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Nonlinear ion‑acoustic 
waves with Landau damping 
in non‑Maxwellian space plasmas
Hadia Mushtaq 1,2, Kuldeep Singh 1,3*, Sadia Zaheer 2 & Ioannis Kourakis 1,3,4

The dynamics of nonlinear ion‑acoustic solitary waves in the presence of kinetic (Landau type) 
damping have been investigated in a collisionless, non‑magnetized electron‑ion plasma. A cold ion 
fluid model, coupled to a Vlasov‑type kinetic equation for the electron dynamics, has been adopted as 
a starting point. The electron population was assumed to be in a kappa‑distributed state, in account 
of the non‑Maxwellian behavior of energetic (suprathermal) electrons often observed in Space. A 
multiscale perturbation technique has led to an evolution equation for the electrostatic potential, in 
the form of a modified Korteweg‑de Vries (KdV) equation, incorporating a non‑local term accounting 
for Landau damping (associated with the electron statistics). Exact analytical solutions have been 
obtained, representing solitary waves undergoing amplitude decay over time. The combined 
effect of Landau damping and non‑Maxwellian electron statistics (via the kappa parameter) on 
the characteristics of IASWs has been examined. Numerical integration of the evolution equation 
has been undertaken, to elucidate the importance of kinetic Landau damping on a shock‑shaped 
initial condition. The results of this investigation aim to improve our understanding of the dynamics 
of nonlinear electrostatic waves under the influence of Landau damping in various space plasma 
environments.
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Energy localization in dispersive media is known to lead to the formation of stationary profile states (localized 
modes) with remarkable stability when a balance between dispersion and nonlinearity is attained. such localized 
structures come in various forms, including solitary waves, shocks, vortices, double layers and periodic nonlinear 
waves, among a wide variety of possible nonlinear states. In the last decades, investigating the characteristics of 
nonlinear structures in diverse physical contexts has emerged as a forefront area of research. As nonlinear waves 
propagate, wave steepening due to the intrinsic medium nonlinearity may be compensated either by dispersive 
effects (giving rise to solitary  waves1 or by intrinsic dissipation in the medium (leading to shock wave formation).

Solitary waves are often modeled as solitons, i.e. exact solutions of integrable nonlinear partial differential 
equations (PDEs)1,2. The Korteweg de-Vries (KdV) equation, a typical representative and the first historical 
paradigm of such a nonlinear PDE, was first derived for electron-ion plasma by Washimi and  Taniuti3 in their 
effort to model ion-acoustic solitary waves, thus inaugurating a compelling path for further investigation. The 
early studies by Taniuti et al.3,4 have subsequently been adopted by the plasma physics community (see e.g.5) as an 
efficient means of describing nonlinear structures, wave-particle interactions, instabilities, and related nonlinear 
effects, as they occur in various plasma environments, in Space and the laboratory. Graham et al.6 reported the 
occurrence of electrostatic solitary waves and field-aligned electrostatic waves near Earth’s magnetopause and in 
the magnetosheath by using the cluster spacecraft data. Kakad et al.7 confirmed and validated the observations 
of electrostatic solitary waves in the Marian magnetosheath by the Langmuir Probe and Waves instrument on 
the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft in orbit around Mars. The observed bipolar 
pulses were identified as ion-acoustic solitary wave structures with a speed close to the ion-acoustic speed. 
Steffy et al.8 investigated the occurrence of various types of solitary waves in the terrestrial auroral plasma. Their 
findings were shown to match observational evidence, highlighting the indispensable role of the coexistence of 
two-electron populations on the morphology of localized electrostatic structures.
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As regards classical plasmas in particular, two approaches are mainly adopted as working horses by theoreti-
cians in their attempt to describe propagating electrostatic oscillations (plasma waves). Originally a statistical 
method by its very nature, plasma kinetic theory relies on defining a probability distribution function (pdf) for 
each plasma constituent (ions, electrons) and then describing its evolution in time via an appropriate (“kinetic”) 
evolution equation. Measurable macroscopic quantities are then expressed as appropriate moments of the pdf. 
An alternative approach consists of defining each plasma component as an inertial fluid whose bulk properties 
(density, fluid speed, ...) are described by suitable fluid-dynamical equations. The self-generated electric or mag-
netic fields thus appear in the fluid momentum equation(s), which are then coupled via Maxwell’s equations. As 
one might expect, and indeed require from first principles, both approaches lead to (mostly) identical results in 
terms of the dispersion properties of plasma waves. However, since it is essentially a reduction of the many-body 
problem into a bulk description, fluid-plasma modeling intrinsically ignores microscopic particle motion and the 
resonant interaction of particles with the bulk plasma oscillation. This latter effect, known as Landau damping, 
is predicted by kinetic theory—but not by fluid theory (a known shortcoming of the latter).

