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Spectral enhancement 
of PlanetScope using Sentinel‑2 
images to estimate soybean yield 
and seed composition
Supria Sarkar 1,2, Vasit Sagan 1,2*, Sourav Bhadra 2 & Felix B. Fritschi 3

Soybean is an essential crop to fight global food insecurity and is of great economic importance 
around the world. Along with genetic improvements aimed at boosting yield, soybean seed 
composition also changed. Since conditions during crop growth and development influences nutrient 
accumulation in soybean seeds, remote sensing offers a unique opportunity to estimate seed traits 
from the standing crops. Capturing phenological developments that influence seed composition 
requires frequent satellite observations at higher spatial and spectral resolutions. This study 
introduces a novel spectral fusion technique called multiheaded kernel-based spectral fusion (MKSF) 
that combines the higher spatial resolution of PlanetScope (PS) and spectral bands from Sentinel 2 
(S2) satellites. The study also focuses on using the additional spectral bands and different statistical 
machine learning models to estimate seed traits, e.g., protein, oil, sucrose, starch, ash, fiber, and 
yield. The MKSF was trained using PS and S2 image pairs from different growth stages and predicted 
the potential VNIR1 (705 nm), VNIR2 (740 nm), VNIR3 (783 nm), SWIR1 (1610 nm), and SWIR2 
(2190 nm) bands from the PS images. Our results indicate that VNIR3 prediction performance was the 
highest followed by VNIR2, VNIR1, SWIR1, and SWIR2. Among the seed traits, sucrose yielded the 
highest predictive performance with RFR model. Finally, the feature importance analysis revealed the 
importance of MKSF-generated vegetation indices from fused images.

Keywords  Artificial intelligence, Computer vision, Geographic information system, Precision agriculture, 
Plant phenotype, Remote sensing

Soybeans is often referred to as "versatile legume of opportunity" as it contributes to the economic value to a 
range of industries, while also playing a pivotal role in global food security1. Sustainable soybean farming has 
two folded main goals: the quality and the quantity of the soybean seeds. Quality refers to the nutrients inside the 
soybean seeds, such as protein, oil, carbohydrate, fiber etc., whereas, the quantity measures the total harvested 
soybean per acre2. Both factors are relevant for the profit and the long-term sustainability of soybean production. 
In 2021, the global soybean production amounted to approximately 355 million metric tons, with the United 
States, Brazil, and Argentina as major producers, which encompassing around 80% of the world’s production3. 
The total economic impact on the U.S. from the soybean sector averaged $115.8 billion per year4. With the grow-
ing demand by the expanding food industry, soybean serves as a vital ingredient in various products5.

Soybean yield, and to a lesser extent seed composition are important for farmeres when making effective 
agronomic decisions6. The modern technology, genetical modification and precision farming have strongly influ-
ence farming industries. These innovations have led to better crop management, enhanced cultivation practices 
and increased yields7. Recent studies show that even though the yield has been on the rise but there have been 
questions about the seed quality. The soybean seed composition has changed as yield have improved.8. This brings 
attention to the need for accurate information about seed composition to ensure that minimum standards are 
met. Proper understanding of these attributes allows farmers to select appropriate soybean varieties, allocate 
resources wisely, and cater to specific end-use demands which contributes to more informed and sustainable 
farming practices.
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Remote sensing and machine learning have been helping digital agriculture for the last few decades9. Recent 
advancements in technologies, big data, and computational efficiency possessed positive impact on crop yields 
and seed quality estimation10. Remote sensing technology can be used to create detailed maps of crop health, 
biomass estimation11, leaf area index, canopy nutrient status etc. which can help farmers to make decisions about 
planting, fertilizing, and harvesting12. Machine learning, which is a subset of artificial intelligence that can be 
used to analyze the data collected by remote sensing and provide informed decisions13. This can help growers 
and breeders to identify the optimal time for planting, fertilizing, and harvesting, by analyzing weather patterns 
and other parameters, to optimize crop yields and reduce costs14.

