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Climate‑smart rice (Oryza sativa L.)  
genotypes identification 
using stability analysis, 
multi‑trait selection index, 
and genotype‑environment 
interaction at different irrigation 
regimes with adaptation 
to universal warming
Muhammad Ashraful Habib 1,2, Mohammad Golam Azam 3, Md. Ashraful Haque 1, 
Lutful Hassan 1, Mst. Suhana Khatun 1, Swati Nayak 2, Hasan Muhammad Abdullah 4, 
Riaz Ullah 5, Essam A. Ali 6, Nazmul Hossain 7, Sezai Ercisli 8 & Umakanta Sarker 9*

Climate change has brought an alarming situation in the scarcity of fresh water for irrigation due 
to the present global water crisis, climate variability, drought, increasing demands of water from 
the industrial sectors, and contamination of water resources. Accurately evaluating the potential 
of future rice genotypes in large‑scale, multi‑environment experiments may be challenging. A 
key component of the accurate assessment is the examination of stability in growth contexts and 
genotype‑environment interaction. Using a split‑plot design with three replications, the study was 
carried out in nine locations with five genotypes under continuous flooding (CF) and alternate wet 
and dry (AWD) conditions. Utilizing the web‑based warehouse inventory search tool (WIST), the 
water status was determined. To evaluate yield performance for stability and adaptability, AMMI 
and GGE biplots were used. The genotypes clearly reacted inversely to the various environments, 
and substantial interactions were identified. Out of all the environments, G3 (BRRI dhan29) had the 
greatest grain production, whereas G2 (Binadhan‑8) had the lowest. The range between the greatest 
and lowest mean values of rice grain output (4.95 to 4.62 t  ha‑1) was consistent across five distinct 
rice genotypes. The genotype means varied from 5.03 to 4.73 t  ha‑1 depending on the environment. 
In AWD, all genotypes out performed in the CF system. With just a little interaction effect, the score 
was almost zero for several genotypes (E1, E2, E6, and E7 for the AWD technique, and E5, E6, E8, 
and E9 for the CF method) because they performed better in particular settings. The GGE biplot 
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provided more evidence in support of the AMMI study results. The study’s findings made it clear that 
the AMMI model provides a substantial amount of information when evaluating varietal performance 
across many environments. Out of the five accessions that were analyzed, one was found to be top‑
ranking by the multi‑trait genotype ideotype distance index, meaning that it may be investigated 
for validation stability measures. The study’s findings provide helpful information on the variety 
selection for the settings in which BRRI dhan47 and BRRI dhan29, respectively, performed effectively 
in AWD and CF systems. Plant breeders might use this knowledge to choose newer kinds and to design 
breeding initiatives. In conclusion, intermittent irrigation could be an effective adaptation technique 
for simultaneously saving water and mitigating GHG while maintaining high rice grain yields in rice 
cultivation systems.

Keywords Rice, MGIDI, AMMI, GGE biplot model, Yield, web-based WIST

Over 90% of the world’s rice crop is produced in Asia, where rice (Oryza sativa L.) provides the most versatile 
food source for one-third of the world’s  population1. As the most ancient and consequential crop, rice cultivation 
not only ensures food security but also generates income and employment  possibilities2. Globally, 755 million 
tons of paddy are produced on 162 million hectares of  land3. Reducing poverty and satisfying the needs of the 
world’s continuously growing population depends on raising the rice grain yield per unit area. 48% of all farm 
workers in the country are employed in the rice industry, which has 75% of all agricultural land. It provides 70% 
of the agricultural Gross Domestic Product (GDP) and accounts for 1/6 of the country’s total  income4. Rice is 
sown all year round in Bangladesh, with the three growth seasons being Boro, Aman, and Aus. According to Shel-
ley et al.5, it is grown in four different ecosystems: rainfed upland (direct-seeded Aus), rainfed or partly irrigated 
(transplanted Aus and Aman), and deep-water (broadcast Aman). A large amount of land used to grow rice is 
being used for other uses. Additionally, a nationwide average of 4.5 t/ha is used to correct the yield  performance6. 
Additionally, since man-made events pose a danger to rice breeding, breeders need to be prepared for any chal-
lenges that arise from uncertainty. As a result, rice breeders must develop new cultivars with improved yield and 
stability across a variety of conditions, or that are location-specific.

To combat ongoing floods, water-saving methods have been developed and deployed in paddy cultivation, 
according to Tuong and  Bhuiyan7 and Li et al.8. The adoption of AWD irrigation technology is also growing 
across various agro-ecological zones and  climates9,10. Through a series of research, IRRI developed the precise 
water management method known as AWD, which may save up to 44% of the water used for irrigation in paddy 
fields throughout the growing  season11. Tan et al.10 found that, in comparison to continuous flooding irrigation 
treatment, there was no discernible yield penalty below AWD and that water productivity increased by 17%. 
AWD increases production and water usage efficiency while lowering the amount of water needed for seasonal 
irrigation. In addition, Zhang et al.12 reported that, in comparison to continuous flooding, AWD might save 
35% of the irrigation water while increasing output by 10%. LaHue et al.13 found no change in yield between 
the AWD treatments and constant flooding. Li and  Barker14 noted an increase in water production linked to the 
use of AWD technology. Howell et al.15 found that although AWD saved 57% of the irrigation water compared 
to CF, there was no discernible change in rice yield. While Xue et al.16 observed a production decline as high as 
16%, Humphreys et al.17 showed a small yield drop under AWD. Even though it has been demonstrated that the 
AWD practice has benefits in terms of lowering water supply and raising crop productivity, very little research 
has been done to assess possible water-saving strategies, particularly under varying water application rates in 
the drought-prone areas of Bangladesh. Plant physiological performances, plant growth parameters, and crop 
growth rate of rice plants were mostly not significantly affected by water-saving irrigation  treatments18,19. Plant 
growth parameters and relative chlorophyll content of rice of all water management treatments showed no 
significant difference during tillering, active tillering, flowering, and ripening stages. The rice yield achieved 
through alternate wetting and drying (AWD) and saturated soil irrigation technique does not show a significant 
difference compared to CF  irrigation20,21.

In multi-environment trials (METs), a genotype’s grain yield performance may vary depending on the envi-
ronment, suggesting a substantial genotype × environments interaction (GEI). Cross-over interaction refers to 
the possibility that a high GEI would alter the way genotypes are ranked in various  contexts22. This makes 
choosing better genotypes for target environments much more difficult. The better genotype continues to be the 
highest-performing genotype across all conditions in the absence of  GEI23. As a result, GEI makes it difficult for 
plant breeders to identify and select better cultivars, which presents significant  hurdles24. Optimizing breeding 
techniques to choose cultivars that are well suited to certain environments requires measuring genetic equivalent 
 inflation25. METs find experimental locations that best mimic the target environment in addition to high-yielding 
and stable genotypes across  environments26,27.

Numerous techniques are presented for examining the data gathered from METs, and they may be broadly 
classified into two categories: univariate and multivariate techniques. The additive main effect and multiplica-
tive interaction (AMMI) model has significant relevance when it comes to multivariate approaches. Principal 
components (PCs) analysis and analysis of variance are essentially combined in the AMMI approach. Analysis 
of variance is used in the first part of AMMI, or the additive  portion28; the PCs analysis technique is used in the 
second part of AMMI, which contains the multiplicative element, to analyze the GEI based on  PCs29. Actually, 
the high resolution of GEI and primary effects, together with the explanation of a significant portion of the 
interaction’s sum of squares, account for the model’s extensive  use30.