Landau  damping9 is a captivating—and perhaps counterintuitive—phenomenon inherent to charged matter 
(plasma), manifested to dissipation (damping) arising—despite the absence of inter-particle collisions—due 
to resonant interactions between waves and  particles10,11. The original prediction in Landau’s seminar original 
 paper10 of plasma oscillations undergoing Landau damping, over seven decades ago, was followed by several 
theoretical experimental  studies9. Landau originally predicted the collisionless damping of electron plasma 
waves, specifically in the context of the Langmuir waves, a proposition subsequently experimentally verified by 
Malmberg and  Wharton12. As the nonlinear theory for plasma waves had started gaining momentum, in the 
late  1960s3,4, Ott and  Sudan13 elaborated a first model for nonlinear ion-acoustic waves by incorporating the 
effect of Landau damping due to resonances with a thermal electron background. Not long thereafter, many 
researchers focused on theoretical and experimental studies of nonlinear Landau damping in different plasma 
 systems14–16. Barman and  Misra14 studied Landau damping in an unmagnetized dusty negative-ion plasma with 
complete electron depletion, where the entire electron population resides on the dust (particulates’) surface. 
Nakamura et al.15 explored the Korteweg-de Vries equation with Landau damping numerically, and compared 
their results with experimental findings from a purpose-built experiment based on a bi-ion plasma. Das and 
 Bandyopadhyay16 have explained the nonlinear evolution equation for IASWs including the effect of Landau 
damping. The system consisted of warm adiabatic ions and non-thermal electrons in a magnetized plasma. In 
a recent paper, Ur-Rehman17 presented a linear kinetic-theoretical analysis predicting Landau damping in the 
presence of a suprathermal electron population, in fact focusing on a four-component plasma model allegedly 
applicable to the 67P/Churyumov–Gerasimenko Comet environment.

Focusing on the second founding pillar of our study, highly energetic (suprathermal) charged particles (i.e. 
electrons or ions exhibiting a long-tailed velocity trend and a stronger velocity component above the thermal 
speed than could be explained by a Maxwell-Boltzmann distribution)18. This is a common occurrence in Space 
 observations19, and also in the  laboratory20. It is now established that this phenomenon is aptly explained through 
a kappa  distribution21,22, that is a parametrized (non-Maxwellian) velocity distribution  function23,24 with a real 
parameter ( κ ), which appears to be more appropriate than a thermal Maxwellian distribution in a wide range 
of plasma situations. This distribution was first suggested by  Vasyliunas25 to model space plasmas and was later 
adopted by many authors in various physical contexts. Thanks to its ability to explain the power-law depend-
ence observed in  Space26, the kappa distribution is now recognized as a ubiquitous feature of Space  plasmas27. 
Following its successful recognition as a useful tool in analyzing observations in various regions, e.g. in Earth’s 
 magnetosphere28 and in the auroral  region29,30, the kappa distribution function has not only been used in the 
interpretation of observed spectra but was also adopted as a more accurate alternative to the Maxwellian assump-
tion, in theoretical  modeling31,32.

