotropy in bending rigidities strengthen or weaken the bistablility 
of a confined helical filament? In this work, we report that anisotropy can induce a split of the low-pitch helix, 
resulting in a natural tristable state. This state consists of two low-pitch helices and one high-pitch helix, with 
these helices having either similar energies or significantly different energies.

The outline of the paper is as follows. “Model and methods" section first outlines the elastic model employed 
for the filament in this study. Subsequently, it utilizes standard variational techniques and stability analysis 
method to derive static equations and stability criteria for a helix. “Triple stability" section presents the findings 
of this paper. The work is concluded with a summary and some remarks in “Discussions" section.

Model and methods
Model
Denoting the arclength of its centerline as s and the locus of centerline as r(s), the conformation of a filament 
can be described by a triad of unit vectors {ti(s)}i=1,2,3 , where t1 and t2 are oriented along the principal axes of 
the crosssection, t3 ≡ ṙ = t1 × t2 is the unit tangent to the centerline40,45,55 and the symbol “ ˙ " represents the 
derivative with respect to s. The relation among ti(s) ’s is given by the generalized Frenet equations ṫi = ω × ti
40,45,55, where ω = (ω1,ω2,ω3) represents curvature and torsion parameters. Furthermore, we can use Euler angles 
θ , φ and ψ to represent ti and ω , as40,45,55,56,

The energy of a uniform filament can be written as41,45,55

where k1 and k2 are bending rigidities associated with two principal axes inertia of crosssection, k3 is twisting 
rigidity, ω10 and ω20 are components of IC and the magnitude of IC is c0 =

√

ω2
10 + ω2

20 , τ0 is ITR. L is the total 
contour length and is a constant, i.e., we consider an inextensible filament. We also let ω10 = c0 sin α and 
ω20 = c0 cosα , where α represents an intrinsic twisting angle of the cross-section around the centerline57. When 
k2 = k1 , i.e., for a filament with isotropic bending rigidities, α appears as a constant added to ψ or in the form of 
ψ − α so can be ignored53,54. However, in anisotropic case k2  = k1 , there is no way to neglect α so we have to deal 
with six intrinsic parameters, i.e., c0 , τ0 , k1 , k2 , k3 and v0 , two more than those in an isotropic system. A free-
standing helix has cos θ = τ0/

√

c20 + τ 20  , radius R0
h = c0/(c

2
0 + τ 20 ) ≤ 1/c0 , pitch=2πτ0/(c20 + τ 20 ) and ε = 0 , 

regardless of ki40,45. The pitch of a helix is the height of one complete helix turn measured along the axis of helix, 
and a small τ0 yields a low-pitch free-standing helix.

Note that ki ’s are different from stiffness or elastic moduli κi , but k1 = κ1I1 , k2 = κ2I2 , and k3 = κ3(I1 + I2) , 
where Ii are the principal moments of inertia and are dependent on the shape of the crosssection37,38. κ1 and κ2 
are also called Young’s modulus, and κ3 is usually called shear modulus37,38. Consequently, in elastic theory an 
isotropic filament is usually referred to as a filament with κ1 = κ2 , but in this case k1 can be different from k2 
if I1  = I2 . In other words, even for an isotropic filament, we can still adjust the ratio of k2/k1 by changing the 
shape of the crosssection. For convenience, henceforth we call the system with isotropic bending rigidities as an 
isotropic system, and similarly for the anisotropic system.

This model is often used to model a semiflexible biopolymer such as DNA, RNA and proteins. For instance, 
for a dsDNA at temperature T = 298K , k1/kBT ≈ 50 nm, k3/kBT ≈ 75 nm where kB is the Boltzmann constant, 
and τ0 ≈ 1.76 nm−158,59.

When c0 < 1/R clearly and ki  = 0 , the confinement is very strong, where R is the radius of a cylindrical tube 
used to confine the filament. Consequently, to reduce bending energy effectively, the filament tends to touch 
the wall of the tube, or it is in fact confined on the surface of the tube. It then results in a constraint on r so 

(1)t3 =(sin φ sin θ ,− cosφ sin θ , cos θ),

(2)ω1 = sin θ sinψ φ̇ + cosψ θ̇ , ω2 = sin θ cosψ φ̇ − sinψ θ̇ , ω3 = cos θ φ̇ + ψ̇ .