Plant breeders may find better genotypes in the presence of considerable G × E interaction with the assis-
tance of many statistical techniques currently available for studying genotype-yield adaptation and  stability31. 
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According to Agyeman et al.32, AMMI, and genotype plus genotype by environment (GGE), biplot analyses are 
two often used methods for overcoming problems with multi-environment trial data analysis. The AMMI and 
GGE biplot models are useful tools for analyzing and offering insights on multi-environment data structures in 
breeding operations, according to Samonte et al.33, and Yan et al.34. Because these two statistical methods (AMMI 
and GGE) may be used for any two-way data matrix, including the number of genotypes tested in numerous 
locations and the possibility that the data come from several trials, agricultural researchers are particularly 
interested in  them35. Principal component analysis (PCA) and analysis of variance (ANOVA) are used in these 
 investigations36. The stability and adaptability of the genotypes have been evaluated using a variety of statisti-
cal techniques, such as ANOVA, joint regression analysis, additive main effects and multiplicative interaction 
(AMMI), and genotype main effect plus genotype-by-environment interaction (GGE)  biplots34,37. The evaluation 
of yearly MET data has been done extensively using the useful method known as GGE biplot analysis. The GGE 
biplot provides a two-dimensional graphical demonstration of the interactions between genotypes and environ-
ments in terms of how they discriminate against each  other34. Consequently, each target set of environments 
and the AMMI and GGE biplot models made it easier to compare and identify superior genotypes  visually38. 
In the context of multiple selection, linear indexes can be  used39. One fragility of linear selection indexes is the 
collinearity often observed in the set of assessed traits, which can bias the coefficients of multiple regression, 
and thus erode selection  gains40. To overcome this fragility, the multi-trait genotype-ideotype distance index 
(MGIDI) has been proposed 41. The MGIDI was originally designed for selecting genotypes in plant breeding 
based on information on multiple traits and has been successfully used to select superior  genotypes41,42. Thus, 
the current study aimed to ascertain the adaptability of climate-smart promising rice germplasm using AMMI, 
GGE biplot, and MGIDI analyses for different moisture regimes and to examine their water-saving techniques.

Results
The variance in rice grain yield
This finding is supported by the range in the mean yield of the genotypes that were evaluated, which varied for 
AWD from 3.8 (t  ha-1) (G2 in environment E3) to 5.4 (t  ha-1) (G3 in environments E2 and E7, G4 & G5 in envi-
ronments E1) (Fig. 1A,C). The G2 genotype was discovered to have the lowest yield at one place, E3, whereas the 
G4 genotype was detected at locations in E7, E1, E2, and E4 (Fig. 1). In every area, genotype G3 produced the 
most (Fig. 1A). The observed variation in the mean yield of the examined genotypes for CF (Fig. 1B,D) ranges 
from 3.9 (t  ha-1) (G5 in environment E6) to 5.4 (t  ha-1) (G3 in environments E2, E8, and E9). In most of the sites, 
the G3 genotype yield in both water regime treatments is consistent (Fig. 1A–D).

Values of the combined and AMMI model’s analysis of variance (ANOVA) applied to yield and 
yield‑related characteristics
The combined and AMMI model’s Analysis of Variance (ANOVA) for AWD and CF systems are shown in 
Tables 1 and 2. The results of the combined analysis of variance showed that the genotypes, environments and 
the GEI were significant (Tables 1 and 2). The current study used the analysis of the variance function of the 

Figure 1.  The rice grain yield (t  ha-1) performance variation of studied five (5) rice genotypes across nine (9) 
environments in both AWD = Alternate wet and dry (A, C) and CF = continuous flooding (B, D) conditions.
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AMMI model to analyze the yield and yield performance (PH, ET, PL, TSW, DM, and GY) of five prospective rice 
genotypes evaluated in nine environments throughout the dry season. The ANOVA showed significant impacts 
from the environment, G × E interactions, and genotype for each attribute. Based on the AMMI analysis of vari-
ance, every characteristic in systems PC1 and PC2 was determined to be significant. There was variation in the 
genotype rankings between settings for each feature that was being studied. Given that GEI has a considerable 
impact on each of the studied characteristics except for ET and PL; AMMI’s model was employed in conjunction 
with multiplicative effects analysis to identify stable genotypes. The AMMI model with two significant IPCs is 
the best-predicted  model43,44. At the 1% probability level, the first three components of PH were significant and 
explained 99.5% and 93.5% of the changes related to GEI for the AWD and CF water regimes, respectively. The 
third factor was the effective tiller (ET), which accounted for 95.8% and 94.8% of the GEI impact in the AWD 
and CF scenarios, respectively. Significant findings were found for each explanation at the 1% probability level. 
A significant component, or 89.7% and 93.9% for AWD and CF, respectively, supported the PL-related varia-
tions at the 1% probability level. The two main components of the TSW explained 89.8% and 81.2% of the GEI 
impact at the AWD and CF levels, respectively. In terms of DM, the GEI for the AWD and CF water regimes is 

Table 1.  Combined ANOVA and AMMI ANOVA applied to yield and yield-related trait values of rice 
genotypes tested at AWD conditions within nine (9) environments. GEN = Genotype; ENV = Environment; 
MS = Mean Square; AMMI = Additive main effects and multiplicative interaction; GEI = Genotype by 
environment interaction; PC = Principal component; *** = Significant at 0.1%;** = Significant at 1%; ; 
** = Significant at 1%; * = Significant at 5% probability level; df = Degrees of freedom.

Source df Plant height (PH) Effective tiller (ET) Panicle length (PL)

MS (%) SS explained
(%) GEI 
Cumulative MS (%) SS explained

(%) GEI 
Cumulative MS (%) SS explained

(%) GEI 
Cumulative

Combined ANOVA

ENV 8 43.33** 21.91** 5.14**

REP 2 15.31* 9.41 1.97

GEN 4 472.54** 68.06** 8.27**

GEN:ENV 32 23.08** 11.29 2.20

Residuals 88 11.95 10.28 2.60

AMMI ANOVA

ENV 8 43.35** 21.93** 5.17**

REP(ENV) 18 15.41* 9.45 1.97

GEN 4 472.54** 68.06** 8.27**

GEI 32 23.08** 11.29 2.20

PC1 11 39.68** 59.1*** 59.1*** 20.06** 61.1*** 61.1*** 4.12* 64.2*** 64.2***

PC2 9 19.46* 23.7*** 82.8*** 10.91* 27.2*** 88.2*** 1.37 17.5*** 81.8***

PC3 7 11.23 10.6*** 93.5*** 3.88 7.5*** 94.8*** 1.22 12.1*** 93.9***

PC4 5 9.64 6.5 100 3.07 4.2 100 0.86 6.1 100

Residuals 72 15.95 12.18 3.60

Total 166 30.96 13.36 3.07

Source df

1000 Grain weight (TGW) Days to maturity (DM) Grain yield (GY)

MS (%) SS explained
(%) GEI 
Cumulative MS (%) SS explained

(%) GEI 
Cumulative MS (%) SS explained

(%) GEI 
Cumulative

Combined ANOVA

ENV 8 0.99 106** 1.411**

REP 2 4.61** 2.93** 0.1396*

GEN 4 97.64** 238** 0.4648**

GEN:ENV 32 6.03** 9.24** 0.15**

Residuals 88 1.56 3.29 153.4

AMMI ANOVA

ENV 8 0.99 106** 1.411**

REP(ENV) 18 4.61** 2.93** 0.1396*

GEN 4 97.64** 238** 0.4648**

GEI 32 6.03** 9.24** 0.15**

PC1 11 13.04** 74.2*** 74.2*** 10.8** 40.2*** 40.2*** 0.25** 59.8 59.8

PC2 9 3.34* 15.6*** 89.8*** 11.8** 36.1*** 76.2*** 0.13* 25.7 85.5

PC3 7 1.88 6.8 96.6 7.4** 17.5*** 93.8*** 105.1 9.5 95.1

PC4 5 1.30 3.4 100 3.69** 6.2 100 76.1 4.9 100

Residuals 72 2.26 4.29 173.4

Total 166 6.21 14.4 319.5
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accounted for by the first three interaction principal components of AMMI and three PCs with highly significant 
differences (p < 0.001), respectively. In this study, PC1 (59.8% and 66.6%) and PC2 (25.7% and 25%) each made 
a substantial contribution to the understanding of the G × E interaction for GY. The sums of squares for PC1 and 
PC2 together account for 85.5% and 91.6% of the total GEI at both the AWD and CF levels. 