Publicly available Sentinel-2 (S2) satellite remote sensing data has comparatively high spectral and temporal 
resolution designed to provide detailed information about the Earth’s land surfaces and coastal zones15. Research-
ers have been using this satellite for crop health monitoring16, yield estimation17, drought stress assessment18, 
precision agriculture19, crop type classification20, pest and disease detection21, biomass estimation22 etc., due 
to its availability of several near-infrared (NIR) and short-wave infrared (SWIR) bands. However, S2 does not 
have a very high spatial resolution (~ 10 to 20 m), which can limit its ability to detect small changes in vegeta-
tion within field or plot-level. On the other hand, PlanetScope (PS) is a constellation of small dove satellites, 
which are designed to capture daily images of the earth surface at comparatively better spatial resolution23. This 
process allows the collection of data at frequent intervals which gives detailed information of land cover and 
land use change. The images have 3 m spatial resolution and 4 spectral bands (blue, green, red, NIR) which helps 
in detailed mapping of land cover and land use24, agricultural monitoring25, vegetation changes26, and natural 
resource management27 etc. Therefore, while S2 provides more spectral bands but lower spatial resolution, PS 
has higher spatial resolution with fewer bands.

Image data fusion techniques play a crucial role in combining information from different sensors and plat-
forms to enhance the quality, resolution, and interpretability28. There are different types of data fusion technol-
ogy including traditional methods, deep learning-based methods, and generative adversarial networks (GANs). 
Traditional methods for multispectral image fusion focus on mathematical and statistical techniques to combine 
information. Statistical data fusion techniques generalize the input data which makes it hard to get precise 
information for plot level studies. For example, Intensity-Hue-Saturation (IHS) transformation combines high-
resolution panchromatic imagery with lower-resolution multispectral imagery29, Principal Component Analy-
sis (PCA) reduces the dimensionality by extracting orthogonal components that capture the most variance30, 
Brovey transform is a linear method that enhances the spatial details of multispectral images by sharpening them 
using panchromatic imagery31. Deep learning techniques for image data fusion have shown promising results 
in generating high-quality, high-resolution data. However, such methods like GANs are computationally very 
expensive, artifacts noisy images, deprioritize features from the different data sources, and are ideal for fusing 
regular camera images rather than earth observation datasets32. Simple deep learning-based methods for data 
fusion within the scope of remote sensing and digital agriculture have the potentiality to overcome computa-
tional, interpretability, and optimization challenges.

Several studies showed that remotely sensed images, deep learning, machine learning and data fusion com-
binedly can address different agricultural issues. These fusion approaches have been used to monitor land use 
and land cover33, assessing within field corn and soybean yield variability34, water management35, land manage-
ment and disaster risk assessment36. PS images lack a wide range of visible near infrared (VNIR) and short-wave 
infrared (SWIR) bands. However, S2 can compensate for that. So, fusing these two sensors will give all the 
valuable properties from both images without losing any information. Few studies highlighted that VNIR and 
SWIR region are important to understand plant growth stages as it can capture variability in water availability37. 
Leveraging different-resolution imagery from both PS and S2 satellites, our study aims to fill a crucial gap in the 
existing literature by being the first to deploy kernel-based deep neural networks for estimating soybean seed 
composition. This multi-sensor data fusion approach not only enriches the spatial and spectral data but also 
introduces an innovative methodology to agricultural research. The objective of this study is three fold (1) intro-
duce a kernel based fusion approach for combining S2 and PS images of varying spatial and spectral resolutions. 
(2) Estimate seed traits and yield using newly fused images from various growth stages while the plants remain 
in the field and to determine which growth stage can predict which seed traits (3) to access the contribution of 
remotely sensed VNIR and SWIR bands in seed composition analysis. This study’s contribution lies in pioneering 
a novel fusion method to integrate satellite images from two modalities, enabling rich and continuous spectral 
information about crop canopies at different growth stages.