This study aims to investigate, from first principles, the impact of non-Maxwellian electron statistics on 
the propagation characteristics of ion-acoustic (electrostatic) solitary waves subject to Landau damping. Our 
ambition is to gain insight into the dynamical mechanisms affecting propagating nonlinear structures (waves) 
in plasmas and, in particular, to elucidate the role of resonant wave-particle interactions on the formation and 
propagation of electrostatic solitary waves in Space plasma.

This manuscript is structured as follows. Following this introductory section, an analytical model is laid out 
in the next section (“Analytical model”), and is adopted as a starting point in our analysis. Adopting the reduc-
tive perturbation method, a Korteweg-de Vries (KdV) type equation is then obtained for the evolution of the 
electrostatic potential, incorporating an additional term in account of Landau damping. Based on that equation, 
the Landau damping rate for solitary waves in the presence of suprathermal electrons is then computed in the 
following section (“Evolution equation for stationary-profile nonlinear structures”). An analytical solution for 
the electrostatic potential is derived in the subsequent section (“Landau damping Rate for ion-Acoustic Waves 
in the presence of suprathermal particles”). The parametric analysis follows (in “Analytical solution of the KdV 
equation under the effect of Landau damping”), elucidating how the damping mechanisms are affected by the 
value of the electron kappa (kappa). The numerical solution of the KdV equation with Landau damping is elabo-
rated (in “Parametric investigation”). Finally, our results are summarized in the concluding section (“Numerical 
solution of KdV equation with Landau damping”).

Analytical model
We have considered an unmagnetized collisionless electron-ion plasma. We shall adopt an infinite one-dimen-
sional (1D) geometry, for simplicity, and will assume the ion temperature to be negligible (cold ion approxima-
tion, i.e. Ti = 0 ), while the electron temperature Te is finite. The ion dynamics can be described by the fluid-
dynamical equations:
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At equilibrium, the charge neutrality condition in Poisson’s equation (3) imposes ñe,0 = ñi,0 = ñ0 (where the sub-
script ‘0’ denotes the equilibrium values). The plasma state is thus described by means of four state variables (all 
functions of space x̃ and time t̃ ): ñi is the ion number density, ũi is the ion fluid speed, ñe is the electron number 
density and φ̃ denotes the electrostatic potential. The remaining symbols bear their usual meaning, i.e. e is the 
(absolute) electron charge and mi is the ion mass. The tilde in the above equations (which were here expressed in 
Gaussian, i.e. CGS units) has been adopted to distinguish the physical variables adopted above (that carry their 
usual dimensions) from their dimensionless counterparts that will be adopted later in this paper.

The above system is not closed, as the electron number density ñe has not yet been prescribed. Contrary to a 
commonly adopted approximation, where ñe is assumed to be given by a prescribed equilibrium function (i.e. 
neglecting electron inertia), here will shall assume the electron number density to be given by given by

in terms of the (normalized) electron distribution function f (x̃, ṽ, t̃) . (where v here refers to the microscopic 
velocity of the electrons). The evolution of the electron distribution function is described by a kinetic equation 
in the form of the Vlasov  equation33–35

For the sake of ease in algebraic calculation, we shall now rescale the quantities entering the above system of 
equations, as follows

with

where KB denotes Boltzmann’s constant. The new dimensionless variables n, u, ne , and φ denote the ion number 
density, the ion fluid speed, the electron number density, and the electrostatic potential, respectively. Notice that 
the ion fluid speed has been scaled by c0 (which is essentially the plasma sound speed in electron-ion plasma) 
while the microscopic electron speed has been scaled by the electron thermal speed ce . Space and time have 
respectively been scaled over L and L/c0 , where L is a characteristic length (left arbitrary, at this stage).

Henceforth, all algebraic expressions in this article will be dimensionless quantities, i.e. real numbers. The 
rescaled (dimensionless) fluid-dynamical system of equations now takes the form

Notice that the equilibrium value of both ion and electron number densities now turns out to be equal to unity. 
Note the natural appearance of the Debye length �D =

(

KBTe
4πn0e2

)1/2
 through the ratio �2D/L2 , that physically 

represents the strength of wave dispersion due to deviation from charge neutrality (as described by Poisson’s 
equation). The (dimensionless) Vlasov equation now  reads33–35:

i.e.