Genotypes and water regimes are graphically shown in the AMMI Biplots
According to the research, the distribution of genotypes and environments is represented by the AMMI1 biplot 
stability of yield, where PC1 accounts for 66.6% in CF systems and 59.1% in the AWD approach (Fig. 2A,B). To 
determine the mega-environment and stable genotypes throughout AWD and CF, biplots for AMMI1-Means vs. 
PC1 and AMMI2-PC1 vs. PC2 were created (Figs. 2A,B). The means of the environments and genotypes were 
plotted against their IPCA1 using the AMMI1 biplot. The low-yielding nature of environments E6, E3, and E5 
was later shown (Fig. 2A AMMI1 Biplot). The genotypic and environmental scores that correspond to the GY 
IPCA1 and IPCA2 are shown in the AMMI2 biplot (Fig. 2C,D AMMI2 Biplot). The AMMI 1 biplot is typically 

Table 2.  Combined ANOVA and AMMI ANOVA applied to yield and yield-related trait values of 
rice genotypes tested at continuous flooding (CF) within nine (9) environments. GEN = Genotype; 
ENV = Environment; MS = Mean Square; AMMI = Additive main effects and multiplicative interaction; 
GEI = Genotype by environment interaction; PC = Principal component; *** = Significant at 
0.1%;** = Significant at 1%; * = Significant at 5% probability level; df = Degrees of freedom.

Source df

Plant height (PH) Effective tiller (ET) Panicle length (PL)

MS (%) SS explained
(%) GEI 
Cumulative MS (%) SS explained

(%) GEI 
Cumulative MS (%) SS explained

(%) GEI 
Cumulative

Combined ANOVA

ENV 8 142.31** 22.24** 2.7*

REP 2 16.86** 4.71 2.02

GEN 4 333.95** 36.81** 11.36**

GEN:ENV 32 19.80** 8.67* 2.51*

Residuals 88 6.54 5.43 1.56

AMMI ANOVA

ENV 8 142.31** 22.24** 2.7*

REP(ENV) 18 16.86** 4.71 2.02

GEN 4 333.95** 36.81** 11.36**

GEI 32 19.80** 8.67* 2.51*

PC1 11 31.15** 54.1 54.1 15.32** 60.8 60.8 3.4* 46.6 46.6

PC2 9 21.49** 30.5 84.6 7.54* 24.5 85.2 2.3* 25.9 72.4

PC3 7 13.52* 14.9 99.5 4.2 10.6 95.8 1.98 17.3 89.7

PC4 5 0.59 0.5 100 2.31 4.2 100 1.65 10.3 100

Residuals 72 8.64 6.23 2.42

Total 166 28.11 8.51 2.64

Source df

1000 Grain weight (TGW) Days to maturity (DM) Grain yield (GY)

MS (%) SS explained
(%) GEI 
Cumulative MS (%) SS explained

(%) GEI 
Cumulative MS (%) SS explained

(%) GEI 
Cumulative

Combined ANOVA

ENV 8 2.53* 107.31** 1.59**

REP 2 2.39 0.06* 0.20**

GEN 4 128.47** 230.93** 0.36**

GEN:ENV 32 2.88* 9.98** 0.23**

Residuals 88 2.51 0.03 0.04

AMMI ANOVA

ENV 8 2.53* 107.31** 1.59**

REP(ENV) 18 2.39 0.06* 0.20**

GEN 4 128.47** 230.93** 0.36**

GEI 32 2.88* 9.98** 0.23**

PC1 11 4.49* 53.6 53.6 12.93** 44.5*** 44.5*** 0.45** 66.6 66.6

PC2 9 2.82* 27.6 81.2 11.84** 33.4*** 77.9*** 0.20** 25 91.6

PC3 7 1.91 14.5 95.7 7.40** 16.2*** 94.2*** 0.07 7.1 98.7

PC4 5 0.79 4.3 100 3.73** 5.8 100 0.01 1.3 100

Residuals 72 2.91 0.06 0.08

Total 166 5.85 14.62 0.23
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interpreted as follows: displacements along the ordinate indicate differences in interaction effects, while displace-
ments along the abscissa reflect variations in main (additive) effects. Zero PC1 genotypes are more adaptable 
to all environments and are less influenced by external variables. As evidenced by their nearly low PC1 scores, 
varieties G5 were the most stable and adaptive genotypes under these circumstances (Fig. 2A). However, since 
genotype G3’s mean yield was higher than the other genotypes’, it is recommended. In conclusion, the best yield 
might not come from a sturdy and flexible variety. The first two principal components, PC1 and PC2, could 
account for 84.8% of the total variance in the GEI (Fig. 2C). Regarding the grain yield attribute, there was the 
least amount of interaction between genotypes and environments in G1 > and G2. The AMMI1 biplot (Fig. 2B) 
showed that grain yields were below average for G3, G2, and G5, but they were above average for G1 and G5. G5 
was the genotype that produced the least from these. Strong G × E interaction effects were seen in G5 and G3 
across the genotypes under evaluation. Conversely, G1 displayed a reduced G × E interaction. The grain yield 
display interaction of PC1 and PC2 of the genotypes that were assessed in the eight settings is represented by 
the AMMI2 biplot in Fig. 2D. Yan and  Kang45 suggest that distances from the biplot origin are a useful measure 
of the degree of genotype or environment interaction. While they did not exert considerable interaction forces, 

Figure 2.  AMMI1 and AMMI2 biplot for rice grain yield (t  ha-1) of five (5) genotypes under nine (9) 
diverse environments using GE IPAC scores in both AWD (A, C) and CF (B, D) conditions. G = genotype; 
E = environment; AMMI = Additive main effects and multiplicative interaction; PC = Principal component; 
AWD = Alternate wet and dry; CF = Continuous flooding.
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the environmental vectors with short spokes in E1, E9, E3, E4, and E5 in this figure greatly contributed to the 
genotype’s stability. The environmental vectors with long spokes, on the other hand, show high interaction. As a 
result, environments E7 and E8 had long spokes, demonstrating their high discriminating ability.

The examination of rice grain yield stability
Every genotype in the CF and AWD systems performed very identically in each of the nine settings (Tables 3 
and 4). Table 3 shows that, in all circumstances, G3 and G2 had the highest and lowest grain yields, respectively. 
The greatest and lowest mean values (4.95 to 4.62 t  ha-1) of the variation in rice grain yields across the five rice 
genotypes were similar to one another. Table 4 displays the genotype means, which varied between 5.03 and 
4.73 t  ha-1 depending on the environment. Tables 3 and 4 show that all genotypes performed better in AWD 
than in the CF system.

Using the AMMI biplot adaptation map (Nominal plot) for genotypes or generic genotypic adaptation. 
According to the AMMI biplot adaption map of yield, the AWD approach was more suited for G1 (Binadhan-10) 
and G3 (BRRI dhan-29). These two genotypes exhibited comparable performance in all situations. Although it 
varies from environment to environment, G5 (Binadhan-17) performed best in environment-3 (Union: Kolma). 
Only the G1 (Binadhan-10) exhibited reduced G × E interaction in the CF system. Similar to the AWD approach, 
Binadhan-17 also had the largest G × E interaction in this instance (Fig. 3).

Using the which‑won‑where method of the polygon of GGE biplot methodology, the specific 
genotypic adaption
The vertex genotype in the AWD approach was G4 (BRRI dhan47), while the genotype with the highest respon-
siveness was G2 (Binadhan-8), per the study’s Polygon of the GGE biplot of rice grain yield. In the CF system, 
G5 (Binadhan-17) has been found in both responsive and vertex genotypes. The genotype main effects and the 
GE interaction, which were 54.94% and 56.31%, respectively, were explained by the PC1 in the AWD technique 
and in the CF system (Fig. 4).

Table 3.  The grain yield (t  ha-1) of five tested rice genotypes at AWD conditions in nine different 
environments.

Environments

Genotypes

Genotypes meanG1 G2 G3 G4 G5

E1 5.03 4.90 5.30 5.43 5.37 5.21

E2 4.97 4.73 5.40 5.00 5.27 5.07

E3 4.43 3.77 4.30 4.23 4.80 4.31

E4 5.13 5.03 5.03 5.13 5.37 5.14

E5 4.70 4.50 4.53 4.43 4.80 4.59

E6 4.83 4.50 4.40 4.90 4.23 4.57

E7 5.07 4.70 5.37 4.87 5.23 5.05

E8 4.67 4.57 4.97 4.93 4.67 4.76

E9 4.83 4.90 5.23 5.13 4.57 4.93

Genotypes mean 4.85 4.62 4.95 4.90 4.92 4.85

Table 4.  The grain yield (t  ha-1) of five tested rice genotypes at continuous flooding (CF) in nine different 
environments.

