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Predictive approach for liberation 
from acute dialysis in ICU patients 
using interpretable machine 
learning
Tsai‑Jung Wang 1,2,3, Chun‑Te Huang 2, Chieh‑Liang Wu 1,4, Cheng‑Hsu Chen 2,4, 
Min‑Shian Wang 1, Wen‑Cheng Chao 1,4, Yi‑Chia Huang 3,5 & Kai‑Chih Pai 6*

Renal recovery following dialysis-requiring acute kidney injury (AKI-D) is a vital clinical outcome 
in critical care, yet it remains an understudied area. This retrospective cohort study, conducted in 
a medical center in Taiwan from 2015 to 2020, enrolled patients with AKI-D during intensive care 
unit stays. We aimed to develop and temporally test models for predicting dialysis liberation before 
hospital discharge using machine learning algorithms and explore early predictors. The dataset 
comprised 90 routinely collected variables within the first three days of dialysis initiation. Out of 1,381 
patients who received acute dialysis, 27.3% experienced renal recovery. The cohort was divided into 
the training group (N = 1135) and temporal testing group (N = 251). The models demonstrated good 
performance, with an area under the receiver operating characteristic curve of 0.85 (95% CI, 0.81–
0.88) and an area under the precision-recall curve of 0.69 (95% CI, 0.62–0.76) for the XGBoost model. 
Key predictors included urine volume, Charlson comorbidity index, vital sign derivatives (trend of 
respiratory rate and SpO2), and lactate levels. We successfully developed early prediction models for 
renal recovery by integrating early changes in vital signs and inputs/outputs, which have the potential 
to aid clinical decision-making in the ICU.
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NHIRD	� National Health Insurance Research Database
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Acute kidney injury (AKI) and severe AKI that requires renal replacement therapy (RRT) initiation accounts for 
50% and 5%–15% of intensive care units (ICU) patients, respectively1,2. AKI morbidity and mortality increase 
with increase in its severity and is highest among patients with AKI requiring dialysis (AKI-D)3. Outcomes for 
AKI-D can vary from successful recovery without the need for RRT to dialysis dependent, or even mortality4. 
Nonrecovery of renal function is a vital morbid event with long-term implications for both patients and health-
care system, including longer ICU stay, higher mortality, and economic burden4.

Over the past two decades, several studies have investigated various variables5,6, including conventional 
biochemical markers used as surrogates of kidney function7,8, urine output changes9, and novel kidney 
biomarkers10,11, to predict successful dialysis discontinuation. However, parameters assessed at the initiation 
or early stages of dialysis have shown relatively poor predictive values. Early and accurate stratification of renal 
prognosis is essential for closely monitoring renal function, avoiding nephrotoxic agents, applying kidney protec-
tive measures, adjusting dialysis parameters, and facilitating early and informed conversations regarding patient 
care goals12. Therefore, developing a precise prediction model shortly after the initiation of dialysis may enhance 
decision-making and care for patients with AKI-D in ICUs.

Predicting outcomes related to AKI holds significant clinical interest, yet challenging due to the complex and 
high-dimensional nature of ICU data. Machine learning prediction models have become vital tools, employed 
to forecast a variety of kidney-related outcomes. These models effectively identify patterns that not only pre-
dict the development and progression of AKI but also the potential need for acute dialysis and the long-term 
consequences following AKI12–15. However, to explore good machine-learning models for predicting successful 
dialysis liberation in patients with AKI-D remains an area of research16. To date, no widely accepted tool for early 
prediction of kidney recovery in patients with AKI-D exist11. Moreover, the absence of patient mortality as a 
competing risk remains a main concern in studies focusing on RRT liberation12. This study aimed to develop and 
validate clinically applicable machine-learning models for the early prediction of successful RRT discontinuation 
at discharge in patients with AKI-D admitted to ICU using routinely collected parameters obtained within the 
first 3 days after RRT initiation, as well as explore early predictors.

Methods
Study population
Cases of AKI-D were defined as patients who experienced AKI and required RRT, excluding those with pre-
existing end-stage renal disease (ESRD). We herein retrospectively identified adult patients who underwent their 
first dialysis due to AKI during the index ICU admission at Taichung Veterans General Hospital (TCVGH), a 
tertiary care teaching hospital in Taiwan with five adult ICUs and a computerized electronic medical record 
(EMR) system, between January 2015 and December 2020. The use of RRT was always reviewed and approved by 
nephrologists before application. We excluded patients who had been in the ICU for < 48 h, those with a history 
of chronic dialysis or renal transplant for ESRD, individuals with a baseline creatinine (Cr) ≥ 4 mg/dL, or those 
with > 20% missing data (Fig. 1A). This cohort was established from two databases: the clinical data warehouse 
at TCVGH and cause-of-death data from the National Health Insurance Research Database (NHIRD) in Taiwan 
to determine the date of death of the patients until the end of 2021.

