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Motor assessment of X‑linked 
dystonia parkinsonism 
via machine‑learning‑based 
analysis of wearable sensor data
Federico Parisi 1, Giulia Corniani 1, Paolo Bonato 1*, David Balkwill 2, Patrick Acuna 3, 
Criscely Go 4, Nutan Sharma 3 & Christopher D. Stephen 3*

X‑linked dystonia parkinsonism (XDP) is a neurogenetic combined movement disorder involving 
both parkinsonism and dystonia. Complex, overlapping phenotypes result in difficulties in clinical 
rating scale assessment. We performed wearable sensor‑based analyses in XDP participants to 
quantitatively characterize disease phenomenology as a potential clinical trial endpoint. Wearable 
sensor data was collected from 10 symptomatic XDP patients and 3 healthy controls during a 
standardized examination. Disease severity was assessed with the Unified Parkinson’s Disease Rating 
Scale Part 3 (MDS‑UPDRS) and Burke‑Fahn‑Marsden dystonia scale (BFM). We collected sensor 
data during the performance of specific MDS‑UPDRS/BFM upper‑ and lower‑limb motor tasks, and 
derived data features suitable to estimate clinical scores using machine learning (ML). XDP patients 
were at varying stages of disease and clinical severity. ML‑based algorithms estimated MDS‑UPDRS 
scores (parkinsonism) and dystonia‑specific data features with a high degree of accuracy. Gait 
spatio‑temporal parameters had high discriminatory power in differentiating XDP patients with 
different MDS‑UPDRS scores from controls, XDP freezing of gait, and dystonic/non‑dystonic gait. 
These analyses suggest the feasibility of using wearable sensor data for deriving reliable clinical 
score estimates associated with both parkinsonian and dystonic features in a complex, combined 
movement disorder and the utility of motion sensors in quantifying clinical examination.

Keywords Dystonia, Parkinsonism, Dystonia parkinsonism, Digital health, Wearable sensors, Machine 
Learning

X-linked dystonia parkinsonism (XDP) is an ultra-rare neurogenetic movement disorder, found in individuals 
with Filipino ancestry, owing to a founder effect with origins in Panay  Island1. The genetic cause is a hexameric 
repeat expansion within the SINE-VNTR-Alu (SVA) intronic region of the TAF-1 gene on the X-chromosome2, 
with onset typically in the third to fifth  decade1,3. There is a significant phenotypic spectrum, ranging from 
pure parkinsonism to varying combinations of parkinsonism and dystonia, with rare instances of chorea or 
 myoclonus4. The most frequently documented clinical course involves hyperkinetic symptoms at early stages and 
progressing to predominantly hypokinetic movements at later  stages3–5. Parkinsonism in XDP may be clinically 
indistinguishable from idiopathic Parkinson’s disease (PD)6, with classical resting tremor, rigidity, and bradyki-
nesia. The gait in XDP may be parkinsonian or combined with dystonia, with some patients exhibiting a unique 
gait  disorder7, and as the disease progresses, is associated with postural instability and falls.

The use of digital health technology has been proposed in movement disorders to provide quantifiable, objec-
tive measures of symptom  severity8,9. In parkinsonism, kinematic assessment and quantification of the cardinal 
motor features (tremor, bradykinesia, rigidity, and gait disorder with postural instability) have been  suggested10–12, 
particularly using wearable motion  sensors13,14. Owing to the complex nonlinear relationships among variables, 
Machine Learning (ML) has allowed the identification of several motor features, which highly correlate with and 
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estimate the corresponding MDS-UPDRS  score15,16. There is scant literature on the use of objective quantitative 
motor assessment in dystonia, including publications assessing  gait17,18, cervical  dystonia19,20,  blepharospasm21, 
and dystonic  head22 and  limb23 tremor.

We sought to perform a quantitative analysis of wearable motion sensor data collected in XDP patients dur-
ing the performance of motor tasks, with the ultimate goal of deriving potential clinical trial endpoints for use 
in mixed/combined movement disorder populations. As part of these analyses, we investigated the feasibility of 
identifying the presence of limb and gait dystonia using ML methods in the setting of a mixed movement disor-
der, where overlapping phenotypes increase the difficulty in determining motor disease severity and ascertaining 
the degree to which each individual movement disorder contributes to the global severity. Therefore, this work 
will have wider implications, given the inherent difficulties in the diagnosis and severity assessment of isolated 
dystonia in general, and particularly when considered in the context of a combined movement disorder, which 
tend to be the most challenging to accurately quantify.

Results
Population and clinical data description
Table 1 provides a summary of the XDP participants. Age at assessment was 54 ± 9.0 (mean ± standard deviation) 
years (range 38–67 years), age at onset 42.5 ± 7.4 years (range 32–55 years), and disease duration 11.5 ± 8.5 years 
(range 3–28 years). Clinical severity measures included assessments of parkinsonism (Movement Disorders 
Society Unified Parkinson’s Disease Rating Scale [MDS-UPDRS], Part 3 Motor Examination total score, mean 
score 31.3 ± 13.4) and dystonia (the Burke-Fahn-Marsden Dystonia Rating Scale [BFM] Movement Scale, mean 
score 14.5 ± 12.8). There was a varied phenotype: parkinsonism-predominant (n = 4), dystonia-predominant 
(n = 2), balanced dystonia parkinsonism (n = 3), and isolated parkinsonism without clinical dystonia (n = 1). Of 
controls (n = 3), age range was 29–52 years. Approximately 2 h and 30 min of sensor data were recorded (data 
recording duration per participant: 11.6 ± 3.7 min). The duration of sensor data acquired during the performance 
of the tasks considered for the presented analysis was 2.8 ± 0.6 min. Further details about the recordings are 
presented in Supplementary Table S2.