Environments

Genotypes

Genotypes meanG1 G2 G3 G4 G5

E1 5.07 5.13 5.10 5.30 4.83 5.09

E2 5.00 5.23 4.80 5.40 5.27 5.14

E3 4.27 4.47 4.07 4.60 3.97 4.27

E4 5.17 4.83 5.37 5.33 5.27 5.19

E5 4.63 4.33 4.90 4.87 4.77 4.70

E6 4.50 3.70 4.80 4.30 4.70 4.40

E7 5.20 5.07 5.23 4.63 4.63 4.95

E8 4.63 5.03 4.50 5.37 4.57 4.82

E9 5.07 4.80 4.93 5.43 4.77 5.00

Genotypes mean 4.84 4.73 4.86 5.03 4.75 4.84
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GGE biplot genotype view with the average environment coordination (AEC) of rice grain yield
Figure 5A,B show the genotype ranking according to mean performance and stability. According to previous 
research, PC2 (a measure of instability) of a GGE biplot must approximate the GE effects associated with each 
genotype if PC1 of the biplot approximates the genotype’s main  effects34,46. The average environment coordinate 
(AEC) axis, which is defined by the average PC1 and PC2 scores of all the environments, is the line that goes 
through the biplot origin and the average environment. The yield stability of genotypes was assessed using the 
AEC approach, which uses the average principal components in all conditions. Genotype G3 (BRRI dhan29) 
exhibited the highest grain yield and excellent stability under Alternate Wetting and Drying (AWD) conditions, 
as depicted in Fig. 5A. Conversely, genotype G1 (Binadhan-10) demonstrated average grain yield but maximum 
stability. Genotypes G4 (BRRI dhan47) and G5 (Binadhan-17) showed grain yields close to that of G3 (BRRI 
dhan29) but with lower stability.

Figure 3.  AMMI Biplot nominal plot of five (5) rice genotypes with yield and stability in nine (9) different 
environments in both AWD (A) and CF (B) conditions. G = genotype; E = environment; IPCA 1 = Interaction 
principal component axis 1; G1 = Binadhan-10, G2 = Binadhan-8, G3 = BRRI dhan29, G4 = BRRI dhan47, 
G5 = Bina dhan-17.

Figure 4.  Polygon of GGE Biplot for clustering environments in both AWD (A) and CF (B) conditions. 
G = genotype; E = environment; PC = Principal component). G1 = Binadhan-10, G2 = Binadhan-8, G3 = BRRI 
dhan29, G4 = BRRI dhan47, G5 = Bina dhan-17.
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Overall, it is inferred that genotypes G1 (Binadhan-10) and G3 (BRRI dhan29), offering comparable grain 
yields to optimal genotypes while maintaining sufficient stability, are the most desirable. Concerning the con-
tinuous flooding system (CF), genotype G3 (BRRI dhan29) displayed a nearly average grain yield, while G4 
(BRRI dhan47) exhibited a high grain yield with lower stability. In contrast, G1 (Binadhan-10) showed aver-
age grain yield with the highest stability. Genotypes G2 (Binadhan-8) and G5 (Binadhan-17) were associated 
with the lowest grain yield and stability. In conclusion, Binadhan-10 and BRRI dhan29 emerge as the superior 
genotypes, demonstrating grain yield comparable to the optimal genotype while exhibiting adequate stability 
across conditions.

Analyzing genotypes in relation to the ideal genotype
The GGE biplot model is an interesting tool for evaluating genotypes against an ideal genotype. Concentric 
circles were added to a genotype-focused scaling GGE biplot  graph35,47 to more clearly illustrate the difference 
between genotypes and the ideal genotype. The GGE biplot graph (Fig. 6A,B) demonstrates that genotype G3 
was positioned first in the concentric circle in both the AWD and CF techniques. Therefore, G3 was the best 
genotype position—better than any other rice genotype—and was followed by G4, G1, and G3. The genotype-
environment interaction shown in Fig. 6A and the GGE biplot analysis of rice grain yield indicate that G3 (BRRI 
dhan-29), which is nearly the ideal genotype theoretically, is the best genotype. They were therefore regarded 
as being outside of Fig. 6B’s ideal inbred group. G5 (Binadhan-17) in the CF system and the inbred G2 (Binad-
han-8) in the AWD technique, on the other hand, were found to be extremely distant from the optimal genotype.

Assessment of environment in comparison to ideal environment
In optimal conditions, the longest vector—which had a low IPCA—was discovered to lie inside the centers of 
concentric circles. The environment-focused GGE biplot’s second concentric circle depicts the ideal environment, 
and the settings that are most like it are the ones that are desired. In this sense, E2 is in the second concentric 
circle and has been in the ideal environment (Fig. 7A). Though they may be viewed as unfavorable (having 
fewer examples) for selecting cultivars that are widely adapted, the E6 and E9 environments were far from ideal 
conditions, thus selecting particularly suitable cultivars may benefit from them. Despite not being statistically 
representative, the most discriminating samples in the current analysis were E1, E2, E6, and E7 from Fig. 7A. 
Their long projection against the ATC Y-axis and distance from the plot source for the AWD approach were 
probably the causes of this. Consequently, E9 and E5, which represent the ideal conditions based on this research, 
are shown in Fig. 7B. An environment that is most representative of all environments and most effective at differ-
entiating between genotypes is considered optimal. Similarly, because they were closer to the ideal environment, 
E4, E2, and E8 were judged to be the second strongest in terms of genotype discrimination (Fig. 7B). On the other 
hand, environment E7 was found to be distant from the ideal environment and was believed to be less success-
ful in distinguishing between genotypes (Fig. 7B). On the E9, the standard environment is displayed. Figure 7B 
demonstrated that while E5, E6, E8, and E9 were not statistically representative in the current investigation, they 
were the most discriminating because they showed the longest projection over the ATC Y-axis and were located 
farthest from the plot source for the CF technique.

Figure 5.  Assessment of five (5) inbred lines of rice according to their yield and stability in nine different 
environments in both AWD (A) and CF (B) conditions. G = genotype; E = environment; GGE = Genotype 
by environment biplot; PC = Principal component; G1 = Binadhan-10, G2 = Binadhan-8, G3 = BRRI dhan29, 
G4 = BRRI dhan47, G5 = Bina dhan-17.
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Correlation between various stability statistics
To determine the relationship between each pair of AMMI stability parameters, Spearman’s correlations (Fig. 8) 
discovered a strong association between ASV and sij, Ecoval and sij, ASV and Ecoval, HMRPGV, and RPGV. 
In both AWD and CF systems, ASV, sij, HMRPGV, and RPGV exhibited a strong correlation with each other, 
while the other measures showed a non-significant correlation. The results showed that in both the CF and AWD 
systems, the same parameters showed a significant correlation in the same patterns. A heatmap-based Speraman’s 
correlation coefficient was used to analyze the relationships between mean grain yield and the calculated stability 
indicators (Fig. 8). The results demonstrated a significant and positive association between the mean yield and 

Figure 6.  GGE biplot graph based on genotype-focused scaling for comparison of genotypes with an ideal 
genotype in both AWD (A) and CF (B) conditions. G = genotype; E = environment; PC1 = Interaction principal 
component axis 1; G1 = Binadhan-10, G2 = Binadhan-8, G3 = BRRI dhan29, G4 = BRRI dhan47, G5 = Bina dhan-
17.

Figure 7.  GGE biplot graph based on environment-focused scaling for comparison of environments with an 
ideal environment in both AWD (A) and CF (B) conditions. G = genotype; E = environment; PC1 = Interaction 
principal component axis 1; G1 = Binadhan-10, G2 = Binadhan-8, G3 = BRRI dhan29, G4 = BRRI dhan47, 
G5 = Bina dhan-17.
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S1, S2, S6, N1, N3, Gai, and Y as well as Pi_f, Pi_u, and Pi_a. It was demonstrated that there was a positive and 
significant correlation between the stability statistics N1 with S2, S6 with Pi_f, S6 with Pi_u, S6 with Pi_a, Pi_f 
with Pi_u, Pi_f with Pi_a, Pi_u with Pi_a, Pi_u with Gai, Pi_u with Y, Pi_a with Gai, and N4 with S1.