Data collection and feature selection
We identified candidate predictors from routinely collected data within 3 days after initiating dialysis: EMR 
data and time series of vital signs, which were categorized as follows: ‘Demographics and severity at admission’, 
variables such as the length of hospitalization before ICU admission and severity scores (the acute physiology 
and chronic health evaluation II [APACHE-II] score and the sequential organ failure assessment [SOFA]) were 
considered; ‘Comorbidities at admission’, determined using International Classification of Diseases, 9th Revision, 
Clinical Modification (ICD-9-CM) and 10th Revision (ICD-10) codes within the past year17; ‘Vital signs’, includ-
ing vital sign measurements taken within 72 h after dialysis initiation; ‘Laboratory values’, including laboratory 
results obtained within the initial 72 h of dialysis; ‘Medications’, considering the use of potential nephrotoxic 
drugs over a 1-week period before the prediction time; ‘Inputs and outputs’, for fluid status data throughout the 
first 72 h of dialysis; and ‘AKI and dialysis parameters’, including the days from ICU admission to dialysis, AKI 
defined by either Cr or urine output criteria as outlined in the Kidney Disease: Improving Global Outcomes 
(KDIGO) clinical practice guidelines for AKI18, and dialysis mode. We assessed whether patients met the AKI 
diagnosis criteria before initiating dialysis: an increase in serum Cr of more than 0.3 mg/dL from baseline (label_
Cr) and/or a decrease in urine output to less than 0.5 mL/kg/hour for more than 6 h (label_Ur). Furthermore, 
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vital signs are recorded at least every two hours and inputs and outputs data every eight hours in the ICU. For 
instance, within a 72 h feature window, there are at least 36 entries of vital signs. Given the complexity of the vital 
signs measured over time, we calculated the mean, variance, and trend of these signs to capture the dynamics of 
patient physiology. Besides, each entry of diet, intravenous fluid, and urine output was standardized to an hourly 
rate to facilitate the calculation of trends. Data preprocessing details can be found in the supplemental material 
(Supplemental Table S1, S2, and Figure S1). Table 1 presents the final set of 90 predictors used in our models.

Figure 1.   Overall schema of study. (A) Flowchart of the study population. (B) Illustration of the study 
design and the time frame: The blue bar with a double arrow represents the feature window for acute kidney 
injury requiring dialysis (AKI-D), which spanned the first 72 h following the commencement of dialysis. The 
prediction of recovery was assessed immediately after the end of this feature window. *Those recovered from 
AKI-D on discharge must fulfil two criteria: (i) being dialysis-free for at least a 5-day period before discharge; 
and (ii) being alive for more than 30 days after stopping dialysis.
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Hyperparameter optimization
For the XGBoost model, we experimented with various hyperparameters, including the number of estimators 
(500, 1000), learning rates (0.01, 0.02, 0.1), and maximum depths (3, 5, 7, 10). Using the grid search method, 
we found that the optimal configuration was 500 estimators, a learning rate of 0.01, and a maximum depth of 5, 
which yielded the best performance results. Similarly, for the Random Forest model, we conducted grid search 
experiments with different numbers of trees (50, 100, 150, 200) and criteria (Gini, entropy) to determine the most 
effective parameters. The grid search identified ’Gini’ as the best criterion and 100 trees as the optimal number 
of estimators for achieving superior performance in the Random Forest classifier.

Outcome measure: renal recovery and patient survival
We annotated the outcome as recovery for patients with AKI-D who were both free from dialysis and survived 
beyond 30 days after discontinuing dialysis, defined as RRT cessation for at least 5 days before hospital discharge 
(Fig. 1B). To minimize potential misclassification of patients who discontinued dialysis due to withdrawal of 
care, the deceased date from NHIRD were also gathered to ensure that patients were alive for > 30 days after 
dialysis discontinuation.

For patients who still required dialysis but were alive upon hospital discharge, their status were checked 
based on the presence of dialysis-dependent catastrophic illness certificates, which confirmed true nonrecovery; 
these certificates are issued after a review by at least two nephrologists who carefully examine medical records19. 
Furthermore, we compared the all-cause mortality on the 90th day and 1 year after hospital discharge.