(3)E =
∫

L

0

εds, ε =
k1

2
(ω1 − ω10)

2 +
k2

2
(ω2 − ω20)

2 +
k3

2
(ω3 − τ0)

2
,
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x = R(1− cosφ) , y = −R sin φ and φ̇ = sin θ/R46. When k1 = k2 , the confined system has been well studied53,54. 
For simplicity, henceforth we also scale L by R and E by k1/R , i.e., let R = 1 and k1 = 1.

Static equations
We can find stable configurations of the system by minimizing E and it results in the following two static 
equations:

Explicit forms of static equations are lengthy so we present them in “Appendix” as Eqs. (9)-(10). They are sec-
ond order nonlinear differential equations so that there is no way to find their general solutions. However, it is 
straightforward to obtain helical solution since owing to symmetry, to have a helical configuration for the fila-
ment implies to take θ = θh as a s-independent constant. The existence of other stable or metastable solutions 
of the static equations, aside from the helix, remains an unsolved problem. However, it should be noted that 
Monte Carlo simulations for the discretized isotropic system suggest that the helix is the unique steady state 
within the range of interesting parameters, even for a short chain53, and we can expect the same result for an 
anisotropic system. Without lose of generality, we let π/2 ≥ θH ≥ 0 , and define the relative extension or height 
as zr ≡ z(L)/L so zr = cos θh for a helix. It follows that for a free-standing helix zr ≈ τ0/c0 << 1 when τ0 << c0 
so it looks like a circle. Let θ = θh , ψ = ψh which is also a constant, v = cosψh and v0 = cosα , static equations 
and ε are reduced into

where the sign “± " comes from sinψ = ±
√
1− v2 and sin α = ±

√

1− v20  so that in Eqs. (5)-(6), it takes +(-) 
if sinψ has the same (different) sign as that of sin α.

Stability criterion
Equations (5) and (6) have clearly multiple solutions for both zr and v. But even for a real solution, the filament 
can still be unstable since it can correspond to either a maximum or a saddle point in E. To examine stability of 
a helix, similar to that in Refs.53,54, we firstly linearize static equations by setting θ = θh +�θ , ψ = ψh +�ψ 
and keep the terms up to the first order to obtain two linear constant coefficients differential equations for �θ 
and �ψ , and then we assume �θ = Bθ e

γ s+δ and �ψ = Bψ e
γ s+δ , and demand novanishing Bθ and Bψ so obtain 

a quadratic equation for γ 2 , i.e.,

where C0 and C2 are independent of s and γ . If both γ 2 < 0 , then the helix is at least metastable; otherwise, the 
helix is unstable. In other words, γ 2 can be used as stability criterion of a helix. To determine GSC we need to 
compare ε further even both γ 2 < 0 since it may exist multiple stable or metastable configurations. The linearized 
static equations and detail expressions of C0 and C2 are also presented in “Appendix”.

We should also stress that owing to strong nonlinearity of the static equations, when γ 2 ∼ 0 , ε can be still 
in maximum even both γ 2 < 0 because of the effect of higher order terms in expansions of Eqs. (9) and (10). 
Therefore, we also examine ∂2ε/∂z2r  and ∂2ε/∂v2 to exclude these improper results.

Triple stability
Our resultss are based on solving Eqs. (5), (6) and (8) exactly. For a given set of parameters ( c0 , τ0 , k1 , k2 , k3 and 
v0 ), we first solve Eqs. (5) and (6) to find the relevant values of v and zr , and then substitute these values into 
Eq. (8) to find γ 2.

When c
0
= 0.5

Since the isoenergic bistable state for the isotropic system occurs at c0 = 0.553,54, in this work we also start from 
c0 = 0.5 . We do not consider k2 > 10 and k3 > 10 since it should be unpractical. We also find that there is no 
longer tristable helix when τ0 > 0.11 though bistable helix is still possible in either anisotropic or isotropic system.

(4)
∂ε

∂θ
−

d

ds

∂ε

∂θ̇
=

∂ε

∂ψ
−

d

ds

∂ε

∂ψ̇
= 0.