Study area and datasets
Experimental design
Experiments were conducted at the Bradford Research Center at University of Missouri, Columbia in 2017, 2020 
and 2021 (Fig. 1) to investigate the performance of soybean cultivars under different row spacing, fertilization, 
and rooting depth treatments. All the permission was obtained for the execution of the field experiments. The 
study site had a humid continental climate, and the growing season temperatures ranged from 13.8 to 25.0 °C 
with precipitation ranging from 2.53 to 4.46 cm. The first field named H1G contained 91 plots of varying size 
with five different rooting depth treatments ranging from 0.3 to 0.9 m38. The field size was 77 m × 65 m and the 
plot size was 6.2 m × 3.1 m. Soybean seeds were sown in either 38 cm or 76 cm row spacing with rows sown 
perpendicular to the rooting depth treatments. The second field named L2 had 191 plots of 6.1 × 6.1 m plot size 
with a soybean seed row spacing of 38 cm or 76 cm. This field was 228 m long and 61 m width. The fields were 
planted with different soybean cultivars and weeds were controlled using pre-emergence herbicide applications 
as well as manual hoeing. The experiments were rainfed and consisted of three varieties (’Pana’, ’Dwight’, and 
’AG3432’) and other non-GMO genotypes, and some plots with splits based on the 38 cm and 76 cm row widths.
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Data acquisition
Satellite images
The satellite images utilized in this study had two major scenarios, i.e., one where a pair of Sentinel-2 (S2) and 
PlanetScope (PS) images were collected for developing the fusion model, and another one where only the PS 
images were downloaded for the specific fields and years. Since in the first scenario, a generalized fusion model 
must be developed to generate S2-like bands for PS, a significant portion of the Bradford Research Center has 
been used as the training dataset. The Bradford Research Center includes several agricultural fields where numer-
ous crops are being planted for different experiments. Therefore, the fusion network could take advantage of 
learning from a diverse set of crops, genotypes, and management conditions. Three image pairs from both S2 
and PS were downloaded from the months of July, August, and September. The reason behind choosing these 
three months was to capture the important vegetative and reproductive stages of different crops in these months.

In the second scenario, PS images were downloaded where frequent image observations for the specific 
experimental fields and years were needed. The images were analytics ready surface reflectance products, which 
were stitched together when there were multiple image paths to cover a single S2 image area. For each year, 21 
images were downloaded with a 5-day interval starting from roughly 15 days after sowing (DAS). The reason 
behind choosing DAS as the reference was to normalize the yearly effect and consider the modeling of multiple 
samples from different years. In addition, several research has indicated that the nutrient status during vegeta-
tive growth can influence seed composition which was the main reason behind starting from 15 DAS. Finally, a 
5-day interval was considered as the basis of image download frequency to capture crop data at relatively high 
temporal resolution cloud and haze free days. A total of 84 PS scenes were downloaded for the seed composition 
estimation scenario.

Field data collection
Soybean were harvested at maturity using a small-plot combine to determine seed yield, and to collect a subsam-
ple of seeds for seed composition analyses. All the plant seed collections and uses were in accordance with all the 
national guidelines. The corresponding author of this paper Vasit Sagan undertook the formal identification of the 
plant material, and no voucher specimen of this material has been deposited in any herbarium. A total of 250 gm 
harvested seeds were analyzed for seed composition using a DA 7250 NIR analyzer, which is a third-generation 
diode array NIRS instrument specifically designed for the food and agricultural industries by PerkinElmer. The 
scanning process involved placing the seeds in a sample dish and using down view reflection or transflectance 
to detect wavelengths ranging from 900 to 1700 nm. The instrument provided 41 seed composition parameters 
as percentages. However only protein, oil, sucrose, starch, fiber, and ash were selected as those are of major. For 
yield the soybean seeds were harvested from each plot and then measured and normalized to kg ha−1 . These 
selected parameters were considered as the ground truth data for the prediction. The datasets generated during 
this study are not publicly available due to the arrangement with the funding agency.

Figure 1.   Location of the study area and experimental sites. (a) location of the study area in a large perspective; 
(b) Bradford Research Center in Missouri; (c) The whole study site in PS image; (d) close view of the 
experimental field H1G with 91 plots; (e) zoomed in view of L2 experimental field with 191 plots.
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Methods
The overall workflow is illustrated in Fig. 2 which includes aerial and ground data collection, deep neural 
network-based data fusion, hand crafted feature extraction, machine learning model implementation. A detailed 
description of the methods is discussed below.

Multiheaded kernel‑based spectral fusion
The task of the multiheaded kernel-based spectral fusion model was to learn the spatial and spectral character-
istics of S2 and PS to enhance the spectral bands of PS while maintaining the spatial details. An overview of the 
fusion model is illustrated in Fig. 3. The process can be broadly divided into three sections, i.e., kernel-based 
sample preparation, multi-headed neural network training, and generating the spectral bands for PS.