Data analysis and model development
Patients were divided into two groups: the training group (those admitted between 2015 and 2019) and testing 
cohort (those admitted in 2020) (Supplemental Figure S1). The prediction time point was set at 72 h post the first 
dialysis commencement (Fig. 1B). During initial model development, the training dataset was randomly split 
into training and validation sets in an 80:20 ratio. A fivefold cross-validation was performed to avoid overfitting 
and considered a robust method for model evaluation prior to temporal testing. Dialysis cessation after AKI-D 
was predicted using several machine-learning algorithms: extreme gradient boosting (XGBoost), random forest 
(RF), and logistic regression (LR)20–22.

The area under receiver operating characteristic (AUROC) statistics along with sensitivity, specificity, Brier 
Score, accuracy, precision, recall, and F-1 score was used for the training and testing groups. In the testing 
datasets, the receiver operating characteristic (ROC) curve, precision-recall curve (PRC), calibration curve, 
and decision curve were referred to evaluate the predictive machine-learning models’ discrimination, accuracy, 
and clinical applicability.

Table 1.   List of predictors. AIDS/HIV, acquired immunodeficiency syndrome/human immunodeficiency 
virus, APACHE-II, acute physiology and chronic health evaluation II; BP, blood pressure; COX, 
cyclooxygenase; ICU, intensive care unit; NSAID, non-steroidal anti-inflammatory drug; PHA, pH in arterial 
blood gas; PPI: proton-pump inhibitor. *We represented “blood culture” as a categorical variable during 
a 1-week time frame. **Denotes the sum of categories of the 17 aforementioned drugs. ***Trend analysis 
was conducted exclusively for diet, intravenous fluid, and urine output. **** Denotes whether patients met 
the acute kidney injury (AKI) diagnosis criteria for an increase in serum creatinine more than 0.3 mg/dL 
(label_Cr) and/or a decrease in urine output less than 0.5 mL/kg/hour for > 6 h (label_Ur) as determined by 
the Kidney Disease: Improving Global Outcomes (KDIGO) clinical practice guidelines for AKI right before the 
initiation of dialysis.

Categories (Number) Descriptions (Feature window) Features

Demographics and severity at admission (6) On the first day of ICU admission Age, medical admission, APACHE-II, ventilator, shock, days to ICU admission

Comorbidities at admission (18) At admission

Myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular 
disease, dementia, chronic pulmonary disease, rheumatic disease, peptic ulcer disease, mild 
liver disease, diabetes without chronic complication, diabetes with chronic complication, 
hemiplegia or paraplegia, renal disease, any malignancy including lymphoma and leukaemia, 
moderate or severe liver disease, metastatic solid tumour, AIDS/HIV, Charlson comorbidity 
index

Vital signs (21)

Mean (72 h)
Systolic BP, diastolic BP, pulse pressure, oximetry, respiratory rate, pulse rate, body tempera-
tureVariance (72 h)

Trend (72 h)

Laboratory values (11) Mean (72 h) Creatinine, WBC, Hb, platelet, BUN, albumin, total bilirubin, lactate, PHA, Na, blood culture*

Medications (18) Record as user or non-use (1 week)
Renin-angiotensin system inhibitors, diuretics, PPI, H2 receptor antagonists, NSAID-COX 
I inhibitors, COX II inhibitors, vasopressin, norepinephrine, dopamine, epinephrine, dobu-
tamine, vancomycin, bactrim, gentamicin, amikin, colistin, amphotericin B, total medica-
tions**

Inputs and outputs (12)
Sum (72 h)

Blood transfusion, diet, intravenous fluid, dialysis ultrafiltration, urine volume, fluid balance
Trend (72 h)***

AKI and dialysis parameters (4) On the first day of dialysis Days from ICU admission to dialysis, label_Cr****, label_Ur****, CRRT​
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Sensitivity analysis
Additional analyses were conducted to validate the robustness and support the clinical utility of our study. First, 
we made predictions at various time points post-dialysis along with 72 h baseline models. Models were generated 
using data obtained during the first 24- or 48-h window after first dialysis (observation time window), respec-
tively, to estimate the renal and patient outcomes earlier. The prediction of recovery was assessed immediately 
after the end of this feature window. Second, to construct more simple models, we applied Least Absolute Shrink-
age and Selection Operator (LASSO) regression selection to generate a 24-variable out of 90-variable full model. 
Third, the number of true negative outcomes was higher than that of true positive outcomes, thus requiring class 
weighting to address data imbalance. The different thresholds were presented to examine the model prediction 
performance to determine an optimal threshold.

Feature interpretation and statistical analysis
For the best-performing model (XGBoost), Shapley additive explanation (SHAP) values were employed to evalu-
ate feature importance and their relationship with the outcome in the test set23. Partial dependence plots (PDP) 
were generated for the most influential variables, and individual feature interactions were assessed with the 
study outcome24. Additionally, we illustrated SHAP values and Local Interpretable Model-agnostic Explanations 
(LIME) to provide visual insights into the clinical utility of selected patients. Baseline characteristics between 
groups with different renal recovery statuses were examined for statistical significance using a threshold of 
p < 0.05. All analyses were performed using Python (version 3.7.6) and R programming (version 3.4.0).