(1)
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Notice that the quantity (me/mi)
1/2 ( = δ ) representing the (finite) electron inertia will henceforth appear as the 

signature of the kinetic electron dynamics (to be associated with Landau damping) in the algebraic expressions 
to follow.

Following the procedure introduced by Ott and  Sudan13, we shall assume that

where ǫ ≪ 1 is a small (real-valued) parameter. Physically speaking, the (three) parameters thus introduced are 
related to: kinetic electron evolution—to be later linked to Landau damping—for γ1 , nonlinearity—i.e. to the 
strength of the deviation from equilibrium—for γ2 and to dispersion—as discussed above, in Poisson’s equa-
tion—for γ3 , here all assumed to be small and, in fact, comparable in order of magnitude. Equation (10) may 
now be rewritten as

The reductive perturbation  method4,13 will now be adopted, in view of the derivation of an evolution equation 
describing the dynamics of small amplitude nonlinear electrostatic excitations. Anticipating stationary-profile 
localized solutions moving at speed V, we shall first introduce stretched space and time coordinates in the form

where V will be determined later by algebraic requirements. Subsequently, all dependent variables will be 
expanded in powers of the (nonlinearity related) coefficient, as

f (0) is the equilibrium distribution function. We shall adopt the kappa distribution  here31, in the form

Note the Maxwell–Boltzmann equilibrium function

is recovered in the limit of infinite κ (value).

Evolution equation for stationary‑profile nonlinear structures
We may now proceed by substituting the above polynomial expansions (in powers of ǫ ) into the evolution equa-
tions and then collecting and analyzing the terms arising in various orders. The lengthy algebraic procedure is 
tedious but perfectly straightforward. Details can be found in the supplementary information, , and are thus 
omitted here.

The analytical process leads to a set of relations connecting the leading order corrections (disturbances) to 
the equilibrium values, i.e.

where the phase speed V is found by algebraic compatibility requirements to be given by
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It is important to notice that the latter expression is essentially the ion-acoustic (sound) speed in e-i plasma, 
in the presence of suprathermal electrons, as derived and analyzed in earlier works on electrostatic waves in 
kappa-distributed  plasmas32.

Moving on to higher orders in ǫ , a lengthy algebraic procedure (outlined in the appendix, i.e. as Supplemental 
Material to this article) leads to an evolution equation in the form:

that is, essentially a Korteweg–de Vries (KdV)  type1 PDE with an additional term (see the last term in the LHS), 
in account of the kinetic electron dynamics. Note that the dependent variable in the latter equation is essentially 
the leading (first) order density disturbance n(1) , that will henceforth be denoted a n (i.e. dropping the superscript) 
throughout what follows. The (real) coefficients appearing in (23) are all functions of κ ; these are:

• the nonlinearity coefficient A, given by

• the dispersion coefficient B, given by

and

• a kinetic “damping” coefficient C, given by

The last term in the LHS of the KdV equation above is associated with energy dissipation in the form of Landau 
damping, and in fact, breaks the integrability of the above PDE (known to be integrable if C = 0 ). This term is 
therefore expected to result in damped (i.e. decaying amplitude) solutions, as will be shown in the following.

In the latter formulas, we have used the definitions:

where Ŵ denotes the Gamma  function36.
Some limiting cases may be worth discussing at this point. First of all, in the limit κ → ∞ , one recovers 

A = γ2, B = γ3/2 and C = γ1/(2
√
2π) , i.e. the results match exactly with the expressions obtained by 

Sudan and  Ott13 (for the Maxwellian electron case). If, furthermore, one neglects the Landau damping effect by 
taking C = 0 (or γ1 = 0 ), thus neglecting the electron inertia, and then sets γ2 = γ3 = 1 , on recovers the stand-
ard KdV equation with A = 1 and B = 1/2 for Maxwellian e-i plasma, as originally obtained by Washimi and 
 Taniuti3. On the other hand, if one retains finite κ values (in the account of suprathermal electrons), but neglects 
electron inertia (i.e. upon setting γ1 = 0 ), one finds the known expressions for the KdV coefficients associated 
with electrostatic solitary waves in kappa-distributed  plasmas32.