(5)
[k3 + 2(±c0

√

1− v2
√

1− v20 − 1+ v((1− k2)v + k2c0v0)]zr
√

1− z2r + k3τ0(2z
2
r − 1)

−2[k3 − 1+ (1− k2)v
2]z3r

√

1− z2r = 0,

(6)[(k2 − 1)(1− z2r )v − c0k2v0]
√

1− v2 ± c0v

√

1− v20 = 0,

(7)
ε =

1

2

[

1+ c
2

0
(1+ (k2 − 1)v2

0
)+ (k3 − 2− (k3 − 1)z2r )z

2

r − 2c0(k2vv0 ±
√

1− v2

√

1− v
2
0
)(1− z

2

r )

+(k2 − 1)v2(1− z
2

r )
2 − 2k3zr

√

1− z2r τ0 + k3τ
2

0

]

,

(8)� ≡k3[k2 + (1− k2)v
2]γ 4 + C2γ

2 + C0 = 0,
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The typical relationships between ε , zr and v when c0 = 0.5 , τ0 = 0.01 , k2 = 2.5 , k3 = 5 and v0 = 0.2 are 
presented in Fig. 1 in which the blue lines with empty triangle and the black lines are obtained by taking “+" and 
“−" in Eqs. (5)–(7), respectively.

It is not difficult to identify maxima of ε in Fig. 1, but the minima of ε is unclear because they are in two edges 
of curves so in Fig. 2 we enlarge neighborhoods of minima in Fig. 1. From the blue lines in Figs. 1 and 2, we can 
know that the result obtained from ε vs. zr curve agrees with that obtained from ε vs. v curve, i.e., both curves 
show two minima and one maximum in ε and two minima occur at (1) v = 0.1254 , zr = 0.0125 and ε = 0.1269 ; 
(2) v = 0.4544 , zr = 0.999918 and ε = 0.1324 . It gives two stable or metastable helices with significantly different 
pitches but only a small difference in ε . In contrast, in black lines of Figs. 1a and 2a, we find one minimum and 
one maximum in ε . The minimum ε occurs at v = 0.2518 , zr = 0.0252 and ε = 1.0908 so is different that obtained 
from the blue lines. However, in black lines of Figs. 1b and 2b, we find two minima and two maxima in ε or there 
is one more minimum in ε vs. v curve than that in ε vs. zr curve, so clearly this extra minimum in ε corresponds 
to a saddle point or a unstable status. In other words, the black lines offer only a low-pitch metastable helix and 
the metastability is due to a rather high ε in this status. The calculation of γ 2 confirms above conclusion, i.e., with 
this set of parameters the system exhibits a tristable status which is consisted of three stable or metastable helices. 
Two of three helices have very low pitches ( zr ∼ 0 ), resembling a circle, while the third has a rather high-pitch 
( zr ∼ 1 ), resembling a straight line. Two low-pitch helices also have considerably different ε . We also find that 
the helix with the smallest zr always exhibits the lowest ε , making it the GSC of the system. The two higher-
pitched helices are then identified as metastable states. Additionally, in this case, the free-standing helix has 
zr = τ0/

√

c20 + τ 20 = 0.0200 , positioning it between the zr s of two confined low-pitch helices. This suggests that 
the free-standing helix undergoes a split into two low-pitch helices due to anisotropy.

The phase diagrams for the system can be divided into four regimes, as shown in Fig. 3 when c0 = 0.5 , 
τ0 = 0.01 and 0.05. In regime I a helix is unstable or there is only one stable low-pitch helix; regime II has two 
stable or metastable helices with quite different pitches and it is similar to that of the isotropic system53,54; in 
regime III there are two stable or metastable low-pitch helices and is clearly different from that in the isotropic 
system53,54; in regime IV we can find three stable or metastable helices. The tristable status appears when c0 ∼ 0.5 , 
τ0 << 1 , k2 > 1 and k3 > 1 clearly, and in a proper range of v0 . For instance, when τ0 = 0.01 , there is not tristable 
status when k2 < 1.8 and at k2 = 1.8 , and tristable status requires both k3 > 3.4 and 0.12 > v0 > 0 . From Fig. 3, 

Figure 1.   (a) ε vs. zr when c0 = 0.5 , τ0 = 0.01 , k2 = 2.5 , k3 = 5 and v0 = 0.2 , (b) ε vs. v with the same 
parameters as in (a). The blue lines with empty triangle and the black lines are obtained by taking “+" and “−" 
in Eqs. (5)–(7), respectively. The inset in (b) presents three helices with zr = 0.0125 (solid blue with 2 turns), 
zr = 0.0252 (black dashed with 2 turns) and zr = 0.999918 (green with ball and 1/4 turn). The corresponding 
free-standing helix has zr = 0.0200 . Reduced units are used.