Ethical approval and consent to participate
The study was approved by the Institutional Review Board of Taichung Veterans General Hospital with a waiver 
of informed consent since this was a retrospective analysis of anonymous data (TCVGH IRB number: SE20249B 
and SE21098B).

Results
Clinical characteristics of the study participants
Overall, 26,593 adults were admitted to TCVGH ICUs during the study period. Among the eligible patients, 
1,381 patients (61.9% male) experienced AKI-D during their ICU stays (Fig. 1A). The included patients had a 
median age of 68.0 (interquartile range, 58.0–79.0), with 89.4% requiring mechanical ventilation. Overall, 378 
patients (27.3%) achieved renal recovery, whereas 1,003 patients experienced nonrecovery of renal function. 
Further, 660 patients (47.8%) passed away before dialysis discontinuation or after withdrawing dialysis, whereas 
343 patients (24.8%) remained dependent on dialysis upon discharge. Table 2 summarizes baseline and clinical 
characteristics of patients with AKI-D, stratified by renal recovery status at hospital discharge. Of the recruited 
patients with AKI-D, 1,135 patients admitted between 2015 and 2019 constituted the training cohort, whereas 
246 patients admitted in 2020 comprised the temporal testing cohort. Supplemental Table S3 provides the patient 
characteristics, stratified based on the train/test split. The train/test cohorts showed comparable age, Charlson 
comorbidity index (CCI), and patient outcomes.

Performance of the models
When trained and temporal tested with all 90 variables, the XGBoost, RF, and LR predictors achieved AUROC 
values of 0.85 (95% CI, 0.81–0.88), 0.83 (95% CI, 0.80–0.87), and 0.82 (95% CI, 0.79–0.85), respectively, for pre-
dicting renal recovery at 72 h windows in the testing cohort (Fig. 2A). XGBoost exhibited the highest accuracy 
among the three machine-learning models, and Delong’s test confirmed its significant outperformance of LR 
(Supplemental Table S4). Table 3 presents the performance statistics for the models with a proposed recovery 
threshold of 50%. Given this threshold examining the XGBoost model in the testing cohort, only 57% of the 
patients who were predicted to recover truly did recover (sensitivity), while 93% of the patients who were pre-
dicted not to recover indeed did not recover (specificity). Furthermore, the trade-off between sensitivity and 
specificity was evaluated at predicted renal recovery thresholds in increments of 10% for the XGBoost model 
(Supplemental Table S5). The F1 score, a good measure of test accuracy, was highest at a cut-off threshold of 0.3, 
while maintaining good values across the range of 0.2 to 0.5. Supplemental Table S6 demonstrates the perfor-
mance matrix of a cut-off threshold of 0.3. At this threshold, the sensitivity increases to 73%, while the specific-
ity is 81%. Additionally, The PRC for the models shown in Fig. 2B provided additional clarify on the model’s 
performance, especially for imbalance datasets, as in our study. Moreover, the temporal testing cohort had good 
calibration based on the disparity between the predicted and actual outcomes (Fig. 2C). Furthermore, the deci-
sion curve analysis illustrated favorable net benefits throughout a wide range of threshold probabilities (Fig. 2D).

Independent predictors for renal recovery
Figure 3A displays top 20 predictors of dialysis liberation and their XGBoost model rankings based on gain. 
Positive SHAP value (in red) suggests the feature boosts the predicted probability of dialysis liberation, while 
negative SHAP value (in blue) indicates a higher probability of dialysis dependency or death. The most influential 
feature was urine volume, followed by CCI, peripheral capillary oxygen saturation (SpO2), lactate, respiratory 
rate trend, renal disease, BUN, arterial PH, systolic blood pressure (BP) variation, days to ICU admission, white 
blood cell, and diet (Fig. 3). Figure 4 presents PDPs for those highest-ranking variables. Figure 3B demonstrates 
SHAP feature importance categorized by the main clinical domains in predicting dialysis liberation, highlighting 
the significant impact of early vital signs and inputs/outputs domains on the renal recovery probability.
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Table 2.   Characteristics of the 1,381 patients with acute kidney injury requiring dialysis categorized by renal 
recovery. Results displayed either as median (interquartile range) or count (%). AKI, acute kidney injury; 
APACHE-II, acute physiology and chronic health evaluation II; BMI, body mass index; BP, blood pressure; 
CRRT, continuous renal replacement therapy; ICU, intensive care unit; PHA, pH in arterial blood gas; SOFA, 
sequential organ failure assessment. * Chi-square test or Mann–Whitney U test as appropriate.