Table 1.  Demographics and clinical characteristics of the XDP patients. DP, dystonia parkinsonism; DP Dyst, 
Dystonia parkinsonism with predominant dystonia; DP Park, Dystonia parkinsonism with predominant 
parkinsonism; Park only, Parkinsonism as sole phenotype; Dyst only, Dystonia as sole phenotype; SD, 
Spasmodic dysphonia; UE, Upper extremity; LE, Lower extremity.

# Age at assessment (yr) Age at onset (yr) BFM MDS-UPDRS Part 3 Phenotype Dystonia Dystonia features Parkinsonism Parkinsonism features

1 38 35 24 17 DP Y
Cervical, Oroman-
dibular, SD, Tongue, 
Blepharospasm, Trunk

Y Hypomimia, Hypopho-
nia, Bradykinesia, Gait

2 62 34 9 27 DP Park Y Oromandibular, SD Y
Hypomimia, Hypo-
phonia, Bradykinesia, 
Gait, Freezing, Postural 
instability

3 53 47 43.5 48 DP Y
Cervical, Oroman-
dibular, SD, Trunk, UE, 
LE, Gait

Y
Hypomimia, Hypo-
phonia, Bradykinesia, 
Resting tremor, Gait, 
Postural instability

4 50 44 7.5 42 DP Y Cervical, Oroman-
dibular Y

Hypomimia, Hypo-
phonia, Bradykinesia, 
Gait, Freezing, Postural 
instability

5 67 55 12 38 DP Park Y Cervical, Oromandibu-
lar, SD Y

Hypomimia, Hypo-
phonia, Bradykinesia, 
Gait, Freezing, Postural 
instability

6 62 44 10.5 38 DP Park Y Cervical, SD, Tongue Y
Hypomimia, Hypo-
phonia, Bradykinesia, 
Gait, Freezing, Postural 
instability

7 61 51 0 31 Park only N Y
Hypomimia, Hypo-
phonia, Bradykinesia, 
Gait, Freezing, Postural 
instability

8 45 41 12.5 13 DP Dyst Y Cervical, Oromandibu-
lar, LE Y Hypomimia, Hypopho-

nia, Bradykinesia, Gait

9 48 42 23.5 15 DP Dyst Y Cervical, Oromandibu-
lar, Blepharospasm, LE Y

Hypomimia, Hypopho-
nia, Bradykinesia, Gait, 
Postural instability

10 54 32 2 17 DP Park Y LE Y Hypomimia, Hypopho-
nia, Bradykinesia, Gait
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Estimating MDS‑UPDRS scores using sensor‑based data features
Analyses were performed to assess if sensor data could be used to derive accurate estimates of MDS-UPDRS 
scores for the finger-to-nose, hand pronation/supination, leg agility, toe tapping, and gait tasks. Figure 1 depicts 
the 3-dimensional projections derived from the data feature space for each motor task. Each point in the projec-
tions corresponds to a representation of the features extracted for a fixed-size segment (i.e., a window) of sensor 
signals and is color-coded according to the clinical label assigned to the considered task, namely a Control 
label or an MDS-UPDRS score. In this representation, data points with similar characteristics (i.e., similar data 
feature values) are in close proximity. Thus, it is expected that, if the data features effectively capture the motor 
characteristics associated with the performance of the tasks by individuals with different clinical scores, the data 
points will form clusters corresponding to the different clinical labels. In Fig. 1, clusters of data points associ-
ated with the control group and the MDS-UPDRS scores are clearly separate, particularly for the finger-to-nose, 
leg agility, and gait tasks (Fig. 1A,C, and E, respectively). The separation among clusters is well defined. Also, 
clusters appear to be ordered according to the severity of symptoms. For the hand pronation/supination and the 
toe-tapping tasks (Fig. 1B and D, respectively), the distinction among the clusters is less marked but still evident. 
These qualitative observations are supported by the ML-based classification model results shown in Table 2. For 
each task, the accuracy, sensitivity, specificity, and F1-scores of the ML-based classification models in estimating 
clinical rating scale scores are presented. The trained models displayed a classification accuracy ranging between 
0.63 and 0.81 (F1-score range: 0.56–0.78), with higher performances (accuracy ≥ 0.75) for tasks displaying more 
distinct cluster separation in the projections.

Estimating presence/absence of dystonia using sensor‑based data features
Sensor data collected during the performance of eight tasks were analyzed to assess if they could be used to 
detect the presence/absence of dystonia. Figure 2 shows the 3-dimensional projections of the sensor-based data 
features for the eight tasks, including standardized motor tasks from the MDS-UPDRS and dystonia-provoking 
heel-toe alternating movement, and heel and toe walking tasks. Three clinical labels corresponding to the control 
group, XDP patients with dystonia, and XDP patients without dystonia were considered, and corresponding data 
points were color-coded in the plots accordingly. The projections display discrete clusters associated with the 
three groups. In particular, the control group cluster is clearly distinct from the XDP patient clusters across all 
tasks. In the finger-to-nose, hand pronation/supination, toe-tapping, and heel-toe alternate movement task plots 
(shown in Fig. 2A,B,D and E, respectively), the separation between the data points associated with the presence/
absence of dystonia is also evident. In contrast, in the leg agility and walking tasks (Fig. 2C,F-H), there is slight 
overlap between the XDP groups with and without dystonia. These qualitative observations are confirmed by the 

Figure 1.  Sensor-based data feature projections color-coded by MDS-UPDRS clinical scores. Three-
dimensional data feature projections for the (A) finger-to-nose (item 3.16), (B) hand pronation/supination (item 
3.6), (C) leg agility (item 3.8), (D) toe-tapping (item 3.7), and (E) gait (item 3.10) motor tasks. The points in 
each plot correspond to the representation in the reduced dimensionality space of the data features derived from 
the sensor signals and are color-coded according to the clinical labels (control and MDS-UPDRS scores). For 
sample numbers for each task, please see Supplementary Table S3.
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results of the ML-based classification shown in Table 2. The achieved accuracy ranges from 0.60 (F1-score: 0.58) 
in the toe walking tasks to 0.94 (F1-score: 0.92) in the hand pronation/supination task. For the tasks showing 
the most evident cluster separation in the projections, the accuracy is ≥ 0.80, with slightly lower performances 
for tasks showing some overlap among clusters in the projections.