Figure 2.   Enlargement of neighborhood of minima in Fig. 1. The symbols are the same as that in Fig. 1. 
Reduced units are used.
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we can see that the boundary of different regimes is strongly dependent on τ0 . At a small τ0 , the threshold of k3 
for regime II is almost flat with the variation of k2 , but at a large τ0 it increases fast up to a moderate k2 and has no 
longer bistable status at a large k2 . Meanwhile, the threshold of k3 for regime III decreases slowly with increasing 
k2 at a small τ0 , but at a large τ0 it decreases fast with increasing k2 up to a moderate k2 and then becomes flat at 
a large k2 . Moreover, the threshold of k3 for regime IV is almost flat at a small τ0 , but increases almost linear at 
a larger τ0 . In general,the larger the τ0 , the larger the required k3 for regimes III and IV as well as the larger the 
area of regimes I and III. In contrast, the area of regime II shrinks with increasing τ0.

To obtain phase diagrams, for a given set of c0 and τ0 , we vary k2 and k3 to solve Eqs. (5), (6) to find the corre-
sponding values of v and zr . We then substitute these values into Eq. (8) to find relevant γ 2 , in order to determine 
whether these parameters offer a stable or metastable state. The lines or boundaries of different regimes in the 
phase diagrams are determined by |γ 2| ≤ 0.1−5.

The regime I is trivial since it is rather easy to obtain the same helix or non-helix in free space, though the 
parameters are in general different. Regime II is similar to the bistable regime in an isotropic system53, and 
practically it is much easier to obtain isoenergic bistable status in an isotropic system so that the regime II is less 
significant. In contrast, regimes III and IV are brand new and denote considerable effect of anisotropy. These two 
regimes possess a low-pitch but high energy metastable configuration which is absented in an isotropic system53. 
Due to its increased flexibility, a material with a tristable state should have a broader range of applications than 
one with a bistable state.

We should note that Fig. 3 illustrates only the necessary conditions for the formation of a tristable status, 
as it does not take into account the effect of v0 . A complete picture on the stability is also dependent on v0 . For 
instance, when τ0 = 0.01 and k2 = 2 , to have a tristable status requires 0.23 ≥ v0 > 0 when k3 ≥ 4 . Some typical 
examples for the effect of v0 are presented in Fig. 4 for c0 = 0.5 , τ0 = 0.01 , k2 = 2 , 3 and 6, as well as c0 = 0.5 , 
τ0 = 0.05 , k2 = 3 and 6. We find again that a small τ0 favors tristable status, so it appears when τ0 = 0.01 and 
k2 = 2 but vanishes when τ0 = 0.05 and k2 = 2 . Meanwhile, the range of v0 for a tristable status shrinks obvi-
ously at a large τ0 , as we can see from a comparison between Fig. 4 a and b. Moreover, at a small τ0 and up to a 
moderate k2 , to have a tristable status requires v10 > v0 > 0 , as we can see from the black dotted lines in Fig. 4a. 
v10 is almost independent of k3 but it increases with increasing k2 , and v10 can reach a maximum which is depend-
ent on both τ0 and k2 . For instance, when τ0 = 0.01 , the maximum occurs at k2 = 2.6 with v10 = 0.57 . However, 
when k2 is rather large ( k2 > 2.7 when τ0 = 0.01 ), the range of v0 for a tristable status does not start at v0 = 0 , 
but can begin from a rather large v0 , as we can see from the beginning of red dashed and green solid lines in 
Fig. 4. Furthermore, at a moderate k2 the range of v0 for a tristable status can reach the maximum, i.e., 1 > v10 > 0 , 
and this should be useful because to realize a required v0 or α in practical application may be uneasy. Larger k3 
does not always favor a larger range of v0 , as we can see from the red dashed and green solid lines in Fig. 4. Our 
calculations show further that at a moderate τ0 and k2 , the tristable regime can be divided into two pieces and 
between them the helix with a middle pitch is unstable, shown as regimes enclosed by red dashed lines in Fig. 4b. 
We find further that when τ0 ≥ 0.03 , there is no longer a full range of v0 for tristable helix, as shown in Fig. 4b. 
In a word, the range of v0 for tristable regime is neither a simple function of k2 nor k3.