All
(N = 1,381)

Recovery
(N = 378)

Nonrecovery
(N = 1,003) p value*

Basic characteristics

 Age, years 68.0 (58.0–79.0) 66.0(52.0–79.0) 69.0(59.0–79.0)  < 0.01

 Male 855 (61.9%) 236 (62.4%) 619 (61.7%) 0.81

 BMI, kg/m2 24.5 (21.4–28.0) 24.3 (21.1–27.4) 24.6 (21.6–28.1) 0.69

Comorbidities at admission

 Charlson comorbidity index 3 (2–5) 2 (1–4) 4 (2–6)  < 0.01

 Renal disease 773 (56.0%) 170 (45.0%) 603 (60.1%)  < 0.01

 Any malignancy 419 (30.1%) 79 (20.6%) 340 (33.6%)  < 0.01

 Diabetes 570 (41.3%) 147 (38.9%) 423 (42.2%) 0.27

 Congestive heart failure 360 (26.1%) 84 (22.2%) 276 (27.5%) 0.05

 Coronary artery disease 269 (19.5%) 69 (18.3%) 200 (19.9%) 0.48

 Hypertension 494 (35.8%) 117 (31%) 377 (37.6%) 0.02

Admission characteristics

 Medical ICU 993 (71.9%) 271 (71.7%) 722 (72.0%) 0.91

 Emergent or scheduled surgery 177 (12.8%) 62 (16.4%) 115 (11.5%) 0.01

 APACHE-II score 29 (24–33) 28.5 (22–32) 30 (24–34)  < 0.01

 SOFA 11 (8–13) 10 (7–13) 11 (8–13)  < 0.01

 Use of ventilator 1234 (89.4%) 329 (87.0%) 905 (90.2%) 0.09

 Use of vasopressor 1060 (76.8%) 278 (73.5%) 782 (78.0%) 0.08

Vital signs

 Systolic BP (mmHg) 118.7 (103.0–138.0) 126.3 (110.8–141.7) 116.3 (99.3–135.2)  < 0.01

 Diastolic BP (mmHg) 64.3 (54.3–75.0) 69.7 (59.7–79.0) 63.0 (52.2–73.3)  < 0.01

 Pulse pressure (mmHg) 53.0 (40.0–67.7) 56.0 (42.7–69.9) 52.0 (38.7–66.8)  < 0.01

 Oximetry (%) 97.7 (95.3–99.3) 98.7 (96.8–99.7) 97.3 (94.7–99.3)  < 0.01

 Respiiratory rate 18.7 (16.0–22.7) 18.0 (16.0–20.3) 19.0 (16.0–23.7)  < 0.01

 Pulse rate 86.7 (74.7–100.7) 86.2 (73.5–97.9) 87.3 (74.7–101.7) 0.28

 Body temperature (℃) 36.3 (35.9–36.7) 36.4 (36.2–36.8) 36.3 (35.8–36.6)  < 0.01

Laboratory values

 WBC (103/μL) 11.0 (7.5–16.6) 11.6 (7.9–15.8) 10.6 (7.4–16.9) 0.62

 BUN (mg/dL) 56.0 (32.0–85.0) 51.5 (32.0–80.0) 58.0 (32.0–88.0) 0.04

 Creatinine (mg/dL) 3.3 (1.9–5.1) 2.9 (1.6–4.6) 3.5 (2–5.4)  < 0.01

 Lactate (mg/dL) 13.3 (8.3–25.1) 11.8 (8.3–17.8) 14.6 (8.3–32.4)  < 0.01

 PHA 7.4 (7.4–7.4) 7.4 (7.4–7.5) 7.4 (7.3–7.4)  < 0.01

Patients status at dialysis initiation

 Days from ICU admission to dialysis (day) 1.4 (0.4–4.2) 1.1 (0.3–3.4) 1.6 (0.5–4.7)  < 0.01

 AKI defined based by Cr (Label_Cr) 1107 (80.2%) 302 (79.9%) 805(80.3%) 0.88

 AKI defined based by urine (Label_Ur) 1143 (82.8%) 272 (72.0%) 871 (86.8%)  < 0.01

 Fluid balance since ICU admission (L) 4.9 (1.2–14.4) 4.4 (1.0–12.4) 5.2 (1.4–15.4) 0.06