Estimating clinical features using gait spatio‑temporal parameters
Gait spatio-temporal parameters were analyzed to assess if they could be used to (1) identify participants affected 
by freezing of gait (FoG), (2) estimate FoG severity scores, (3) estimate MDS-UPDRS gait scores, and (4) detect 
the presence/absence of dystonia in gait. Figure 3 shows the projections in the reduced dimensionality feature 
space of the gait variables extracted from a straight walking trial with datapoints color-coded according to labels 
meant to address the four above-mentioned analyses. For the analysis of FoG, XDP patients’ data were labeled 
with both binary labels (freezers/non-freezers) and MDS-UPDRS FoG severity scores, (Fig. 3A,B). In the binary 
FoG labels, the data points associated with XDP participants experiencing FoG, XDP patients without FoG, and 
controls formed separated clusters, highlighting clear differences in gait parameters between the groups. When 
considering MDS-UPDRS FoG severity scores, a clear separation among clusters was observed, with some over-
lap between consecutive scores, as may be expected. Figure 3C shows the projection of the gait spatio-temporal 
data labeled according to the corresponding MDS-UPDRS gait scores. The clusters for the control group and the 
MDS-UPDRS scores are clearly visible, and there is an evident trend associated with increasing severity. Lastly, 
in the projection color-coded by presence/absence of dystonia (Fig. 3D), the control group cluster is easily dis-
tinguishable from the XDP patient clusters, with an overlap between XDP with dystonia and without dystonia.

Table 3 shows the accuracy, sensitivity, specificity, and F1-score of the ML-based classification models for 
identifying participants affected by FoG, estimating the severity of FoG, estimating MDS-UPDRS gait scores, 
and detecting presence/absence of dystonia. When considering the MDS-UPDRS FoG severity labels, scores 3 
and 4 were merged in a single class (score ≥ 3), as the dataset included only one patient with a FoG severity of 4, 
and this would not permit a leave-one-subject-out cross-validation when computing the model performance. As 
expected from the qualitative analysis of the projections, the classifier for the FoG binary case achieved almost 
perfect classification accuracy (accuracy: 0.98, F1-Score: 0.98), whereas for the other cases the performances are 
slightly lower but still high (accuracy ≥ 0.88, F1-score ≥ 0.87).

A feature selection technique based on the Random Forest algorithm was used to rank the gait spatio-
temporal parameters. Stride length and stride velocity were ranked as the two most relevant data features to 
generate the above-stated estimations. Cadence was also considered as a potential predictive gait parameter. 
Figure 4 shows boxplots of cadence, stride length, and stride velocity values for each of the four above-mentioned 
clinical features. Clear decreasing trends in stride length and velocity were associated with increasing FoG and 
MDS-UPDRS severities. In the binary FoG case, significant differences were observed in stride length and 
velocity between both the no-FoG and control groups and the FoG and control groups, all p < 0.001. However, 
no significant differences were found between the no-FoG and FoG groups. No significant difference in stride 
length and velocity was present between XDP patients with and without dystonia. For all four analyses, cadence 

Table 2.  Estimation of MDS-UPDRS scores using sensor-based data features and the presence of dystonia. 
Classification performance (accuracy, sensitivity, specificity, and F-1 score) achieved by the ML-based 
estimation algorithms for the estimation of MDS-UPDRS scores using sensor-based data features (upper 
section) with corresponding MDS-UPDRS Item number, and the presence/absence of dystonia (lower section) 
clinical scores in each of the considered motor tasks. MDS-UPDRS item numbers are provided in parenthesis. 
Additional dystonia-provoking tasks were also used for the dystonia analysis. SD, standard deviation.

Task
Accuracy (SD across folds) 
[range across folds]

Sensitivity (SD across folds) 
[range across folds]

Specificity (SD across folds) 
[range across folds]

F1-score (SD across folds) 
[range across folds]

MDS-UPDRS

Finger-to-nose (Item 3.16) 0.75 (0.18) [0.55–1.00] 0.79 (0.28) [0.31–1.00] 0.85 (0.13) [0.66–1.00] 0.78 (0.27) [0.31–1.00]

Hand pronation/supination 
(Item 3.6) 0.63 (0.17) [0.50–1.00] 0.56 (0.17) [0.00–1.00] 0.88 (0.12) [0.67–1.00] 0.56 (0.35) [0.00–1.00]

Leg agility (Item 3.8) 0.81 (0.18) [0.38–1.00] 0.65 (0.28) [0.07–1.00] 0.85 (0.14) [0.53–1.00] 0.65 (0.28) [0.07– 1.00]

Toe tapping (Item 3.7) 0.64 (0.19) [0.50–1.00] 0.67 (0.37) [0.00–1.00] 0.88 (0.12) [0.67–1.00] 0.66 (0.37) [0.00–1.00]

Gait (Item 3.10) 0.78 (0.12) [0.55–1.00] 0.79 (0.23) [0.11–1.00] 0.92 (0.08) [0.70–1.00] 0.79 (0.23) [0.11–1.00]

DYSTONIA

Finger-to-nose (Item 3.16) 0.91 (0.09) [0.72–1.00] 0.83 (0.14) [0.58–1.00] 0.91 (0.07) [0.79–1.00] 0.85 (0.15) [0.58–1.00]

Hand pronation/supination 
(Item 3.6) 0.94 (0.14) [0.50–1.00] 0.91 (0.21) [0.25–1.00] 0.94 (0.11) [0.62–1.00] 0.92 (0.21) [0.25–1.00]

Leg agility (Item 3.8) 0.74 (0.25) [0.33–1.00] 0.74 (0.38) [0.00–1.00] 0.85 (0.19) [0.50–1.00] 0.73 (0.38) [0.00–1.00]