The multi‑trait genotype‑ideotype distance index (MGIDI) selection process and selection 
gains
The MGIDI function makes it easier to compute the index, allowing for identifying idiotypes by declaring which 
traits were desired to increase or  decrease48. The lower contribution of a factor in the genotype indicated that 
the genotype is highly selective for the trait in a particular factor. The factors closer to the edge in Fig. 9 are less 
distant from the desired idiotype, and this can be used for genotype selection.

To identify the genotypes that conserve water, the multi-trait genotype-ideotype distance (MGIDI) index 
was calculated, accounting for all evaluated features. A significant genotypic influence was found for each of the 
five features that were measured: G1 (Binadhan-10), G2 (Binadhan-8), G3 (BRRI dhan-29), G4 (BRRI dhan-47), 
and G5 (Binadhan-17) (Fig. 9A,B). The analytical results showed that G3 (BRRI dhan-29) was selected for both 

Figure 8.  Heatmap-based Speraman’s correlation coefficient among various stability parameters with yield 
data of 5 rice genotypes evaluated at 9 test environments. Parametric measures such as: ASV–AMMI stability 
value, RPGV: Relative performance of genotypes values; HMRPGV: Harmonic mean of RPGV, Ecoval: Wricke’s 
ecovalence. Non-parametric measures such as: N1, N2, N3, N4: Thennarasu"s statistics, Sij: Deviations from 
the joint-regression analysis, S1: mean of the absolute rank differences of a genotype over the n environments, 
S2: variance among the ranks over the k environments, S3: sum of the absolute deviations, S6: relative sum of 
squares of rank for each genotype, Gai: Geometric adaptability index, Pi_a, Pi_f, Pi_u: Superiority indexes for 
all, favorable and unfavorable environments, respectively.
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AWD & CF based on traits, such as plant height, effective tiller, panicle length, 1000 grain weight, life duration, 
plot yield, and grain yield.

The analysis involving two main factors from a set of six traits delineates their collective contribution to 58.4 
percent of the total variance among traits, revealing specific trait clusters. These factors offer a simplified view 
of trait interconnections for AWD: Factor 1 includes traits such as ET, DM, and GY, while Factor 2 consists of 
PH, PL, and TGW for AWD. Communal and unique attributes account for 86.6% and 32.4%, respectively, of all 
the genetic diversity within the dataset, according to Table 5. This supports the effectiveness of factor analysis 
in creating an index that facilitates optimal trait  selection41. The use of the MGIDI index resulted in favorable 
genetic enhancements across all examined traits, with an overall genetic gain of 13.06 percent. Notable traits like 
TGW and ET showed impressive selection gains of 4.78 and 5.55 percent, respectively (Table 6). This highlights 
the potency of the MGIDI index in promoting precise and advantageous trait selection, thereby improving crop 
development strategies.

The radar plot visualizations (Fig. 10A,B) provide a detailed analysis of the strengths and weaknesses of 
various rice genotypes across two moisture conditions. These figures are instrumental in evaluating the geno-
types’ adaptation by examining how each trait contributes to the Modified Genotypic Ideotype Deviation Index 
(MGIDI). Each factor’s contribution towards the MGIDI is strategically ranked, with the most influential fac-
tors positioned closer to the center of the plot and the less influential ones farther from the center. Traits that 
are closer to the outer edge of the radar plot are considered more aligned with the ideotype. This implies that 
a smaller proportion of the genotype variation is explained by these factors, indicating a closer similarity to 

Figure 9.  A Genotype ranking in ascending order for the MGIDI index in both AWD (A) and CF (B) 
conditions. The selected genotypes based on this index are shown in blue. The central blue circle represents the 
cut point according to the selection pressure. G = genotype; G1 = Binadhan-10, G2 = Binadhan-8, G3 = BRRI 
dhan29, G4 = BRRI dhan47, G5 = Bina dhan-17.

Table 5.  Eigenvalues, explained variance, factorial loadings after varimax rotation, and communalities 
obtained in the factor analysis within the soil moisture regime based on MGIDI values for AWD.

VAR FA1 FA2 Commu nality Unique nesses Xo Xs SD SDperc h2 SG SG (%) sense goal

ET  − 0.89 0.2 0.83 0.17 12.8 14.9 2.12 16.6 33.5 0.711 5.55 Increase 100

DM  − 0.96 0.04 0.93 0.07 144 149 4.62 3.2 74 3.42 2.37 Increase 100

GY  − 0.8 0.07 0.64 1.41 4.85 4.91 0.057 1.18 12.9 0.00734 0.151 Increase 100

PH 0.26  − 0.89 0.87 0.13 97.3 97.5 0.194 0.199 72 0.14 0.143 Increase 100

PL  − 0.12  − 0.94 0.9 0.1 24.9 25 0.114 0.458 15.2 0.0173 0.0697 Increase 100

TGW 0.66  − 0.74 0.99 0.01 24.9 23.3  − 1.58  − 6.34 75.4  − 1.19  − 4.78 Increase 0

Average 0.86 0.32

T. decrease  − 4.78

T. Increase 8.237

Eigenvalues 3.5 1.65

Variance (%) 58.4 27.4

Cumulative variance (%) 58.4 85.9
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the ideotypical traits. A view on strengths and weaknesses under AWD revealed that the performance of the 
selected genotypes, viz., G3 showed strengths related to factor FA1 that holds ET, DM, and GY, while Factor 2 
consists of PH, PL, and TGW with positive SGs except TGW (Fig. 10A). This analysis provides a comprehensive 
understanding of how each genotype performs under varying moisture regimes and which traits contribute most 
effectively towards achieving an ideotype-like phenotype. This systematic approach aids in identifying key areas 
of strength and potential improvement for rice breeding programs under different environmental conditions. 
Similarly, under CF conditions (Fig. 10B), most of the selected genotypes that is G3 showed strengths related to 
all the factors (FA1 and FA2). According to FA1, genotype G3 performed very well with a maximum contribu-
tion towards the MGIDI.

The examination of two primary factors from an initial group of six traits uncovered that they account for 
68.8 percent of the variation among these traits, showcasing distinct clusters of attributes. This analysis narrows 
down the complexity of trait interrelations specifically for CF: Factor 1 (FA1) includes traits such as ET, DM, 
and GY, while Factor 2 comprises characteristics like PH, PL, and TGW in CF. The analysis displayed an aver-
age communality and uniqueness representing 95.3% and 5.6% of the genetic variance, as detailed in Table 6, 
affirming the utility of factor analysis in forming an index conducive to optimal trait  selection41. Further, the 
implementation of the MGIDI index yielded favorable genetic improvements across the evaluated traits, achiev-
ing a total genetic gain of 16.52 percent. Particularly, traits like PL and ET marked significant selection gains of 
8.52 and 3.42 percent, respectively (Table 6). This underscores the success of the MGIDI index in promoting 
specific and beneficial trait selection for advancing crop improvement strategies.

Table 6.  Eigenvalues, explained variance, factorial loadings after varimax rotation, and communalities 
obtained in the factor analysis within the soil moisture regime based on MGIDI values for CF.