The differences between zr and ε of three helices in a tristable status are also crucial, so in Figs. 5 and 6 we 
present some typical relations between zr , ε and v0 when c0 = 0.5 , τ0 = 0.01 , 0.05, k2 = 3 , k3 = 6 and k2 = k3 = 6 . 
From these figures, at first, we can see that zr ∼ 0 for both low-pitch helices, and the larger the v0 , the closer the 
two zr s, as shown in Figs. 5a and 6a for black solid, black dashed and red solid, red dashed lines. Meanwhile, up 
to a moderate v0 , two low-pitch helices have a considerable difference in ε , and the smaller the τ0 , the larger the 
difference in ε , as shown in Figs. 5b and 6b. Second, zr ∼ 1 for the highest pitch helix and the smaller the τ0 , the 
closer the zr to 1, so the highest pitch helix is almost indistinguishable from a straight line, as shown in Figs. 5a 

Figure 3.   Phase diagrams for the system at c0 = 0.5 and (a) τ0 = 0.01 ; (b) τ0 = 0.05 . In (a), regime I has not 
stable helix or has only one stable low-pitch helix and is bound by black solid line, k2 and k3−axis; regime II has 
two stable or metastable helices with quite different pitches and is enclosed by black solid line, red dashed and 
green dotted lines; regime III has two stable or metastable low-pitch helices and is enclosed by red dashed and 
green dotted lines; regime IV is the tristable regime and is bound by red dashed and green dotted lines. In (b), 
four regimes have the same meaning as that in (a), but regime I is bound by black solid line, k2 , k3-axis and red 
dashed line; regime II is enclosed by black solid and red dashed line; regime III is enclosed by red dashed and 
green dotted lines again; regime IV is also bound by red dashed and green dotted lines. Reduced units are used.
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and 6a. Third, at a small τ0 , a large k2 , k3 and v0 , two metastable helices can have the same ε or in an isoenergic 
state, shown as the crossovers of two red lines in Fig. 5b and two black lines in Fig. 6b. Fourth, similar to Fig. 4b, 
at a moderate τ0 and k2 , the tristable regime can be divided into two pieces and between them the helix with a 
middle pitch is unstable, shown as black dashed lines in Fig. 6. Finally, we find that zr of a free-standing helix is 
closer to that of the helix with a middle pitch, as shown in Figs. 5a and 6a.

Figure 4.   Tristable regime (IV) when c0 = 0.5 and (a) τ0 = 0.01 , k2 = 2 (black dotted), 3 (red dashed) and 6 
(green solid), (b) τ0 = 0.05 , k2 = 3 (red dashed) and 6 (green solid). The black dotted line and k3-axis enclose 
tristable regime for k2 = 2 . The red dashed line and k3-axis enclose tristable regime for k2 = 3 . The green solid 
line and k3-axis enclose tristable regime for k2 = 6 . Different colors of IV correspond to different parameters. 
Reduced units are used.

Figure 5.   zr (a) and ε (b) vs. v0 for tristable status at c0 = 0.5 , τ0 = 0.01 , k2 = 3 , k3 = 6 (black solid, dashed 
and dotted lines) and k2 = k3 = 6 (red solid, dashed and dotted lines with red square). Blue dash-dotted line in 
(a) represents zr of a free-standing helix. In both figures, solid lines give the helix with the lowest pitch, dashed 
lines are correspond to the helix with the middle pitch and dotted lines present the helix with the highest pitch. 
Reduced units are used.

Figure 6.   zr (a) and ε (b) vs. v0 for tristable status at c0 = 0.5 , τ0 = 0.05 , k2 = 3 , k3 = 6 (black solid, dashed and 
dotted lines) and k2 = k3 = 6 (red solid, dashed and dotted lines with red square). The meaning of symbols is 
the same as that in Fig. 5. Reduced units are used.
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Together with the result from the isotropic system53, we can figure out the mechanism behind the forma-
tion of the tristable state. It arises from the interplay and interdependence of bending, twisting, confinement, 
and anisotropy. In free space, the natural shape of the filament is a low-pitch helix. Strong confinement favors a 
straight filament, resulting in a high-pitch helix and leading to a bistable state in the isotropic system. Further-
more, anisotropy is an intrinsic property that tends to alter the inherent configuration, causing a split of the 
free-standing helix and giving rise to a tristable state.