Sample preparation
The principal idea behind kernel-based spectral fusion is to capture the spatial details of the relatively higher 
resolution image (i.e., PS) during the learning process. The major objective is to develop a complex non-linear 
model that can capture the relationship between the available bands of PS with the additional bands coming 
from S2. In this problem, the available bands from PS are the blue (464–517 nm), green (547–585 nm), red 
(650–682 nm), and near-infrared (846–888 nm), whereas the bands to be predicted from the S2 are VNIR1 
(705 nm), VNIR2 (740 nm), VNIR3 (783 nm), SWIR1 (1610 nm), and SWIR2 (2190 nm) which have 20-m spatial 
resolution. Therefore, both PS and S2 images were first clipped to a matching geospatial shapefile to maintain 
similar extent. The S2 image bands were then resampled to the matching number of rows and columns from the 
corresponding PS image to maintain the same number of pixels for both image pairs.

A kernel-based convolutional approach was used to extract salient features from PS and S2 image sets. 
Utilizing a 3 × 3 matrix kernel K for the i, j coordinates of the resampled S2 image, the corresponding 9 pixels 
of the PS image were extracted. This operation was repeated for all 4 bands in the PS resulting in 36 values for 
each pixel in the S2. In addition, the VNIR1, VNIR2, VNIR3, SWIR1, and SWIR2 values from the S2 were also 
extracted. This process slides the kernel over every pixel, harnessing the kernel’s structure to amplify specific 
image characteristics while suppressing others. The 3 × 3 dimension was chosen for its ability to effectively capture 
local patterns while maintaining computational efficiency. Finally, two matrices of X and y were generated with 
shapes of (273312, 36) and (273312, 5) , respectively, where 273,312 is the number of pixels. This dataset was used 
to train the spectral fusion neural network.

Neural Network Architecture.
A multiheaded deep neural network was developed to map out the complex relationship between PS bands 

and S2 bands. For robust model outputs, the architecture processes a 36-dimensional input vector representing 
spectral features into a 5-dimensional output vector. The ability to predict multiple outputs in one network allows 
more generalizability, robustness, and efficiency of the neural network. The architecture model can be divided 
into two main sections: shared layers and branch-specific layers.

Figure 2.   The overall workflow utilized in this study. (a) The ground data collection process; (b) represents the 
step-by-step method of satellite data collection processing; (c) illustrate summary of the kernel based spectral 
fusion method; and (d) the machine learning methods to predict soybean seed traits and yield.
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The shared section of the model is constructed with two dense layers, both initialized with the He uniform 
initializer39. The first dense layer maps the 36-dimensional input to a 16-dimensional hidden space with ReLU 
activation function:

Here, W1 represents the weights of the first dense layer, and b1 denotes the biases. The output h1 , is then passed 
through another dense layer to produce a 32-dimensional vector, followed by:

To prevent overfitting, a dropout layer with a rate of 0.5 is applied on top of this layer.
After processing through the shared layers, the architecture diverges into multiple branch-specific layers. Each 

branch represents a different spectral band. For the current design, we have five branches representing VNIR1, 
VNIR2, VNIR3, SWIR1, and SWIR2. Each branch consists of a dense layer with 32 units followed by another 

(1)h1 = RELU(W1 × X + b1)

(2)h2 = RELU(W2 × h1 + b2)

Figure 3.   The Kernel Based Spectral fusion in details where it shows how a kernel is moving through an image 
and predicting a single band, it also shows the overall architecture for each layer, and finally the fused image is 
shown in false color composite.
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dense layer that outputs a scalar value. The output of the final layer of each branch is transformed by a custom 
activation function to ensure the output lies between 0 and 1, mimicking the reflectance spectra. Mathematically, 
the transformation for each branch can be represented as:

where, i stands for the branches (i.e., VNIR1, VNIR2, VNIR3, SWIR1, SWIR2), and Woi and boi are the weights 
and biases for the final layer of the i th branch, respectively.

The custom activation function ensures that the outputs of the branches are squeezed between the range1, 
which aligns with the physical constraints of reflectance spectra. This function is defined as:

This transformation takes advantage of the tanh function which outputs values between [− 1, 1]. By adding 
1, the range becomes2, and then multiplying by 0.5 normalizes the range to1.

The neural network was trained with the mean squared error loss function. Each branch had a separate loss 
function of mean squared error. However, the overall network was optimized with the Adam optimizer and the 
aggregated value of mean squared error loss was used to update the model weights. The learning rate was fixed 
at 0.0001 with 32 as the batch size. The training dataset was further divided into a separate validation set using 
an 80%-20% split of the training set. At each epoch, both training loss and validation loss were calculated to 
see if the model was overfitting or not. We used an early stopping criterion and stopped the model training if 
validation loss did not decrease for at least 10 epochs.