Toe-tapping (Item 3.7) 0.80 (0.24) [0.37–1.00] 0.80 (0.37) [0.05–1.00] 0.87 (0.18) [0.52–1.00] 0.80 (0.37) [0.00–1.00]

Heel-toe alternate movement 
(Dystonia-provoking) 0.85 (0.21) [0.41–1.00] 0.87 (0.32) [0.11–1.00] 0.92 (0.16) [0.56–1.00] 0.87 (0.32) [0.11–1.00]

Heel walking (Dystonia-
provoking) 0.76 (0.21) [0.33–1.00] 0.77 (0.31) [0.00–1.00] 0.86 (0.16) [0.50–1.00] 0.79 (0.31) [0.00–1.00]

Toe walking (Dystonia-
provoking) 0.60 (0.21) [0.54 -1.00] 0.58 (0.38) [0.00–1.00] 0.76 (0.12) [0.66–1.00] 0.58 (0.38) [0.00–1.00]

Straight walking (Item 3.10) 0.66 (0.14) [0.59–1.00] 0.73 (0.21) [0.39–1.00] 0.80 (0.10) [0.69–1.00] 0.71 (0.20) [0.39–1.00]
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showed high variability in the XDP participants and no clear trends across groups. The box plots for the full set 
of the derived gait parameters are shown in Supplementary Figs S1–S6.

Figure 2.  Sensor-based data feature projections color-coded by presence/absence of dystonia. Three-
dimensional data feature projections for the (A) finger-to-nose (item 3.16), (B) hand pronation/supination (item 
3.6), (C) leg agility (item 3.8), (D) toe-tapping (item 3.7), and (H) gait (item 3.10) motor tasks, as well as for the 
non-MDS-UPDRS dystonia provoking maneuvers (E) heel-toe alternate movement, (F) heel walking, and (G) 
toe walking. The points in each plot correspond to the representation in the reduced dimensionality space of the 
data features derived from the sensor signals and are color-coded according to the clinical labels (control and 
XDP with/without dystonia). For sample numbers for each task, please see Supplementary Table S4.
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Discussion
The results of this study provide initial evidence that the analysis of wearable sensor data can allow one to: 
(1) detect the presence/absence of upper and lower limb dystonia and dystonic intrusion into gait, (2) accurately 
estimate MDS-UPDRS scores, illustrating different parkinsonism motor symptom severities, and (3) detect 
the presence/absence and severity of FoG. While there is extensive literature on the use of wearable devices 
and ML for estimating MDS-UPDRS scores during the performance of motor tasks in  parkinsonism12,13,24–29, 
there are very few studies on the assessment of dystonia (via the analysis of sensor and video-based movement 
data)17–19,22,23, and particularly in movement disorders where parkinsonism is combined with another form of 
abnormal movement. Our work provides important new findings that substantially add to a previous investiga-
tion by Steinhardt and  colleagues30, who explored the use of sensor data to identify patients with prodromal XDP. 
Specifically, our work shows that sensor data can be used to assess patients displaying more than one abnormal 
motor feature impacting a task and may differentiate motor phenotypes. Our data will inform future studies in 

Figure 3.  Projections of the gait spatio-temporal parameters color-coded by clinical characteristics. Three-
dimensional data feature projections of gait spatio-temporal parameters color-coded by (A) presence/absence 
of freezing of gait (FoG) on examination, (B) MDS-UPDRS FoG score (Item 3.11), (C) MDS-UPDRS gait score 
(Item 3.10), and (D) presence/absence of dystonia. The points in each plot correspond to the representation in 
the reduced dimensionality space of the aggregated statistics (mean, standard deviation, coefficient of variation, 
and right/left ratio) of the gait parameters extracted from each trial. For sample numbers for each task, please 
see Supplementary Table S5.
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assessing change in combined dystonia and parkinsonian motor features over time in larger longitudinal studies, 
which could be used as potential quantitative clinical trial endpoints in rare diseases.

Using projection techniques, we were able to qualitatively demonstrate that sensor-based data features can 
effectively characterize different motor behaviors when considering both parkinsonian severity and the pres-
ence/absence of dystonia. These qualitative observations were then confirmed using quantitative tools based on 
training and validating ML models for the estimation of the clinical variables. Furthermore, the analysis of gait 
spatio-temporal parameters was able to differentiate severity levels of aberrant gait patterns as assessed using the 
MDS-UPDRS, as well as the intrusion of dystonic involvement, even in the setting of a parkinsonian gait. These 
results show that using sensing technology enables the identification of dystonic intrusion during active tasks, 
which is challenging during qualitative clinical observation. There have otherwise been scant gait kinematic 
assessments in  dystonia17,18, and also in genetic forms of parkinsonism, which included  parkin31 and  LRRK232. In 
addition, these studies were conducted in a clinical gait laboratory setting, which is not available for the majority 
of XDP participants, who frequently live in remote, resource-poor regions. Our approach, instead, is suitable to 
be used in both a controlled clinical environment and in the home/community setting. Finally, we were able to 
differentiate between controls and XDP patients with and without FoG and to estimate FoG severity. While there 
have been several publications on the quantitative motor analysis of PD patients with  FoG28,29, to our knowledge, 
this is the first time that such a paradigm has been used in a phenotype which is not pure parkinsonism. We also 
found that certain spatio-temporal parameters (stride length and stride velocity) were associated with clinical 
observations and could be used to estimate the severity of parkinsonian gait.