 CRRT​ 236 (17.1%) 58 (15.4%) 178 (17.8%) 0.29

Contributing factors of AKI

 Contrast medium 443 (32.1%) 128 (33.9%) 315 (31.4%) 0.38

 Post-operative AKI 228 (16.5%) 75 (19.8%) 153 (15.3%) 0.04

 Sepsis or septic shock 720 (52.1%) 198 (52.4%) 522 (52.0%) 0.91

 Major bleeding/hypoperfusion 364 (26.4%) 97 (25.7%) 267 (26.6%) 0.72

Outcomes

 ICU stay, days 12.7 (6.1–23.1) 14.7 (7.8–26.0) 12.0 (5.6–22.2)  < 0.01

 Hospital stay, days 25.0 (13.8–32.8) 30.5 (20.1–35.0) 22.6 (12.0–31.8)  < 0.01

 90-day mortality 794 (57.5%) 50 (13.2%) 744 (74.2%)  < 0.01

 1-year mortality 911 (66.0%) 113 (29.9%) 798 (79.6%)  < 0.01



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13142  | https://doi.org/10.1038/s41598-024-63992-y

www.nature.com/scientificreports/

Sensitivity analyses
We conducted several additional analyses (Supplemental Table S7–S9). To address data imbalance (27.3% renal 
recovery vs. 72.7% nonrecovery), class weights were incorporated into the machine-learning models, resulting 
in consistent performance. Moreover, LASSO was used to select a reduced set of parameters for model building, 
retaining the top 24 most influential variables, with a c-statistic of 0.84 in the XGBoost model. Furthermore, dial-
ysis liberation was predicted using different time windows: the original prediction at 72 h post-dialysis (Table 3) 
and earlier predictions at 48 and 24 h post-dialysis (Supplemental Table S9). These predictions yielded AUROC 
values of 0.84, 0.82, and 0.82, respectively, in the XGBoost model. Supplemental Figure S2 summarizes the ten 
most influential features in the model at 24, 48, and 72 h post-dialysis, along with their temporal evolution.

Figure 2.   Performance of the machine-learning models for early prediction of dialysis liberation. (A) Area 
under receiver operating characteristic (AUROC) Plots: Area under curve of the temporal testing cohort, 
XGBoost 0.85 (95% CI, 0.81–0.88), RF 0.83 (95% CI, 0.80–0.87), and LR 0.82 (95% CI, 0.79–0.85). (B) Area 
under precision-recall curves (AUPRC), XGBoost 0.69 (95% CI, 0.62–0.76), RF 0.68 (95% CI, 0.62–0.76), and 
LR 0.58 (95% CI, 0.50–0.65). (C) Calibration plots. (D) Decision curves.

Table 3.   Performance of the machine-learning models for early prediction of dialysis liberation. AUROC, area 
under receiver operating characteristic; LR, logistic regression; RF, random forest; XGBoost, extreme gradient 
boosting. Values in parentheses are 95% confidence intervals.

Models Sensitivity Specificity Brier Score Accuracy AUROC

2015–5019
Development and fivefold cross-validation

XGBoost 0.48 ± 0.04 0.91 ± 0.04 0.22 ± 0.05 0.78 ± 0.05 0.81 ± 0.03

RF 0.38 ± 0.02 0.95 ± 0.02 0.21 ± 0.03 0.79 ± 0.03 0.80 ± 0.02

LR 0.43 ± 0.04 0.89 ± 0.04 0.24 ± 0.05 0.76 ± 0.05 0.77 ± 0.01

2020
Temporal testing

XGBoost 0.57 0.93 0.16 0.84 0.85 (0.81–0.88)

RF 0.44 0.94 0.18 0.82 0.83 (0.80–0.87)

LR 0.44 0.91 0.21 0.79 0.82 (0.79–0.85)
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Discussion
We constructed a machine-learning algorithm to forecast the early likelihood of dialysis liberation in critically ill 
patients with AKI, incorporating both the variability and trends of dynamic parameters from routine data within 
the first 72 h of dialysis. These models were developed, cross-validated, and temporal tested, thus demonstrating 
good discrimination in predicting renal recovery at hospital discharge. Furthermore, we applied class weighting 
to address data imbalance, used LASSO to develop models with few variables, and predicted short time win-
dows (the first 24 or 48 h), all showing good discrimination. These results suggest the potential clinical utility of 
integration into EMR for clinical decision-support systems. Finally, using SHAP value and PDP, we identified 
critical features influencing the predictions of the model, with early vital signs and inputs/outputs domains 
being the vital drivers of the model. Explainable machine learning-based prediction for AKI-D recovery using 
existing EMR data hold potential for improving risk stratification and gaining insights into patient outcomes.