Machine learning methods
Fused image processing
The final fused images have nine bands ranging from 464 to 2190 nm similar to S2 and have a 3 m spatial reso-
lution like PS images. The fused products had 16-bit integer as GeoTIFF while assembling because PS gives an 
option to download 16-bit images to be compatible with the S2 sensor. A conversion process was applied to 
normalize the pixel values within a range of 0–1. At first the plot boundary was created for all the experimental 
years and fields using ArcGIS Pro software. Subsequently, an automated Python script was employed to extract 
the average values of all the bands within each plot. To overcome the mixed pixel issue from the adjacent border 
and plots we took the average values of pixels whose centroids fell entirely within the plot boundaries.

Feature extraction
Remote sensing images can capture changes in plant growth stages. However, getting this information can be 
challenging. Therefore, specialists use specific image bands and features to accurately get the image data. The 
vegetation features are designed to reduce the interference of outside elements and to properly quantify the plant 
characteristics. There are several Vegetation Indices (VIs) that can effectively track changes in plant growth dur-
ing the growing season. In this research, we decided to use 45 different hand-crafted VIs along with the values 
of nine individual bands for each date for the fused image (details of the features can be found in Appendix A). 
A total of 945 features were extracted and calculated using an automated python script. We believe adding VIs 
from VNIR and SWIR bands with the VIs from the PS bands adds more detailed information of plant growth 
changes. These bands are well known for water content estimation, chlorophyll absorption, soil adjustment, 
nutrient stress, phenological stages and biomass estimation40. By using such a wide range of VIs, we aim to get 
the most complete and nuanced view of plant features.

Machine learning models
Four distinct machine learning models were tested to predict seed composition and yield. At first a simple Partial 
Least Square Regression (PLSR) method was used. PLSR is a multivariate regression technique that often works 
better when predictor variables are multicollinear. Here this model was used to extract latent variables that best 
explain the variance in seed composition and yield in relation to the predictors. Equation 1 represents PLSR 
where, Y  is the mean-centered dependent or target variable, X is the mean centered matrix of independent vari-
ables, β is the regression coefficient matrix and ε is the residual matrix.

Secondly, an ensemble learning method named Random Forest Regressor (RFR) was used. This method is 
based on multiple decision trees at the time of training. For predictions, it takes the average output of individual 
trees, providing an implicit form of feature selection and averting overfitting. So, the number of trees is the most 
important factor. The model calculates the feature importance using Mean Squared Error (Eq. 2) where, yi is the 
target, N is the number of instances and µ is the mean given by 1N

∑N
i=1yi . In our study, RFR served as a robust, 

non-parametric approach to model the nonlinear relationships in the data.

The third method is Gradient Boosting Machine (GBM) which is also a tree-based algorithm. The principal 
idea behind GBM is that each calculation is done by a simple model and the following calculation is performed 
to reduce the residual of the last model. The new model is created in the direction of the gradient with reduces 
residuals41. If (xi , yi) is the given set of data points, where i = 1,2, . . . . . . ,N , and the loss function of calculating 
gradient is gm(x) , the input space is split into disjoint regions R1m,R2m,R3m, . . . . . . ,Rjm , and a constant value 

(3)oi = f (Woi × h2 + boi)

(4)f (x) = 0.5× (tanh(x)+ 1)

(5)Y = Xβ + ε

(6)MSE =
1

N

∑N

i=1

(
yi − µ

)2
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is estimated for each region bjm , where the number of lead nodes per regression tree is j . The GBM regression 
model, L

(
Y , f (x)

)
 can be expressed as:

The final method is Support Vector Machine (SVR) which performs linear regression in a higher (infinite) 
dimensional space by mapping input data into that space and determining a hyperplane which best estimates 
the data. The kernel trick is often employed in SVR, allowing for more complex relationships to be captured. In 
our context, SVR aimed to discern both linear and non-linear patterns in the seed composition and yield data. 
The SVM optimization problem can be expressed by introducing the Lagrange function shown in Eq. 3 where, 
(xi , yi) is the given set of data points, i = 1,2, . . . . . . ,N , and αi and α∗

i  are Lagrange multipliers. Which makes 
the regression function as Eq. 10.