In contrast to the use of technology, such as our described approach, in clinical rating scales used in combined 
movement disorders, there are inherent difficulties balancing the relative effects and contribution of different 
motor phenotypes to the overall disease severity, particularly in the setting of often substantial clinical heteroge-
neity. Additionally, difficulty arises when multiple motor phenotypes (regardless of what they are, e.g. weakness, 
spasticity, tremor, dystonia, ataxia, parkinsonism,  chorea/dyskinesia, myoclonus, etc.) impact a certain assessed 
motor task as an item in a clinical rating scale, resulting in challenges when weighing the relative contribution 
of each phenotype involved in the task and overall clinical severity. In the XDP-MDSP rating  scale33, the authors 
sought to assess the motor complexity of XDP using two parts, one assessing dystonia and the other assessing 
parkinsonism but leading to challenges given the overlap of parkinsonism in items addressing dystonia and intru-
sion of dystonia in purely parkinsonism tasks. We did not use the XDP-MDSP rating scale, as it was not available 
at the time of data collection and as it cannot be rated purely on video assessment, as the dystonia assessment 
part of the scale involves both clinician and patient-reported measures within the same severity rating (requires 
patient-reported frequency of dystonic movements occurring over the past week), which were not available and 
hence could not be performed in a post-hoc manner. We also did not use the individual body part BFM dystonia 
scores but solely to denote the presence or absence of dystonia in a limb or during gait, as these scores relate 
to not only the persistence of the movements but also the degree of task specificity or functional status, which 
may not generalize to the various motor tasks of interest in our study. Similar difficulties have also been faced 
when considering scales for other mixed or complex movement disorders. For example, the Unified Hunting-
ton’s Disease Rating  Scale34, assesses relative chorea and dystonia severity according to affected body segment. 
To better distinguish between these features, investigators have begun to use quantifiable digital  measures47, 
including the Q-Motor  paradigm35. In the Pantothenate Kinase Associated Neurodegeneration Disease Rating 
 Scale36, seven parkinsonism items from the MDS-UPDRS and dystonia severity for 10 body parts (akin to the 
BFM) are included to describe the relative presence of these motor phenotypes, with single item assessments of 
chorea, spasticity and tremor attempting to describe the complex overall motor behavior. The Global Assess-
ment Scale for Wilson’s  disease37 uses ordinal scales (0–4) for each potential motor phenotype (dystonia, chorea, 
tremor and parkinsonism), which precludes a detailed motor severity assessment aside from using individual 
phenotypic-specific scales. In such scales, it is difficult to tailor the proportion of tasks assessing a certain motor 
phenotype to an individual participant, where some participants may have severe manifestations of one motor 
phenotype (e.g., dystonia) but minimal signs of another phenotype (e.g., parkinsonism), as opposed to an equal 
balance between the phenotypes.

Our analyses were performed using a limited sample size, which is expected when considering an extremely 
rare disease such as XDP and is comparable to other studies in  XDP30. Given the small sample of XDP patients, we 
used a comparable number of control participants, matching both the number of participants in each phenotype 

Table 3.  Estimation of clinical characteristics using gait spatio-temporal parameters. Classification 
performance (accuracy, sensitivity, specificity, and F-1 score) achieved by the ML-based estimation algorithms 
using gait spatio-temporal parameters. Prediction of presence/absence of freezing of gait (FoG) on clinical 
examination, MDS-UPDRS FoG score (item 3.11), MDS-UPDRS gait score (item 3.10), and presence/absence 
of dystonia on clinical examination are shown. SD, standard deviation.

Task Clinical characteristic
Accuracy (SD across folds) 
[range across folds]

Sensitivity (SD across folds) 
[range across folds]

Specificity (SD across folds) 
[range across folds]

F1-score (SD across folds) [range 
across folds]

Gait

FoG (Binary) 0.98 (0.16) [0.33–1.00] 0.98 (0.22) [0.00–1.00] 0.98 (0.11) [0.50–1.00] 0.98 (0.22) [0.00–1.00]

MDS-UPDRS FoG Score 0.90 (0.12) [0.60–1.00] 0.84 (0.30) [0.00–1.00] 0.97 (0.08) [0.75–1.00] 0.87 (0.30) [0.00–1.00]

MDS-UPDRS Gait Score 0.92 (0.13) [0.50–1.00] 0.93 (0.26) [0.00–1.00] 0.97 (0.09) [0.67–1.00] 0.94 (0.26) [0.00–1.00]

Presence of Dystonia 0.88 (0.25) [0.33–1.00] 0.90 (0.38) [0.00–1.00] 0.93 (0.19) [0.50–1.00] 0.90 (0.38) [0.00–1.00]
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included in the study (Table 1) and the number of participants at each severity level of the scales used in the 
analysis (Supplementary Tables S3 and S5). This approach prevented dataset imbalance and ensured that training 
of the ML model was not overly influenced by the classification of data points from control participants, thus 
maintaining its effectiveness in processing patient data. Given this limited sample size, we chose to explore the 

Figure 4.  Cadence, stride length, and stride velocity boxplots for different clinical characteristics. Boxplots of 
cadence, stride length, and stride velocity for presence/absence of freezing of gait (FoG) on clinical examination, 
MDS-UPDRS FoG scores (Item 3.11), MDS-UPDRS gait scores (Item 3.10), and presence/absence of dystonia 
on clinical gait examination. The boxplots visually summarize the distribution of data. Each boxplot displays the 
median (central line), interquartile range (box edges), and overall range excluding outliers (whiskers). Outliers 
are marked with individual points. Pairwise significant differences were assessed with a mixed regression model 
and are indicated by a horizontal red line. *** indicates p-value < 0.001, while * indicates p-value < 0.01.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13229  | https://doi.org/10.1038/s41598-024-63946-4

www.nature.com/scientificreports/

characteristics of our data using projection techniques, an approach that is suitable for small datasets. Also, Ran-
dom Forest algorithms are particularly well-suited for scenarios with small datasets, as they inherently perform 
bootstrapping (sampling with replacement), which leverages limited data effectively, by building multiple trees 
from different subsamples, thus enhancing robustness and accuracy. We employed a leave-one-subject-out (or 
leave-one-side-out when appropriate) cross-validation technique, which enhances model validation by testing 
each model on independent data not seen during training. This approach enhances the model’s generalizability 
and ensures that it does not learn specifics unique to any single dataset, leading to more reliable and representa-
tive evaluations across diverse datasets. For instance, in the dystonia classification, the ‘Finger-to-Nose’ item 
showed strong and consistent model performance, with a standard deviation in accuracy across folds of 0.09. 
In contrast, the ‘Leg Agility’ item displayed greater variability, with a standard deviation of 0.25 and accuracy 
ranging from 0.33 to 1.00 across folds. This framework was particularly beneficial for handling tasks with limited 
variability, while acknowledging that further data will help mitigate challenges observed in tasks with greater 
variability in our pilot study.