Landau damping Rate for ion‑Acoustic Waves in the presence of suprathermal 
particles
To explore electrostatic wave damping, let us set A = B = 0 for a minute in the evolution equation (23), reduc-
ing it to

where P denotes the Cauchy principal value. Now, we proceed by using the convolution theorem on the second 
term—see Eq. (60) in the Appendix (supplemental material), then taking the Fourier transform of Eq. (28) and 
finally using the Fourier formula F

[

P
(

1
ξ

)]

= −i π |k| . Finally, linearizing the Fourier transformation of f—cf. 
Eq. (45) in the Appendix (supplemental material)—one obtains:

where ω is the angular frequency and k is the wavenumber associated with the electrostatic wave. The frequency 
thus becomes imaginary, accounting for a normalized linear damping decrement (rate) given by
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The linear Landau damping decrement, associated with the coefficient C, has been depicted in Fig. 1 versus kappa 
( κ ). One easily sees that, as the value of κ decreases (i.e., on account of a stronger deviation from the thermal 
equilibrium state), the linear Landau damping rate decreases too. It appears that the non-Maxwellian character of 
the electron statistics thus impedes the kinetic damping mechanism. Note that, for κ → ∞ , the asymptotic value 
of γ is γ = γ1

2

√

π
2 ≃ 0.01566 for fixed γ1 ≈ (me/mi)

1/2 ≈ 0.025 . In Fig. 1, the asymptotic value is represented 
by the black horizontal dashed line attained for large kappa (values).

Analytical solution of the KdV equation under the effect of Landau damping
In the absence of damping, i.e. for C = 0 , the resulting KdV Eq. (23) possesses a solitary wave solution in the form

Here, N0 is a constant, representing the soliton (pulse) amplitude (note that this will be a constant for C = 0—
only—i.e. in the absence of damping). This is a monoparametric family of solutions, dictating the maximum 
pulse amplitude and the pulse width to be given by to be N0 = 3U0/A and W =

√

4B
U0

 respectively, where U0 
represents the (arbitrary) pulse speed in the moving reference  frame37,38.

Now, we may attempt to calculate the effect of Landau damping on the solitary wave solution of the KdV equa-
tion, by adopting the procedure proposed by Barman and  Misra14. In view of performing a perturbation analysis, 
we shall assume that C(≫ ǫ) is smaller than the other parameters in order of magnitude, viz. A ≈ B ≫ C ( ≫ ǫ

)14. Let us introduce a new space coordinate in a moving frame, that moves at the wave’s (time-varying) speed:

Here, N = N(τ ;C) denotes the soliton amplitude, which is a slowly decreasing function of time, under the effect 
of damping, i.e. for C  = 0 ; cf. N0 = N(τ ;C = 0) , which appears in (31) above. Likewise, the density (disturbance) 
will be denoted by n = n(τ ;C).

After this transformation, Eq. (23) becomes

where we used ∂n
∂z

′ = ∂n
∂z  at z = z

′ . To obtain an analytical solution of Eq. (33), we have followed the procedure 
adopted by Ott &  Sudan13. Furthermore, we generalize the multiple time scale technique by exploiting the small-
ness of C14,39: we consider a solution in the form

An algebraic calculation leads to an analytical solution of Eq. (23) in the form
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Figure 1.  Variation of the linear Landau damping rate ( |γ | ) versus the parameter κ.
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Note that the latter expression has been obtained at leading order in (i.e. retaining on the zeroth power of) C. 
This represents a damped soliton (pulse) form, whose amplitude N(τ ) = N0

(

1+ τ
τ0

)−2
 decays in time, while 

also slowing down: note that its instantaneous speed, given by

is a decreasing function of time. Note that, upon setting τ = 0 in Eq. (35), one recovers precisely Eq. (31), as 
expected.