Nonrecovery of renal function after AKI-D is associated with increased morbidity and mortality and high 
health care cost25,26. Consistent with the findings of previous epidemiology studies1,26, the present study showed 
higher short-term (3-month) and long-term (1-year) post-discharge mortality rates for patients dependent on 
dialysis compared to those liberated from acute dialysis (Supplemental Figure S3). Early prediction of recovery 
from AKI-D in critically ill patients has significant implications regarding patient-centered care27. Currently, 
the prediction solely relies on clinical experience. The most commonly used dialysis cessation indicator is the 
increase in urinary output5. However, urinary output’s accuracy in predicting successful RRT discontinuation 
remains controversial, with reported AUROCs ranging from 0.63 to 0.91 and varying cut-off values5,28. Addition-
ally, urinary output is typically employed as an indicator of renal recovery later upon RRT discontinuation rather 
than a marker in the early stages. Traditional functional biomarkers (serum/urine Cr or cystatin C) and novel 
biomarkers (kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, osteopontin, tissue inhibitor 
of metalloprotease-2/insulin-like growth factor binding protein-7, proenkephalin A 119–159, etc.) have been 
explored as predictors of AKI-D recovery5,8,11,27,29. Current biomarkers for renal function recovery after AKI-D, 
which require additional samples and have limited conclusive evidence, have not been used widely to identify 
patients with a high probability of renal recovery in the early stages. The urgent need for precision guide to liber-
ate from RRT was also recognized in the recent Acute Dialysis Quality Initiative (ADQI) consensus conference30. 
The experts emphasized on the integration of big data analysis and single case EMR evaluation to allow person-
alized RRT for every single individual. To address this gap, there is a clinical unmet need to integrate EMR to 
assess their predictive value for RRT discontinuation and prognosis in AKI-D.

Machine-learning models developed in critical nephrology can harness the data collected in EMR for impor-
tant renal outcome predictions13,31,32. As data accumulates, these models will also offer the additional advantage 
of early prediction or enhanced accuracy. However, validated machine-learning models for predicting acute 
dialysis discontinuation in critical setting are less studied. To our knowledge, one prior research has employed a 
machine-learning approach to predict freedom from RRT in patients with AKI-D. Pattharanitima et al. utilized 

Figure 3.   SHapley Additive exPlanation (SHAP) value to illustrate the renal recovery prediction model at 
feature level. (A) Top 20 SHAP summary plot: The features are listed from top to bottom based on their impact 
on the model prediction using SHAP values. (B) SHAP feature importance rate categorized by main clinical 
domains in predicting liberation of acute dialysis: The blue bars and numbers represent the proportion of each 
item in the model’s prediction. Cumulative feature importance by clinical domains is highlighted in red. Among 
these, the vital signs and inputs/outputs domains exhibit the highest level of contribution to the predictive 
model.
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the Medical Information Mart for Intensive Care (MIMIC-III) database to predict RRT-free survival in criti-
cally ill patients with AKI requiring continuous renal replacement therapy (CRRT)16. Out of 684 patients, 30% 
had stopped from RRT successfully. Models using 81 features extracted between hospital admission and CRRT 
initiation yielded AUROC values ranging 0.43–0.7. In our study including 1,381 AKI-D individuals, we used 
90 variables from the initial three days post-dialysis, including all vital signs and input–output records. Thus, 
variability and trends across multiple time points of these data were incorporated into our models. The predic-
tion models in our study exhibited good performance, with AUROC of 0.77–0.81 in the development cohort 
and 0.82–0.85 in the temporal testing cohort. Aside from candidate predictors, the differences in model perfor-
mance between our study and the prior study may also be due to differences in the study populations character, 

Figure 4.   Partial dependence plots of the top 12 predictors by SHAP value in predicting renal recovery. The 
numbers indicate the order of importance according to SHAP values, and each plot includes an estimated cutoff 
value for the feature where the probability of renal recovery significantly increases. BP, blood pressure; CCI, 
Charlson Comorbidity Index; ICU, intensive care unit; PHA, arterial pH; RR, respiratory rate; SpO2, peripheral 
capillary oxygen saturation.
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number of participants, and different feature window. The first three days are considered as acute phase of ICU 
patients, as exemplified by septic shock, where shock reversal often occurs within the first 3 days33. Importantly, 
providing additional prognostic information after initial intensive treatment period can aid in subsequent medi-
cal decisions, including the consideration of clinical trials for high-risk groups, or the potential withdrawal of 
life-sustaining medical care. Moreover, we trained models at 24 and 48 h in addition to the 72 h model, both 
maintaining good predictive performance.