At this stage, we have decided not to test other ML models. This decision is informed by the exploratory 
nature of our pilot study, which primarily aims to assess the feasibility of our approach. A comparison of multiple 
models exceeds the scope of our current objectives. Despite utilizing a cross-validation method and a strong 
model on small datasets, our results suggest that the model has not yet reached a performance plateau (see Sup-
plementary Figure S7)38. Given the significant learning potential of our model, comparing it with others while 
the learning curve is still ascending, we feel would not yield meaningful insights. However, we acknowledge the 
importance of this comparison and plan to explore this with a larger dataset. This would also allow the perfor-
mance of additional analyses, such as that of dystonia severity. The small sample size used in the current study 
resulted in too small a sample in each BFM severity bracket to make any meaningful estimations. This can be 
rectified by a larger sample size. In addition, although the small sample size invariably does not capture the full 
range of parkinsonism or dystonia manifestations of XDP, this does cover the most common XDP phenotypes 
 seen4,39, in addition to pure parkinsonism, which may be more  benign4,6,39. The goal of this study was for proof 
of concept, in that novel preliminary digital identification of overlapping dystonic and parkinsonian motor fea-
tures was performed, which has not been previously studied. Using these strategies and analysis techniques, the 
goal of current study in a larger sample size is to better elucidate the full spectrum of dystonic and parkinsonian 
features of XDP. Although it would be ideal to include comparisons of dystonia parkinsonism with pure forms 
of the studied phenomenology (e.g., isolated dystonia and idiopathic Parkinson’s disease), this is outside of the 
scope of the current study but is the subject of current research endeavor.

Despite XDP participants being treated with a variety of medications, the presence or absence of these did 
not influence the motor assessment, given the intended cross-sectional snapshot of disease severity provided 
by the study protocol. However, the impact of medications and therapies (particularly dopamine modulating 
medications, dystonia medications, such as trihexyphenidyl and the proximity to botulinum toxin injections), 
in addition to the dose timings of these therapies would be relevant when considering longitudinal assessment 
over time, which is the focus of current research. It is also notable that none of the participants with parkin-
sonism were rapid fluctuators, which does not tend to occur in XDP, in comparison to PD. Obvious cognitive 
impairment affecting the performance of the research paradigm was not seen, and there were no difficulties 
with scoring related to task performance or understanding. However, the high prevalence of cognitive deficits 
in XDP is  noted40. Formal cognitive testing was not performed at the time that the study data was collected but 
is included in an ongoing natural history  study39. The potential role of any cognitive deficits on specific motor 
task performance was outside the scope of the current paper but could be assessed in larger studies focusing on 
the interaction between cognition and motor task performance.

We chose the number of sensors and their placement to maximize ease of use, which is appealing when con-
sidering potential deployment in clinical trials. Previous groups have utilized similarly limited sensor numbers 
(typically placed on the wrists and ankles ± chest/waist) in an effort to streamline and simplify inertial sensor use 
for clinical and clinical trial  settings41,42. As sensors were placed only on the wrists and ankles, tasks that were 
amenable to this paradigm excluded assessment of the fingers, MDS-UPDRS items 3.4 (finger tapping) and 3.5 
(hand movements) and also posture (item 3.13). As the focus was on active tasks, we did not assess postural and 
resting tremor. The MDS-UPDRS tasks and rationale for their inclusion are shown in Supplementary Table S6. 
In addition, the choice of sensor location had an impact on the performance of the algorithms when we analyzed 
data collected during certain tasks. For instance, we observed a negative effect on the accuracy of the estimates 
when we analyzed data collected using a sensor placement that was not optimal given the motor task performed 
by the study participants, such as toe-tapping, for which it would have been preferable to collect data with sensors 
placed on the feet, as opposed to strapped to the ankles. Although we focused this initial study on the analysis of 
active upper and lower-limb movements, sensing technology is available to extend the analyses to include body 
segments that we did not monitor in this study. Finger sensors or data gloves could be utilized to collect data 
during the performance of finger tapping and hand movements tasks, which are relevant to detecting upper limb 
parkinsonism. Additionally, sensors on the trunk, neck, and head could be used to capture features of cervical 
and truncal dystonia, which are common in XDP. Further study using more sensors covering a wider distribu-
tion, involving multiple relevant limb and body segments, is the focus of ongoing research efforts to quantity 
the motor features of XDP.

Our sensor-based approach using ML models accurately estimated parkinsonism clinical scores, the pres-
ence/absence of dystonia, and the presence/absence of FoG and its severity, suggesting the feasibility of using 
wearable sensors to quantify clinical examination beyond the very rare genetic movement disorder which was 
the focus of the study. Our novel analysis techniques also have widespread relevance to other combined move-
ment disorders. Overlapping phenotypes impair clinical assessment, as it is challenging for clinical rating scales 
to effectively capture the severity of multiple motor phenotypes within a single task, leading to difficulty with 



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13229  | https://doi.org/10.1038/s41598-024-63946-4

www.nature.com/scientificreports/

adequate rating. The methodology herein presented may represent a valuable tool for the diagnosis and monitor-
ing progression of dystonia and response to interventions, including in patients where dystonia forms part of a 
mixed/combined movement disorder. Such rater-independent methods may be more accurate and sensitive to 
change than  current rater-dependent clinical rating scale assessment in quantifying disease severity. Further 
study in a larger and more heterogeneous sample, compared to pure phenotypic forms is required to corroborate 
the present study’s outcomes and assess the sensitivity of the assessed motor features to change over time, and 
their potential use as a clinical trial endpoint.