VAR FA1 FA2 Commu nality Unique nesses Xo Xs SD SD (%) h2 SG SG (%) Sense Goal

ET  − 0.93 0.25 0.93 0.07 12.3 13.7 1.41 11.5 29.8 0.419 3.42 Increase 100

DM  − 0.96 0.27 0.98 0.02 24.1 25 0.874 3.62 28.9 0.253 1.05 Increase 100

GY  − 0.99 0.03 0.98 0.02 4.84 4.91 0.0728 1.5 6.71 0.00488 0.101 Increase 100

PH  − 0.09  − 1 1 0 96.1 94  − 2.07  − 2.15 62.7  − 1.3  − 1.35 Increase 0

PL 0.41  − 0.87 0.93 0.07 24.7 22.2  − 2.53  − 10.2 83.2 -2.11  − 8.52 Increase 0

TGW  − 0.57 0.75 0.89 0.11 144 149 4.52 3.14 72.7 3.29 2.28 Increase 100

Average 0.95 0.05

T. decrease 9.87

T. Increase 6.851

Eigenvalues 4.13 1.58

Variance (%) 68.8 26.4

Cumulative variance (%) 68.8 95.1

Figure 10.  The strengths and weaknesses view of the selected rice genotype is shown as the proportion of each 
factor on the computed MGIDI values over two moisture regimes, namely, (A) AWD and (B) CF.
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Discussions
For irrigated rice, the AWD irrigation system was created as a way to save water. The method has naturally been 
used mostly in places with limited water resources. In this study, water treatment had a dominant effect on grain 
yield, in addition to the effect of the cropping season, which was significant due to climatic changes. The Inter-
national Rice Research Institute (IRRI) created the AWD technique, which was first presented in Bangladesh in 
2004, to meet the demands of farmers who want to reduce their use of fuel, water, and energy in their irrigated 
rice production. Lowland rice producers may utilize the AWD, a water-saving technique, to use less water in 
their irrigated crops. AWD involves flooding the land with irrigation water a certain number of days after the 
ponded water evaporates. Water management at saturated soil conditions was shown to sustain similar moisture 
content in the soil, thus supporting leaf physiological and plant growth performances that resulted in maintaining 
a high grain yield of rice. In AWD, the interval between irrigations might range from one day to more than ten 
days during which the land is not watered. "Safe AWD" refers to the water depth threshold of 15 cm (below the 
surface) before irrigation, as it prevents yield reduction. Water savings with Safe AWD range from 15.0 to 30.0 
percent. The country’s north-central, northwestern, and southwestern regions face even more pressing problems 
due to falling groundwater levels and growing water shortages. Thus, there is little doubt that the intense ground-
water abstraction caused by dry season rice cultivation is responsible for the groundwater levels’ decline, which 
is occurring at a rate of 0.1–0.5 m/yr49. The majority of morpho-physiological and agronomical features of rice 
cultivation are significantly impacted adversely by heat and/or drought, and this is reflected negatively in grain 
production, particularly if these stressors occur during crucial stages of the plant life cycle. Therefore, the creation 
of cultivars with high productivity together with high stability under fluctuating drought and/or heat levels is 
the primary focus of plant breeding specialists and the long-term goal of modern breeding  programs50,51. Thus, 
in the present investigation, genotypes with high adaptability and stability are chosen using AMMI and GGE 
models. The environment and its interactions have a significant impact on yield and yield-related characteristics, 
therefore understanding the G × E interaction is crucial for identifying stable genotypes in breeding programs.

The yield component characteristics PH, ET, PL, TGW, and DM were very significant, which is consistent 
with the findings of Yadav et al.52. This suggests that each genotype is genetically diverse and reliable for character 
selection of these variables. The results of the ANOVA study showed that there were significant differences in the 
variances related to genotype, environment, and genotype × environment interaction for the characters PH, ET, 
PL, TGW, and DM. Literature has also shown corroborative results across genotypes in  rice53–55 Zea may 56, mung 
 bean57 and A. spp.58–65. The noteworthy interplay resulting from G × E serves as a gauge for the diverse reactions 
of rice genotypes to quantitative attributes in both scenarios. This indicates that to identify genotypes with either 
particular adaptation or broad adaptability, genotypes must be assessed for stability  analysis66. The genetic variety 
of the genotypes, environmental factors, and the interactions between the genotypes and environments might 
all be attributed to the extremely significant variations in environments and genotypes found in this research. 
Numerous studies have shown comparable findings, and the variety of the multiple conditions examined with 
the various genotypes planted may account for the extremely substantial GEI for certain agronomic  variables67–69. 
Numerous studies have shown that GEIs significantly affect rice  yields51,70,71.

The AMMI model, which is the popular stability analysis method, measures the amount of variability in 
both genotype and environment using a combination of ANOVA and  GEI44,72. The main effects (genotype and 
environment means) are shown by the X-coordinate in the AMMI 1 biplot (Fig. 2 A–D), while the interaction 
effects (PC1) are represented by the Y-coordinate. Significant differences exist across genotypes in the AMMI1 
biplot concerning direction and amplitude along the X-axis (yield) and Y-axis (PC 1 scores). A larger score 
(absolute value) implies instability and is specific to particular situations when evaluating a biplot experiment. 
Main effects with a PC score around zero suggest low interaction effects and are  stable73. A positive interaction 
occurs between a genotype and its environment when their signals on the PC axis match; a negative interaction 
occurs when their signs  disagree74. Genotypes with a PC score of almost zero and a root average yield larger than 
the grand mean, according to the AMMI model, are often able to adapt to any environment. Nonetheless, it is 
believed that genotypes with high IPCA scores and mean performances are better suited to their  surroundings47. 
AWD G3 showed particular flexibility for E7, E2, and E4 conditions with mean yields below the grand mean, 
as shown in Fig. 2A. The AMMI1 biplot explained the distribution of the tested genotypes based on the GY 
mean and PC1 values, allowing for the identification of the genotypes G3 and G2, which had the greatest GY 
mean and the lowest IPCA1 scores (Fig. 2B). The association between genotypes and environments and their 
environmental adaptability is shown by the PC score of  genotypes75. The most stable genotypes are those with 
an IPCA score close to  zero76. A genotype is more stable, according to  Balakrishnan77, if its IPCA score is closer 
to zero. Conversely, a high IPCA score positive or negative indicates that the genotype has adapted to a certain 
environment. The AMMI2 biplot provided more explanation for the multiplicative effects of GEI throughout 
the first two IPCAs (Fig. 5C,D). As a result, the genotypes G3 and G5 were the best; they were found near the 
origin and had the lowest PCs values (Fig. 2C). Genotypes G5 and G1 showed practically zero scores for both 
PC1 and PC2, indicating that these genotypes were less interacting with the locations, according to the AMMI2 
biplot (Fig. 5D) graphical analysis for PC1 and PC2. Our findings are in line with those of Gauch and  Zobel78 
and  Khan69, who discovered that the first two PCAs are enough for the AMMI model’s projection, despite some 
research suggesting the use of the first four PCs in the multi-environment  trial79. AMMI biplots were used in sev-
eral research, such as those on  barley80,  rice25,  sorghum42, and  maize74, to identify the corresponding genotypes.

The average environment coordinate (AEC) technique was used to assess trait performance and genotype 
 stability46. The average environment coordinate is the line that crosses the perpendicular line of the biplot origin. 
The direction in which the arrows point to a tiny circle represents the genotype mean  yield81. In the meanwhile, 
genotype stability is shown by the perpendicular lines that cross the biplot  origin82. Higher genotype stability 
is seen in genotypes that are nearer the AEC  line83. The optimal genotype is stable and has a high mean yield 
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per hectare. G3 and G5 genotypes were associated with a high mean yield per hectare (Fig. 5A). While G5 was 
unstable, as seen by longer lines from AEC, genotype G3 performed steadily with lines closer to AEC. While G1 
was shown to be more closely connected to AEC lines, suggesting consistent performance and a better mean 
yield per ha production, Fig. 5B revealed that genotypes with a higher mean yield per ha were G3. The genotypes 
positioned in the inner circle were considerably more appropriate than those in the outside circle. The genotypes 
that are next to and closer to the inner circle are thought to be best; nevertheless, in a few cases, no genotype was 
discovered within the inner  circle69,84. Figures 7A,B show the genotype ranking according to mean and stability 
routine. The AEC approaches were used in GGE biplot analysis to estimate genotype yield and  stability46. The 
average environment coordinate (AEC) is the line that goes through the biplot origin. It is determined by aver-
aging the PC1 (mean yield) and PC2 (stability) scores for every  environment45. A greater mean yield is shown 
by being closer to the concentric circle. The best genotypes for selection are those that have a high mean yield 
and good stability. They have the smaller vector from the AEC and are situated near the origin in the biplot. The 
genotypes with yield performance larger than the mean yield are on the right side of the line without an arrow, 
whereas the genotypes with yield performance less than the mean yield are on the left side of this line. The 
most stable and highly productive genotypes in this investigation were G3 in both treatments (Fig. 6A,B). Each 
environment’s rating is shown by how close the environmental point is to the ideal point (small arrow) in Fig. 7 
(environment rank).  Ruswandi85 states that the perfect environment is the one that is closest to the optimum 
point. The location that is closest to the ideal point, E2, was the environment that was outside the circle and had 
a sufficiently wide angle with the ideal point in our study of the AWD. This was followed by E7 and E1 (As seen 
in Fig. 7A). This suggests that although other settings may be utilized to select adaptable genotypes, the E2 was 
the most suitable environment for selecting stable and great-producing genotypes. In Fig. 7B, the E9 sites are 
the most wanted because they are the closest to the ideal environment, while the E7 locations were thought to 
be the most undesired.