When c
0
= 0.45 and 0.55

Next we explore the influence of c0 . Phase diagrams for tristable state at c0 = 0.45 , 0.55, τ0 = 0.01 and 0.05 are 
shown in Figs. 7 and 8. Comparing Figs. 7 and 8 with Fig. 3, we can know that the basic characters are similar 
for three c0 s. In particular, they all have four regimes in phase diagrams and have similar dependence of four 
regimes on k2 , k3 and τ0 . It is also clear that a smaller c0 favors the tristable status, as these figures show that it 
reduces the required k3 effectively. This fact is confirmed further by examining the dependence of v0 , as shown 
in Fig. 9 for the system with c0 = 0.45 , 0.55, τ0 = 0.01 , k2 = 2 , 3 and 6. Comparing Fig. 9 with Fig. 4a, we can 
find that a smaller c0 enlarges considerably the range of v0 for tristable status. For instance, compared to that at 
c0 = 0.5 , the area enclosed by red dashed lines increases significantly when c0 = 0.45 but shrinks clearly when 
c0 = 0.55 . This is a natural result since the strong confinement favors the formation of two higher pitch helices 
or favors the tristable status.

Figures 10, 11, 12 and 13 exhibit some typical relations between zr , ε and v0 for tristable status when c0 = 0.45 , 
0.55, τ0 = 0.01 , 0.05, k2 = 3 , k3 = 6 and k2 = k3 = 6 . When c0 = 0.55 , τ0 = 0.05 , k2 = 3 and k3 = 6 , the tristable 
regime is too narrow to illustrate so it disappears in Fig. 13. Comparing Figs. 12 and 13 with Figs. 5 and 6, we can 
find that different c0 result essentially the same features, except for two special cases. The first significant difference 
is that when c0 < 0.5 , the lowest pitch helix is not always the GSC, as is the case for c0 = 0.5 and 0.55; instead, 
the highest pitch helix can become the GSC owing to the stronger confinement, shown as black lines in Figs. 10b 
and 11b. The second notable difference is that the tristable regime consists of only one piece at c0 > 0.5 because 
weak confinement disfavors the formation of high-pitch helix, as shown in Fig. 13. Moreover, at some special 
v0 the GSC becomes an isoenergic state besides a low-pitch metastable helix, or the ground state has two stable 
helices with the same ε but quite different zr , and the smaller the τ0 , the smaller the v0 for the isoenergic status, 
shown as the crossover of black solid line and black dotted line in Figs. 10b and 11b. Again, zr of a free-standing 
helix is closer to that of the helix with the middle pitch, as shown in Figs. 10a, 11, 12 and 13a.

Figure 7.   Phase diagrams for the system at c0 = 0.45 and (a) τ0 = 0.01 , (b) τ0 = 0.05 . The meaning of symbols 
is the same as that in Fig. 3. Reduced units are used.

Figure 8.   Phase diagrams for the system at c0 = 0.55 and (a) τ0 = 0.01 , (b) τ0 = 0.05 . The meaning of symbols 
is the same as that in Fig. 3. Reduced units are used.
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Discussions
In summary, based on the elastic theory we find a mechanism to form a natural tristable system. Our results 
demonstrate that when c0R ∼ 0.5 and τ0R < 0.11 < c0R , confining a helical filament with anisotropic bending 
rigidities within a cylinder can create a natural tristable state. The tristable state arises from the competition 
and cooperation among bending, twisting, confinement, and anisotropy. In free space, the natural shape of such 
a filament is a low-pitch helix. Strong confinement tends to straighten the filament, resulting in a stable high-
pitch helix and leading to a bistable state if the system is isotropic. Furthermore, anisotropy induces the split 

Figure 9.   Tristable regimes (IV) when c0 = 0.45 (a), 0.55 (b), τ0 = 0.01 , k2 = 2 (black dotted), 3 (red dashed) 
and 6 (green solid). The black dotted line and k3-axis enclose the tristable regime for k2 = 2 . The red dashed line, 
k3-axis and v0 = 1 enclose the tristable regime for k2 = 3 . The green solid line, k3-axis and v0 = 1 enclose the 
tristable regime for k2 = 6 . Different colors of IV correspond to different parameters. Reduced units are used.

Figure 10.   zr (a) and ε (b) vs. v0 for tristable status at c0 = 0.45 , τ0 = 0.01 , k2 = 3 , k3 = 6 (black solid, dotted, 
dashed and dotted lines) and k2 = k3 = 6 (red solid, dashed and dotted lines with red square). The meaning of 
symbols is the same as that in Fig. 5. Reduced units are used.

Figure 11.   zr (a) and ε (b) vs. v0 for tristable status at c0 = 0.45 , τ0 = 0.05 , k2 = 3 , k3 = 6 (black solid, dashed 
and dotted lines) and k2 = k3 = 6 (red solid, dashed and dotted lines with red square). The meaning of symbols 
is the same as that in Fig. 5. Reduced units are used.
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of the low-pitch free-standing helix, ultimately resulting in a tristable state. We anticipate that this mechanism 
also works in other confinements, such as square or rectangle tubes, even though the stable configuration of the 
filament may no longer be a helix.