As shown in Table 3 and Table S6, a proposed threshold of 0.5 for predicting renal recovery provided good 
specificity, whereas a threshold of 0.3 enhanced sensitivity. Decision curve analysis revealed the net benefits of 
using these models in clinical decision-making by considering the trade-offs between sensitivity and specificity 
at various threshold probabilities. The model’s use would yield more benefit than harm at both threshold of 0.5 
and 0.3. Consequently, a lower threshold, such as 0.3, allowed for the identification of a broader subset of patients 
likely to recover renal function. Meanwhile, a threshold of 0.5 resulted in fewer false positives and would reduce 
alarm fatigue, a major concern in ICU alarm systems34,35. Therefore, the selection of a threshold in practical 
applications should be based on whether a healthcare provider requires assistance in accurately identifying 
patients who can recover or cannot recover after AKI-D, while effectively managing resources.

Using the interpretable machine-learning algorithm, nonsurprisingly, the single most influential variables 
in renal function recovery after initiating dialysis for AKI was urine output. Patients who successfully liberated 
from RRT demonstrated significantly higher urine output. According to PDP (Fig. 4), patients with urine vol-
ume > 1570 ml over the 72 h period post-dialysis were more likely to achieve dialysis independence at discharge. 
Figure 4 demonstrates the PDP of top predictors by SHAP value and the cut-off value in favor of renal recovery. 
In our study, the top 20 variables include previously well-studies factors for renal recovery, including urine vol-
ume or BUN5,36,37, along with less-explored variables (ex: enteral diet intake within the first 3 days after dialysis). 
Moreover, we categorized the top 20 variables identified by the XGBoost model by clinical domains, including 
comorbidity, vital signs, laboratory data, Inputs/outputs domain, and others. Besides urine volume, most of the 
early predictors were related to the vital signs domain (Fig. 3B). A general consensus exists that hemodynamic 
instability caused by excessive fluid removal during dialysis hinders renal recovery38. However, traditional pre-
diction models for renal recovery have often overlooked vital signs due to their complexity and dynamic nature. 
Bellomo et al. conducted a retrospective study of critically ill patients with shock and found that higher levels 
of relative hypotension during the first few hours of vasopressor support were significantly associated with an 
increased risk of adverse kidney-related outcomes39. In line with the current evidence, our data suggests that 
early vital signs, not only the variance of systolic BP, but also SpO2, trend of respiratory rate, were significantly 
associated with the renal prognosis of critically ill patients. Additionally, the use of LASSO model with more 
limited variables and the incorporation of routinely collected laboratory data offer a practical means of rapid 
integration into EMR (Supplemental Table S8). An illustrate the interpretability of the models and the evolving 
of the key features over time using two separate individuals is presented in Supplemental Figure S4. Altogether, 
explainable machine-learning models can be deconvoluted to unveil new insights of how ICU patient features 
at the early stage interact with patient future events.

Strengths of our study include its size, comprising 1,381 patients with AKI-D among 26,593 ICU admissions. 
We also have complete data on vital signs and inputs/outputs with very low missing rates (< 1%). Furthermore, 
we linked the NHIRD cause-of-death data to mitigate withdrawal bias risk. This is especially important in ICU 
studies, as 40%–60% of critically ill patients with AKI-D have their treatment discontinued due to life support 
withdrawal or death4.

Our study has several limitations. First, recovery status was determined at hospital discharge; however, we 
recognized that dialysis liberation may proceed further. Nevertheless, the median hospital stay of critically ill 
patients with AKI-D was long (25.0 days for the entire cohort and 30.5 days for the recovery group), with dialysis-
dependent catastrophic illness certificates verified before discharge by nephrologist among AKI-D nonrecovers. 
Thus, the kidney prognosis is clinically relevant. Second, our models made one-time early predictions of renal 
recovery on the basis of data obtained within 3 days of dialysis initiation. Events after that may drive the patient 
outcome away from the predictions. Though, we developed additional models at various time horizons (1 and 
2 days), a continuously updating prediction is more appropriate for such cases. Third, limitations of our retro-
spective database include lack of other predictors of interest, including the degree of urine proteinuria, timed 
creatinine clearance, and novel kidney biomarkers, which may influence renal and patient recovery. Last, we used 
temporal testing, which is considered as an in-between validation of internal and external validation40. Although 
the recovery and mortality rates in this cohort was comparable to those reported in the literature4,26, the results 
should be further validated in other settings.

Conlusions
To conclude, we developed, validated, and temporal tested applicable machine-learning prediction models using 
routinely collected clinical and laboratory data during the initial 72 h of dialysis to identify successful RRT 
discontinuation on hospital discharge in critically ill patients with AKI-D. Early vital signs and urine output are 
vital factors influencing the model. The interpretable machine learning-based algorithm can be used to facilitate 
patient-centered care in case of a complex scenario and vulnerable populations such as those with AKI-D. Models 
should be further validated and implemented in critically ill patients.

Data availability
The data is available from the corresponding author on reasonable request.
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