According to Azam et al.86 and Hossain et al.87 the what-won-where perspective of the GGE bi-plot is the 
best model for multi-environment trial data. It enables you to classify the environments and identify the geno-
type that performs best in each. This biplot piqued the interest of many academics since it presents key ideas 
including crossover GE, massive environment difference, and specialized adaptation in a visual manner. To 
include all additional genotypes, a polygon is initially created on the genotypes that are furthest from the biplot 
origin. Beginning at the biplot origin, draw the perpendicular lines to each side of the  polygon88. In the first 
mega-environment with AWD, Vertex genotype G3 emerged as the dominant genotype. However, in the second 
mega-environment, genotype G5 emerged victorious (Fig. 4A). In the mega-environment of CF therapy, genotype 
G3 fared better as well (Fig. 4B). "Different cultivars should be selected and deployed for each different environ-
ment," the conclusion states. The rice workers, namely  Akter82,  Mohan89, and  Siddi90, reported similar findings.

The MGIDI is a relatively new technique that is being used in an increasing number of crops to assist in dis-
covering a better genotype for many characteristics  simultaneously86,87,91,92. The Euclidean genotype-ideotype 
distance is computed using a factor analysis  scores93. The MTSI is based on the projection of factor analysis 
results onto the genotype-ideotype distance. Plant breeders may find the MGIDI beneficial in choosing geno-
types based on numerous characteristics since it offers a robust and understandable selection strategy. Based 
on the characteristics under evaluation, the genotypes with lower MGIDI values have stronger stability. Six 
characteristics were taken into account for MGIDI analysis in our investigation: G3 genotypes were thought 
to be the most desirable or stable. The MGIDI index is a unique and easy-to-interpret selection procedure that 
has many practical applications to obtain long-term genetic gain in primary traits (such as grain yield) without 
jeopardizing gains of secondary traits (such as plant height). The proportion explained by each factor towards 
the MGIDI index, i.e., “strengths and weaknesses view” (Fig. 10A,B), is an important graphical tool to identify 
the strengths and weaknesses of test hybrids in terms of “trait (group of traits) need to be improved” and is an 
added advantage over existing indices. A similar study was reported by Olivoto and  Nardino41, who evaluated a 
set of 13 strawberry cultivars, wherein the strengths were described by employing MGIDI.

Methods
Description of the site and soil
In Bangladesh, the Boro season lowers the water table and calls for greater irrigation. The shortage of water in 
Bangladesh’s western Borendra area makes rice production more difficult. The ideal sites for this experiment 
were identified using surface reflectance (SR) data obtained from the Moderate Resolution Imaging Spectra 
Radiometer (MODIS) satellite equipped with a TERRA sensor and a product called MOD09. A sinusoidal grid 
with a horizontal resolution of 250 m is used to protect all of the data. The data was collected using the web-based 
warehouse inventory search tool WIST between 2010 and 2019. Month-by-month maps with the relevant photos 
were created when the data analysis was finished (Table 7 and Fig. 11).

The High Barind Tract (HBT), which covers an area of around 1600  km2 (159,964 hectares), is located in 
Bangladesh’s North-West Rajshahi Division at coordinates of 24.40–24.80° N and 88.30–88.80° E. Its terraced 
terrain, poor fertility soil, sparse vegetation, lack of main river routes, and relatively low rainfall combined with 
a protracted dry season from October to May set it apart from other regions of the  nation94. Because of its high 
summertime air temperatures, which can reach maximums of 35–40 °C in April and May, its limited ground-
water reserves and recharge, the poor water-holding capacity of surface soil during the post-rainy season, and 
its relatively low and irregular precipitation (average annual rainfall of 1440 mm, which can vary spatially and 
seasonally between 790 and 2200 mm), it is known as the most drought-prone region in the country (Fig. 12). 
Unlike Bangladesh’s floodplain regions, which experience yearly flooding, the HBT is comparatively elevated 
(9–47 m above sea  level94.
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The High Barind Tract’s soils reacted with a mild acidity. According to the USDA classification, they were of 
medium- to heavy texture, with textural grades of silt loam for six soils, silty clay loam for three soils, and silty 
clay for the remaining soil. The majority of soils have significant clay contents, ranging from 16.0 to 43.9%, with 
topography being the primary cause of the difference. Quartz predominated in the 2–20 gm silt fraction, with 
minor amounts of mica, plagioclase, K–feldspar, and  chlorite95. Generally speaking, the texture of the soil was 
clay to silty clay underneath and silty clay to clay on top. In every profile, there was a gradual rise in the amount 
of clay from the surface  down96.

Plant components and the layout of field experiments
The present investigation used AWD and CF systems, whereby the five genotypes including the genetic materials 
better than the others (Table 8). Table 8 displays the genotype name, code, collection source, and varietal descrip-
tion. The field experiment was performed from January to May 2020, throughout the Boro season. 30 days after 
the seedlings were grown into the seedbed, they were moved per hill, with a 20 cm × 20 cm gap between rows 
and  plants97. Plants were spaced 20 cm apart from one another in this experiment, and rows were spaced 20 cm 
apart. The nine settings in the multi-environment trials were performed under alternating cultivations of early 
and standard planting seasons. Rice cultivars and irrigation schedules were the two variables combined, and 
they were set up in a split-plot design with three replications. The main plot was the irrigation regime, while the 
subplot was the rice genotype. Rice cultivars were assigned at random to three replications at a subplot. A 6-m 
buffer was placed between the two irrigation regime plots to prevent sub flow from the continuous flooding plot 
from contaminating the plot. The experiment used a split-plot design with three (3) replications, maintaining a 
unit plot size of 8 × 5 m. To keep the soil fertility in the experimental units at the optimal level for rice cultiva-
tion in Bangladesh, additional chemical fertilizers were sprayed at rates of 220–120-90–60 kg/ha, respectively, 
including urea, triple super phosphate, muriate of potash, and gypsum  (CaSO4.2H2O)98. The full doses of TSP 
and muriate of potash, along with half of the dose of urea, were applied as the basal fertilizer application, and the 
remaining 50% of the nitrogenous fertilizer was divided into two halves. The first one was used during tillering, 
and the second one was used during booting. All crucial intercultural tasks, such as gap filling, routine weeding, 
applying insecticides, adding fertilizer to the top, and so on, were completed throughout the growing season to 
support the plants’ healthy growth and development. Experimental research and field studies on rice including 
the collection of rice seeds comply with our institutional, national, and international guidelines and legislation.

Two AWD irrigation regimes were used as a water-saving strategy in place of constant flooding. Throughout 
the whole cropping season, under the continuous flooding regime, a constant water layer of 5 to 10 cm was main-
tained, depending on the crop growth stage (Fig. 13a). Irrigation was the first water-saving measure considered 
when the soil matric potential (AWD30) reached 30 kPa (Fig. 13b). The average daily soil matric potential (SMP) 
was measured and hourly monitored using Watermark Granular Matrix sensors (WGMs; model: EC06-783, 
Irrometer, Co., Riverside, CA, USA). WGMs provide an indirect way to quantify SMP by directly measuring soil 
water tension. Two WGMs were placed into each plot at a depth of 15 cm to lessen the variation in soil water 
content caused by field leveling. As soon as the standing water level hit 20 mm, irrigation was turned on while 
using the continuous flooding irrigation technique. Thirty millimeters of irrigation water were applied to the rice 
during its vegetative growth stage, and eighty millimeters were applied during its reproductive phase. During 
the rice vegetative stage, 30 mm of irrigation water was applied at each irrigation event under the AWD treat-
ments (AWD30). During the rice reproductive phase, irrigation was similarly managed under AWD treatments 
to continuous flooding. This was done to avoid or reduce sterility. Before imposing irrigation regimes on the 
treatments, 100 mm of irrigation water was administered for paddling and transplant  survival99.