We find that the smaller the τ0 , the easier to realize the tristable status. The tristable status is consisted of two 
low-pitch helices and one high-pitch helix, and these helices can have either nearly the same energy or signifi-
cantly different energy. The formation of the tristable state also requires a large twisting rigidity and a substantial 
disparity between two bending rigidities, i.e., a strong anisotropy. The phase diagrams of this system can be 
divided into four regimes or the system has four distinct statuses. In regime I a helix is unstable or there exists 
only one stable low-pitch helix; in regime II there are two stable or metastable helices and these two helices have 
notably different pitches; in regime III there are two stable or metastable low-pitch helices; in regime IV there 
exists three stable or metastable helices. Regimes III and IV are brand new and exhibit the effect of anisotropy. 
They possess a low-pitch but high energy metastable configuration which is absented in an isotropic system53. We 
find that the relative heights of the two low-pitch helices are close to zero, making them resemble a circle, and the 
larger the v0 , the smaller the difference between two heights. Moreover, up to a moderate v0 , two low-pitch helices 
have a rather large difference in energy, and the smaller the τ0 , the larger the difference. Meanwhile, the height 
of the high-pitch helix is almost indistinguishable from a straight line. We also find that at a small τ0 , a large k2 , 
k3 and v0 , two higher pitch helices can possess the same ε or the filament can be in a metastable isoenergic state. 
Finally, at some special v0 the GSC of the system is in an isoenergic state, i.e., the tristable status has two stable 
helices with the same ε but significant different zr , in addition to a low-pitch metastable helix.

While our results are based on the elastic model and may appear to have limited relation to real materials, they 
still provide valuable insights for identifying relevant materials. From our results, intuitionally, to have a tristable 
state, in free space the free-standing helix should exhibit two distinct visible characters: (1) a non-circular or non-
square crosssection, resulting in a large k2/k1 ; (2) a low-pitch, leading to a small τ0 . Many nanotubes or proteins, 
such as actin and actin complexes, exhibit both of these two characteristics. In accord with these two characters, 
we can first rule out MreB and its homologs since they are intrinsically straight. Additionally, a tristable system 
requires τ0/c0 < 0.11/0.5 = 0.22 . It was reported that tandem sequence repeats of approximately 126 adenine 
tracts in dsDNA can yield a circle structure48,49. This gives rise to c0 = 2π/(126 ∗ 0.34) = 0.147nm−1 , which is 
much smaller than τ0 = 1.76nm−1 . As a result, constructing a tristable system using dsDNA is impractical unless 
some bases can be removed to achieve a smaller τ0 and a larger c0.

Figure 12.   zr (a) and ε (b) vs. v0 for tristable status at c0 = 0.55 , τ0 = 0.01 , k2 = 3 , k3 = 6 (black solid) and 
k2 = k3 = 6 (red dashed line with red square). The meaning of symbols is the same as that in Fig. 5. Reduced 
units are used.

Figure 13.   zr (a) and ε (b) vs. v0 for tristable status at c0 = 0.55 , τ0 = 0.05 and k2 = k3 = 6 (red dashed line 
with red square). The meaning of symbols is the same as that in Fig. 5. Reduced units are used.
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Finally, our findings are valid to both macroscopic and microscopic systems, but the microscopic version, i.e., 
a nano-filament under nanoconfinement, should be more significant. Due to its increased flexibility, a material 
exhibiting natural tristable behavior would have a broader range of applications than one with bistable character-
istics, making this new system particularly intriguing. This natural tristable system may also offer a prospective 
green metamaterial since it does not need to consume energy to maintain one of its three stable or metastable 
configurations. Owing to the inherent chiral symmetry of a helix, this tristable system may exhibit remarkable 
optical properties, potentially becoming optically active materials capable of producing a wider range of colors 
than a bistable material. In particular, we can expect to control the output color by adjusting the length of the 
helix. In this system, the shape of the high-pitch helix is almost a straight line so the transition between three 
configurations is analogous to the alignment transition from parallel normally white mode to twisted helical 
mode found in nematic liquid crystal molecules that ushered in the era of liquid crystal color displays. Moreo-
ver, the substantial disparity in energy within a tristable status may be utilized for high-density energy storage.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Appendix: Expressions for static equations and stability criterion
From Eqs. (2)–(4), we can find the explicit forms of static equations as follows,

Equations (9) and (10) are second order nonlinear differential equations but it is straightforward to find their 
s-independent solutions, as given by Eqs. (5)-(6).