Methods
Approvals
The research was conducted according to the declaration of Helsinki. All participants gave written informed 
consent. Approval was obtained from both the Institutional Review Boards at Partners Healthcare (Protocol 
#2016P000427, 5/3/2016) and locally from the at Jose R. Reyes Medical Center, Manila, Philippines (Protocol 
#2016-87, 6/26/2016).

Clinical assessments and selected tasks
10 male patients with genetically confirmed, clinically manifest XDP and 3 healthy control participants were 
assessed. 5 of the XDP patients were assessed in the XDP Clinic at Health Centrum, Roxas City, Philippines, 
while 5 were assessed at their homes on Panay Island between March and April 2018. Inclusion criteria for 
the XDP participants were a genetically confirmed diagnosis of clinically manifest XDP, age ≥ 18 years, able to 
ambulate independently without a walking aid and were able to understand all information given and provide 
informed consent. The 3 healthy controls were all age ≥ 18 years, without a history of a neurological diagnosis, 
or significant motor impairment which could impede performing the examination tasks, or other clinically-
significant comorbid medical condition. Control participants were assessed in a laboratory setting at Mass 
General Brigham Jenks Vestibular Laboratory at the Massachusetts Eye and Ear Infirmary. Exclusion criteria 
for all participants was intellectual impairment sufficient to preclude ability to provide informed consent or be 
cognitively unable to follow commands or perform motor tasks, consistent with Good Clinical Practice guide-
lines. No formal cognitive assessment was performed. In addition, during the standardized examination, task 
performance was assessed by movement disorders specialists and no difficulties impacting the scoring of motor 
tasks were identified. Age, sex, and height were collected from all participants. Relevant patient medications 
(dopamine replacement therapies, dystonia medications, recent botulinum toxin injections, etc.) were recorded 
(see Supplementary Table S7), although given the single, cross-sectional assessment, were not relevant for the 
analyses. Participants were assessed with a standardized clinical examination, involving limb and gait tasks. 
Parkinsonism was assessed with the MDS-UPDRS Part 3 Motor  Examination43. The presence/absence of limb 
and gait dystonia was assessed as per the  BFM44. This standardized examination was videotaped and assessed by 
a movement disorders specialist rater (CDS), who was blinded to TAF1 repeat length.

Although the entire Part 3 MDS-UPDRS was assessed with the protocol, specific tasks were selected for 
sensor-based measurement, as the focus of the study was on estimating clinical features from sensor data col-
lected from the wrists (i.e., upper-limb tasks) and ankles (i.e., lower-limb tasks). The selected MDS-UPDRS tasks 
included upper-limb assessments, item 3.6 (pronation-supination movements of hands) and item 3.16 (kinetic 
tremor of hands – which we designate finger-to-nose), lower-limb tasks item 3.7 (toe tapping) and item 3.8 (leg 
agility), and gait tasks item 3.10 (gait) and Item 3.11 (freezing of gait). To assess limb and gait dystonia, the pro-
tocol included specific provocative maneuvers, which are known to elicit dystonia, including having participants 
close their eyes, finger-to-nose testing in upper limb dystonia, performing alternating heel and toe-tapping on 
lower limb assessment, as well as stress gait (walking on heels and toes, a typical exacerbating factor for dystonic 
posturing while upright and walking). The BFM scores provided a measure of dystonia severity, however these 
scores could not be used to determine specific limb or gait dystonia severity, as using the BFM Severity factor 
(range 0–4) resulted in too small sample numbers in each severity score bracket.

Experimental setup
Two wearable sensors (Shimmer3, Shimmer Research Ltd, Dublin, Ireland) were used during the experimental 
sessions to collect data from the wrists during the performance of upper limb tasks. The sensors were repositioned 
on the ankles during the performance of lower limb and gait tasks. Each Shimmer3 device recorded data from 
a tri-axial accelerometer and a tri-axial gyroscope. The sensor placement is shown in Fig. 5A. The sampling fre-
quency for accelerometers and gyroscopes was set to 512 Hz and their range was set to ± 2 g and ± 500 degrees/s, 
respectively. The units were configured and synchronized using the ConsensysPRO software (Shimmer Research 
Ltd, Dublin, Ireland). Video recordings of the data collection sessions were acquired and synchronized with the 
motion data for offline validation and task segmentation purposes.

Data analysis
The raw datasets were pre-processed and segmented using custom scripts in MATLAB 2021a (The MathWorks 
Inc, Natick, MA, USA). Two distinct processing pipelines, shown in Fig. 5B and C, were developed to analyze 
the data: the first, sensor-based data feature analysis pipeline, relies on the extraction of data features from fixed-
size segments of sensor signals and was applied to data collected during the performance of standardized items 
from the MDS-UPDRS and BFM; the second, gait spatio-temporal parameter analysis pipeline, focused on gait 
data (straight walking task). For both pipelines, the signals from the accelerometer and the gyroscope sensors 
were filtered using non-causal implementations of a low-pass filter (6th order Butterworth filter with a cut-off 
frequency of 20 Hz) to remove high-frequency noise and a high-pass filter (6th order Butterworth filter with a 
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cut-off frequency of 0.3 Hz) to minimize the effect of postural adjustments. The filtered data were segmented 
using each task start and end times derived from the synchronized video recordings. For the straight walking 
tasks, which involved multiple trials, the turning phases were discarded, and each trial was considered as a 
separate data sample.