Data gathering
In each plot, 10 randomly selected plants were taken for sampling all of the phenotypic data. Plants were har-
vested when 85% of the grains of the panicles turned a golden yellow color. Three biological replicates (10 plants 
per replicate for each trait) were used to collect data on growth and yield-related traits. The studied days to matu-
rity (DM) trait was measured from the sowing to harvesting day. At harvest, plant height (PH) was determined 
from the soil surface to the highest part of the plant; Effective tiller (ET) was counted as the number of panicles 
bearing tillers per hill; Panicle length (PL) was determined from the bottom of the peduncle to the topmost of the 

Table 7.  List of the locations selected for the experiment location detail during October 2019 to April 2020.  
(Source: Bangladesh Meteorological Department (BMD), Rajshahi region).

Name locations Environment code AEZ (Agro-ecological zone)

Nachole E1 High Ganges River floodplain

Talando E2 Active Ganges floodplain

Kolma E3 Active Ganges floodplain

Kismatgarkor E4 Active Ganges floodplain

Dhuroil E5 Active Ganges floodplain

Shavoadanga E6 Active Ganges floodplain

Biprabelgharia E7 High Ganges River floodplain

Parsodanga E8 Active Ganges floodplain

Gobindasi E9 Madhupur tract
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Figure 11.  Water status of soil from October to April in Bangladesh. The data were collected from 2010 to 2019 
by using the web-based warehouse inventory search tool (WIST).
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panicle; Thousand seeds weight was (TSW) recorded by counting one thousand seeds manually from each pot 
and weighed using an electronic balance. The grain yield was obtained using a crop cutting test (CCT) of 1 m by 
1 m areas of each experimental plot. The harvested grains were dried, winnowed, and weighed. The weight was 
then converted to per unit area crop yield based on 14% grain moisture content and presented as grain yield (t/
ha). Tons per hectare were calculated from the seed yield of each plot.

Statistical analysis
The average data of various traits (Supplimentary file 1 and 2) were analyzed  statistically100 and  biometrically101,102. 
R version 4.2.1was used for all statistical analysis and data  visualization103. The analysis of variance, AMMI analy-
sis of  variance104, genotype plus genotype × environment (GGE)  biplot46, and stability statistical analysis were all 
performed using the "metan" R  Package93. The AMMI model uses two techniques: multiplicative interaction effect 
and additive main effects of environments and genotypes, as well as ANOVA and singular value  decomposition105. 
A genotype main effect plus genotype-by-environment interaction (GGE) biplot was used to display the win-
ning genotypes and mega-environments (MEs) for yield-related features and grain  production46,106. Using a 
"which-won-where" biplot, investigations on MEs and the optimal genotype in each habitat were carried out. 
"Discriminativeness vs. representativeness" biplots were used to assess the ideal conditions for each character-
istic. Ideal genotypes exhibiting high mean performance and stability across all parameters were shown using 

Figure 12.  Temperature, humidity, and rainfall variation during grain filling period in both AWD and CF 
methods at 9 environments in the rice crop season of 2019–2020.

Table 8.  List of the Genotypes selected for this experiment.

Genotype name Genotype code Source Variety description

Binadhan-10 G1 BINA Pedigree: IR64197-3B-14-2*, Grain type: Medium slender, Potential yield: 5.5–6.0 t  ha-1, Duration: 125–130 days

Binadhan-8 G2 BINA Pedigree: IR66946-3R-1-1*, Grain type: Medium bold, Potential yield: 5.0–7.0 t  ha-1, Duration: 130–135 days

BRRI dhan29 G3 BRRI Parentage: BG90-2/BR 46-51-5, Grain type: Medium slender, Potential yield: 7.50 t  ha-1, Duration 150–160 days

BRRI dhan47 G4 BRRI Parentage: IR515111-B-B-34-B*/TCCP266-2-49-B-B-3*, Grain type: Medium bold, Potential yield: 6.0 t  ha-1, Duration: 
145–152 days

Binadhan-17 G5 BINA Pedigree: (SAGC-7 (GSR)*), Grain type: Medium bold, Potential yield: 7.50 t  ha-1, Requires fewer inputs, Saves 30% water, GSR 
variety, Duration: 113–118 days

Figure 13.  Comparison of canopy of crop and soil wetness status under two different irrigation regimes i.e., 
continuous flooding and alternate wet and dry conditions during the rice tillering stage at Nachole during Boro 
season. (A) Continuous flooding, (B) Alternate wet and dry.
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"ranking genotypes" biplots. It assigns a score to genotypes according to many attributes, using the multi-trait 
genotype-ideological distance index (MGIDI) proposed by Olivoto41. The statistical analysis for the multi-trait 
genotype–ideotype distance index (MGIDI) was performed using the R Package "metan" version 1.16.0.

Different stability statistics such as ASV, HMRPGV, Wricke’s ecovalence, and Thennarasu’s statistics were 
calculated by the following method which is described below:-

AMMI stability value (ASV)
Purchase107 developed another stability statistic based on the two first IPCA scores for each genotype. The AMMI 
stability value (ASV) is the distance from the coordinate point to the origin in a two-dimensional scattergram 
of IPCA1 scores against IPCA2 scores. This measurement is described as follows:

where SSIP1/SSIP2 is the ratio between the sum of squares from the first and second interaction principal com-
ponent axis, and PC1 and PC2 are the genotypic scores of these components in the AMMI model. The genotype 
with the lowest value of this statistic would be more stable.

Wricke’s Ecovalence (W2)  Wricke108 proposed the concept of ecovalence as the contribution of each genotype 
to the GEI sum of squares.

where Xij is the grain yield of genotype ith in environment jth; Xi. is the mean grain yield of genotype ith; X.j is 
the mean grain yield of the environment jth; and X. is the grand mean.

The harmonic mean of RPGV (HMRPGV) is the third BLUP-based stability parameter that considers stability, 
adaptability, and mean performance simultaneously. This parameter is calculated as follows:

In the above formulas, GVij, _j, and E are the genotypic values (BLUP) for the ith genotype in the jth envi-
ronment, the grand mean for each environment j, and the number of environments, respectively. As has been 
mentioned by  Resende109, the highest values of these parameters are suitable.

Thennarasu’s statistics
Since the rank of genotypes in the specific environments cannot be done according to the phenotypic values, 
the stability of test genotypes has to be estimated independently of the genotypic effect. To solve this chal-
lenge, a correction of ranking patterns of test genotypes and environments based on the corrected phenotypic 
values was developed. Four  NP(1–4) statistics are a set of alternative non-parametric stability statistics defined 
by  Thennarasu110. Indeed, these parameters are based on the ranks of adjusted means of the genotypes in each 
environment.

Conclusions
Considering the impact of global warming, it is imperative to incorporate effective irrigation methods in rice 
cultivation that not only consider the water requirements of plants but also prioritize factors such as WUE, 
physiological processes, and resilience in stressful situations. The performances of each genotype in all situa-
tions for the AWD technique and the CF system were found to be noteworthy, it is possible to conclude that 
all genotypes were comparable to one another. Binadhan-10 exhibits the lowest G × E interaction in the AWD 
technique, whereas BRRI dahn29 performed better and exhibited less G × E interaction in both the CF system 
and the AWD method, according to the adaption map and AMMI biplot stability. It also offered a respectable 
understanding of how well rice genotypes respond to a variety of settings using stability analysis. Yield stability 
varies throughout genotypes in different settings. The AMMI statistical model has proven to be a useful tool for 
determining the appropriate genotypes for a given environment, as well as for varied settings. The most respond-
ing genotypes in the CF system were Binadhan-17, BRRI dhan47, and Binadhan-8 in the AWD approach. The 
genotypes that were evaluated revealed that Binadhan-10 had a more stable genotype for the AWD system and 
that BRRI dhan47 & BRRI dhan29 were the best fits for all the environments in both systems. Two rice varieties, 
Binadhan-10 and BRRI Dhan47, may be deployed and shown at the farmer level in that area of fields for sustain-
able food security and smart farming. AWD has also been found to be a delicate and effective irrigation method 
that does not compromise grain production and quality, while also being economically feasible.

Data availability
This published manuscript and its accompanying information files contain all of the data created or analyzed 
during this investigation.
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