Let θ = θh +�θ , ψ = ψh +�ψ , where θh and ψh are s−independent, and keep the terms up to the first order 
of �θ and �ψ , Eqs. (9) and (10) become

where cij ’s are also s−independent and

Assuming �θ = Bθ e
γ s+δ and �ψ = Bψ e

γ s+δ , where Bθ and Bψ are again s−independent, Eqs. (11) and (12) 
become

Now demanding Bθ  = 0 and Bψ  = 0 , we obtain a quadratic equation of γ 2 , i.e.,

(9)

(cos2 ψ + k2 sin
2 ψ)θ̈ + (k2 − 1) sin 2ψθ̇ψ̇ + [(1− k2) cos 2ψ sin

2 θ + c0(k2 cosα cosψ + sin α sinψ)

− k3 cos 2θ]ψ̇ + k3τ0 cos 2θ − [(k2 − k3 + 1+ (k2 − 1) cos 2ψ) sin2 θ + k3 cos
2 θ ] cos θ sin θ

+ c0 sin 2θ(k2 cosα cosψ + sin α sinψ) = 0,

(10)

2k3ψ̈ − (k2 − 1) sin 2ψθ̇2 − 2[c0(k2 cosα cosψ + sin α sinψ)− (k2 − 1) cos 2ψ sin
2 θ − k3 cos 2θ]θ̇

+ [(k2 − 1) sin2 θ sin 2ψ + 2c0(sin α cosψ − k2 cosα sinψ)] sin2 θ = 0.

(11)c11�̈θ + c12�̇θ + c13�θ + c14�̈ψ + c15�̇ψ + c16�ψ =0,

(12)c21�̈θ + c22�̇θ + c23�θ + c24�̈ψ + c25�̇ψ + c26�ψ =0,

(13)c11 = cos
2 ψh + k2 sin

2 ψh, c12 = c14 = c21 = c25 = 0, c24 = k3,

(14)

c13 =− k3(cos
4 θh + sin

4 θh)− 3 cos
2 θh sin

2 θh[1+ k2 − 2k3 + (k2 − 1)(2 cos2 ψh − 1)]
+ 2 sin

4 θh(k2 cos
2 ψh + sin

2 ψh)+ 2c0 cos 2θh(sin α sinψh + k2 cosα cosψh)− 2k3τ0 sin 2θh,

(15)c15 =k3(1− 2 cos
2 θh)+ (k2 − 1)(1− 2 cos

2 ψh) sin
2 θh + c0(k2 cosα cosψh + sin α sinψh),

(16)c16 =c0 sin 2θh(cosψh sin α − k2 cosα sinψh)+ 2(k2 − 1) cos θh sin
3 θh sin 2ψh,

(17)c22 =k3(2 cos
2 θh − 1)− c0(k2 cosα cosψh + sin α sinψh)+ (k2 − 1)(2 cos2 ψh − 1) sin2 θh,

(18)c23 = sin 2θh[c0(cosψh sin α − k2 cosα sinψh)+ (k2 − 1) sin2 θh sin 2ψh],

(19)c26 = sin
2 θh[−c0(k2 cosα cosψh + sinψh sin α)+ (k2 − 1) sin2 θh(cos

2 ψh − sin
2 ψh)].

(20)(c11γ
2 + c13)Bθ + (c15γ + c16)Bψ = 0, (c22γ + c23)Bθ + (c24γ

2 + c26)Bψ = 0.

(21)
� ≡(c11γ

2 + c13)(c24γ
2 + c26)− (c15γ + c16)(c22γ + c23)

=k3[k2 + (1− k2)v
2]γ 4 + C2γ

2 + C0 = 0,
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If both γ 2 < 0 , then the helix is at least metastable because all γ ’s are imaginary so �θ and �ψ will remain small 
at an arbitrary s, or a small disturbance on the filament cannot induce a serious deviation from the helical con-
figuration. Otherwise, the helix is unstable since at least one Re(γ ) > 0 so both �θ and �ψ will increase rapidly 
with increasing s, and the filament will deviate considerably from a helix at large s, even if both Bθ and Bψ are 
small. Therefore, γ 2 can serve as a stability criterion to assess the stability of a helix.
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