The approach adopted for the sensor-based data feature analysis pipeline was based on previous work aimed 
to estimate clinical scores using wearable data collected during the performance of standardized  tasks24,45–50. 
After the data filtering and segmentation, the signals associated with each task were processed using a sliding 
window with a size equal to 3 s and 75% overlap between consecutive windows. This allowed the generation of 
fixed-size data segments, which were used as inputs for the Data Feature Extraction block. An extensive set of 
data features, in both time and frequency domains, were extracted from the accelerometer and gyroscope signals 
of each fixed-size window. For a detailed list of the considered data features, see Supplementary Table S1. Feature 
datasets were labeled using clinical variables of interest (i.e., MDS-UPDRS item scores and presence/absence 
of dystonia). Then, a feature selection procedure was applied based on the variable importance metric of the 
Random  Forest51 algorithm in estimating the clinical labels of interest. The selected data features were then used 
to generate color-coded projections in a reduced dimensionality feature space using the Sammon  mapping52 
technique to highlight clusters associated with different clinical labels. It is worth noting that the Sammon map-
ping technique is based on subsequent projections on hyperplanes determined in a manner that preserves the 
relative distance among the data points in the multidimensional feature space. Hence, contrary to dimensional-
ity reduction techniques that allow for the interpretation of the axes of two and three-dimensional projections 
(e.g., principal component analysis), the Sammon mapping technique does not allow for such interpretation. It 
follows that projections based on this technique are shown using unitless axes and their interpretation is limited 
to assessing if separate clusters can be identified in the data feature space.

Data from the sensors placed on the ankles during the performance of the straight walking task were analyzed 
using the gait spatio-temporal parameter analysis pipeline. This approach involved deriving gait spatio-temporal 
parameters from the raw accelerometer and gyroscope data instead of data features. The shank acceleration in the 
anteroposterior direction and the rate of rotation measured by the gyroscopes in the sagittal plane (i.e., rotations 
around the mediolateral axis) were considered for the detection of the gait events. The signals were filtered as 
per the previous processing pipeline. The algorithm to detect the initial and final foot contact (foot off) events 
was based on work by Trojaniello et al.53. Once all the gait events were identified for each leg and each gait cycle, 
standard temporal parameters (i.e., stride, step, stance, and swing times) were extracted. Stride length and stride 
velocity were computed as previously proposed by Doheny et al.54. The spatial parameters were normalized by 
each participant’s height. Aggregated statistics of the gait parameters at the trial level were computed and used 
as data features in the following blocks of the processing pipeline. Specifically, the mean, standard deviation, 
coefficient of variation, and ratio between the right and left mean values were calculated for each spatio-temporal 

Figure 5.  Experimental set-up and data processing pipelines. (A) Two wearable motion sensors were placed 
on the wrists during the performance of upper-limb tasks and repositioned on the ankles when performing 
lower-limb tasks. An enlarged view of a motion sensor (Shimmer3 by Shimmer Research Ltd, Dublin, Ireland) 
and its reference system are also shown. (B) Sensor-based data feature analysis pipeline. The diagram illustrates 
the processing steps used to derive data feature projections from the raw motion sensor data when participants 
performed standardized motor tasks. (C) Gait spatio-temporal parameter analysis pipeline. The diagram depicts 
the steps of the algorithm used to extract gait spatio-temporal parameters from the raw motion sensor signals 
recorded during gait and visualize them via projections.
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parameter. Cadence, step/stride regularity, and step  symmetry55 were also computed and included in the data 
feature set. Datasets were labeled using clinical variables of interest (i.e., presence/absence of FoG, FoG severity 
score, MDS-UPDRS gait score, presence/absence of dystonia). We evaluated the difference in gait spatio-temporal 
parameters across groups using mixed-effects regression models to account for the structure of our data, which 
included repeated measures from the same  participants56. This approach involves treating group membership 
as a fixed effect to evaluate its systematic impact across all observations. Additionally, we incorporated random 
effects for each participant to accommodate the inherent differences in measurements among participants. By 
using mixed-effects models, we could accurately assess the impact of group differences while controlling for 
inter-participant variability. Then, a procedure based on the Random  Forest51 algorithm was used to identify 
the most predictive gait spatio-temporal parameters, which were used to derive color-coded 3-dimensional data 
projections using the Sammon  mapping52 technique to highlight clusters associated with different clinical labels.

Finally, we trained ML models, based on Random Forest classifiers to estimate the clinical labels. Sensor-based 
data features were used as input to Random Forest classifiers to estimate MDS-UPDRS item scores and presence/
absence of dystonia. Gait spatio-temporal parameters were used as input to Random Forest classifiers to estimate 
presence/absence of FoG, MDS-UPDRS FoG severity scores, MDS-UPDRS gait scores, and the presence/absence 
of dystonia. In all cases, the reduced feature set identified by the feature selection procedure performed for each 
task and each clinical label category was used to derive the Random Forest classifier training set.

The Random Forest hyperparameters, specifically the number of trees and the minimum leaf size were tuned 
by minimizing the estimation error of each model. The Random Forest classifier was implemented in classifi-
cation mode, where each decision tree within the ensemble contributes a vote towards the predominant class. 
Subsequently, the collective output of the forest is determined by the class with the majority of votes. To ensure 
balanced learning, a cost matrix was used to address class imbalances. The cost matrix penalized misclassifica-
tions of minority classes more heavily, thus promoting a balanced learning process. For the models with the 
sensor-based data features as input, we used a “leave-one-side-out” cross-validation technique, in which the 
data points associated with one participant’s left or right side were, in turn, left out of the training set and used 
as part of the test set. A standard leave-one-subject-out cross-validation was instead used for the models using 
the gait spatio-temporal parameters as input. To estimate the necessary sample size for dependable classification 
accuracy, we employed an inverse power law model to fit learning  curves38. This method involved initial data 
collection from a small, annotated training set and subsequently expanding this set to generate accuracy meas-
urements at various sample sizes. By applying nonlinear weighted least squares optimization, we constructed 
a model that predicts classifier performance at larger sample sizes. The resulting learning curve enabled us to 
predict the sample size required to achieve specific accuracy goals, incorporating confidence intervals to ensure 
the robustness of our predictions.

Data availability
Anonymized data not published within this article will be made available by request from any qualified investiga-
tor. We will similarly provide access to the code by request.
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