Parametric investigation
We may now investigate the parametric influence of various plasma (configurational) parameters on the prop-
erties of electrostatic solitary waves, as these are subject to kinetic (Landau) damping. The variation of various 
quantities will be discussed, based on Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11. To begin with, the phase velocity V 
increases with kappa ( κ ), as shown in Fig. 2. Stronger deviation of the electron statistics from the Maxwell–Boltz-
mann equilibrium profile (i.e., for smaller κ ) will therefore enable solitary waves to propagate at a slower speed 
(than in the Maxwellian case). Recalling that V is essentially the true sound speed in our case (i.e. for an e–i 
plasma with kappa distributed electrons), we realize that this conclusion simply recovers an earlier  result32, which 
is associated with the expected variation of the charge screening (Debye) radius to κ40,41.

In the following, ad hoc values of the real parameters (i.e., γ2 = γ3 = 1 ) have been adopted while producing 
Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 .

Figures 3, 4 and 5 display the variation of the nonlinearity (A), dispersion (B), and kinetic damping (C) 
coefficient(s) with kappa ( κ ). All of these are increasing functions of κ . Note that only positive polarity structures 
will be formed as the nonlinearity coefficient A associated with the soliton amplitude is a positive quantity for 
all values of κ.

Figure 6 depicts the number density, as it is prescribed by the analytical solution of the KdV equation, at time 
zero, i.e. ignoring the Landau damping effect: see Eq. (64). We see that the amplitude of compressive solitary 
waves increases for lower κ (i.e. for stronger deviation from the Maxwellian picture). A similar trend is wit-
nessed in the ion fluid speed (profile) shown in Fig. 7. The suprathermal electrons thus seem to lead to stronger 

(37)U(τ ) =
1

τ

N0A

3

∫ τ

0

(

1+
τ
′

τ0

)−2

dτ
′
.

Figure 2.  Variation of the phase speed (V) vs kappa ( κ).

Figure 3.  Plot of the nonlinearity coefficient (A) vs kappa ( κ).
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compression but to slower ion-acoustic excitations of the ion-fluid properties (in fact, the lower the value of 
kappa, the stronger the localized compression but also the fluid speed suppression will be). Note that the latter 
two figures have been plotted on the moving reference frame, i.e. by setting τ = 0 in the moving coordinate act-
ing as the argument in the respective functions.

The electrostatic potential and the associated electric field excitation predicted for different values of κ are 
shown in Figs. 8 and 9, respectively. We see that the amplitude of the electrostatic potential profile increases as 
the values of the kappa increase. A similar effect can be seen from the electric field profile of IA solitary waves. 
In these plots, no Landau damping effect is incorporated yet.

Figure 10 shows the temporal evolution of IA solitary waves under the influence of Landau damping. Over 
time, the amplitude of the IASWs tends to decrease due to the Landau damping term. It is also noticed that for 
higher values of κ , the amplitude of the density profile will be shorter as seen in Fig. 11.

Figure 4.  Plot of the dispersion coefficient (B) vs kappa ( κ).

Figure 5.  Plot of the Landau damping coefficient (C) vs kappa ( κ).

Figure 6.  The solitary wave (pulse) form (n) vs moving reference coordinate ( ξ ) setting τ = 0 . This plot is 
based on Eq. (31).
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Numerical solution of KdV equation with Landau damping
The interplay between nonlinearity and dissipation, in our case attributed to Landau damping, is known from ear-
lier works on qualitatively related studies based on ad hoc damping  terms42–46 leads to the formation of shock-like 
formations within the plasma. These shock waves are manifested as propagating fronts, i.e. regions of a sudden 
transition between different values in the plasma properties. It is tempting to explore how altering the statistics 
(i.e. the suprathermal nature) of the electrons might impact these Landau damping-adjusted shock-like patterns.

Employing a finite difference scheme, we have focused on tracking the temporal evolution of a propagating 
front (shock-like) excitation subject to Landau damping. In search of a time-dependent numerical solution, we 
have integrated the KdV equation by adopting a shock-like step-profile, given  by39

Figure 7.  The ion fluid speed (u) vs moving reference coordinate ( ξ ) setting τ = 0 . This plot is based on Eq. 
(21) i.e. u ≃ Vn (to leading order in ǫ).

Figure 8.  Variation of the electrostatic potential excitation ( φ ) vs moving reference coordinate ( ξ ) setting 
τ = 0 . This plot is based on Eq. (21) i.e. φ ≃ V2n (to leading order in ǫ).

Figure 9.  The electric field (E) (bipolar) waveform vs moving reference coordinate ( ξ ) setting τ = 0.
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Figure 10.  Time evolution of the solitary wave profile ( nL ) under the influence of Landau damping for fixed 
κ = 4.

Figure 11.  The variation of the peak amplitude ( |nL| ) of the soliton pulse vs time for different kappa ( κ ) values.

Figure 12.  Numerical solution of KdV equation with Landau damping in the time domain for different values 
of κ . Here ρ = 0.05 and � = 0.33 are fixed.
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where � regulates the dimension of the box, � (an arbitrary constant) is the shock amplitude and ρ is the inverse 
width of the shock (i.e. this antikink form will be wider, for smaller ρ values). The boundary conditions are 
nL(τ ,−�) = �[1+ tanh(ρ�)] and φ(τ ,�) = 0 . Here, We have assumed � = 150 for numerical simulation.

Figures 12a–c depict the numerical solutions of the KdV equation incorporating Landau damping across 
various κ values. Analysis of these figures indicates that the initial shock-like compression pulse undergoes 
amplification and develops an oscillatory tail over time. This phenomenon arises from the increasing dominance 
of dispersive effects in plasma dynamics, leading to a transition from a monotonic shock to an oscillatory shock 
profile. Notably, in Fig. 12a, at lower κ values (i.e., exhibiting high superthermality), dispersive effects exert less 
influence, thereby preserving the monotonic nature of the shock wave for an extended duration. Conversely, 
Figs. 12b,c illustrate that as κ values approach the Maxwellian limit, the shock-like compression pulse amplifies 
and acquires an oscillatory tail more rapidly. In essence, this implies that monotonic shock structures exhibit 
greater temporal stability in highly superthermal cases compared to the Maxwellian case. Moreover, the effect of 
the Landau damping on the shock-like compression pulse undergoes amplification and develops an oscillatory 
tail over time for highly superthermal cases and the Maxwellian case has been encapsulated in an animation 
video (see the supplementary video).

Conclusion
We have examined the combined effect of nonthermal (non-Maxwellian) electron statistics and kinetic (Lan-
dau) damping on the propagation characteristics of ion-acoustic (IA) solitary waves in electron-ion plasma. By 
employing a multiple-scale (variable stretching) technique, a nonlinear PDE in the form of a Korteweg–de Vries 
(KdV) equation was obtained, in terms of the leading-order density disturbance. This equation is a modified 
version of the historic KdV, here enriched by the appearance of a dissipative term, in account of kinetic damping.

Analysis has shown that the solitary wave (pulse-shaped) solution decreases over time, as expected, due to 
the addition of the kinetic (Landau) damping term to the evolution equation. The combined parametric influ-
ence of kinetic damping and suprathermal electron statistics on the pulse characteristics has been examined.

In a separate line of investigation, We have numerically integrated the nonlinear evolution equation with a 
step-shaped initial condition (reminiscent of an antikink soliton form). The initial condition was seen to decom-
pose into a series of pulses as time progressed. Nonetheless, stronger deviation from the Maxwell–Boltzmann 
distribution for the electron background appears to slow down this instability of the initial condition.

In the limiting case κ → ∞ , our results are in good agreement with the Maxwellian case, studied in earlier 
works.

The findings of this investigation may shed light on the dynamics of nonlinear waves under the influence of 
Landau damping in various space and astrophysical environments where superthermal electrons are observed.

Data availability
All data generated or analysed during this study are included in this published article.
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