Model training
Our study utilized 54 features encompassing individual spectral bands and a suite of vegetation indices which 
were captured at each 21 DAS interval. To predict specific seed variables four distinct models were trained on a 
multiyear dataset of 426 samples. We employed a systematic 70–30 train-test split for model validation to ensure 
robustness in our evaluation.

Each fused image feature was handled on its own to keep track of the exact phenology of the corresponding 
growth stage of the plants. Each DAS took its own features and used that information to train a model. A fine 
hyperparameter tuning was done for each prediction model to make them work better and give more accurate 
results. For PLSR we took the number of components from 1 to 10. For RFR the number of estimators was 10, 
50 and 100 with a maximum depth of 10, 30 and 50. Here the maximum features were ’sqrt’, ’log2’, 1. The highest 
number of estimators, learning rate and maximum depth of GBM was 500, 0.1 and 10 respectively. For SVR the 
gamma was 0.1, 0.5, 1.0 and the c was 0.1, 1.0 while training the model.

Model evaluation
Three commonly used model evaluation metrics have been used in this study namely Coefficient of Determina-
tion (R-squared), Root Mean Squared Error (RMSE), Normalized Root Mean Squared Error (NRMSE). R-squared 
(R2) is a statistical metric that represents the percentage of the variance for a dependent variable explained by 
an independent variable. It describes at what level the variables can be explained to one another calculated as R2 
(Eq. 12) where yi is the actual value ŷi is the predicted value, and yi is the mean of actual values. RMSE measures 
the quality of the fit of the model. In other words, it quantifies how spread out these errors are. RMSE is calculated 
by computing the differences between predicted and observed values, square each residual, then compute the 
average of these squared residuals, and finally, take the square root of this average (Eq. 13). NRMSE is a type of 
RMSE that aims to minimize the scale-dependency when comparing model performance across different units of 
measurement. It transforms the error metric into a relative scale, typically ranging between 0 and 1. Equation 14 
shows the calculation method for NRMSE where yi,max and yi,min are the maximum and minimum observed 
values respectively. These metrics are frequently employed in prediction studies in geography, agriculture, earth 
science, medicine, and environmental research. The equations for the calculation are given below.

(7)gm(x) =
∑j

j=1

(
bjmI

)
, x ∈ Rjm

(8)I
(
x ∈ Rjm

)
=

{
1, x ∈ Rjm;
0, other;

(9)L
(
Y , f (x)

)
=

∑n

i=1

(
Y − f (x)

)2

(10)max




−
1

2

N�

i,j=1

�
αi − α∗

i

��
αi − α∗

j

�
k
�
xi , yi

�
− ε

N�

i=1

�
αi + α∗

i

�
+

N�

i=1

yi
�
αi + α∗

i

�





(11)f (x) =
∑N

i=1

(
α∗
i − αi

)
k(xi , x)+ b

(12)R2
= 1−

∑n
i=1

(
yi − ŷi

)2
∑n

i=1

(
yi − yi

)2

(13)RMSE =

√∑n
i=1

(
yi − ŷi

)2

n− 1

(14)
NRMSE =

√
∑n

i=1(yi−ŷi)
2

n−1

yi,max − yi,min
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Results
Ground data exploration
The seed composition data (in percentage of samples) provides a comprehensive overview of various seed traits 
found in each seed sample. Figure 4 illustrates a histogram plot for all the seed components. The distribution of 
protein, oil, sucrose, and ash exhibited a bimodal pattern, while fiber and starch were approximately normally 
distributed. It also indicates that protein and yield were skewed to the right whereas oil and sucrose were skewed 
to the left. The statistical analysis (Table 1) of the ground truth data also provided the mean values across years. 
Variability was present within the data e.g., protein exhibited a standard deviation of 1.76, whereas oil had a 
slightly lower variability with a standard deviation of 1.60. The sample’s minimum and maximum values fur-
ther explain the range of data for instance, protein concentrations value ranges from a minimum of 36.1% to a 
maximum of 45.94%. Whereas oil stays between 16.61% and 25.39%. Also, the interquartile range captured by 
the 25% and 75% percentiles provides insight into the central spread of the data. 

Performance of MKSF and fused image properties
The overall prediction performance of VNIR1, VNIR2, VNIR3, SWIR1, and SWIR2 using the MKSF network is 
illustrated in Fig. 5. The results indicate that VNIR3 provided the highest performance ( R2 = 0.90 ), followed by 
VNIR2 ( R2 = 0.88 ), VNIR1 ( R2 = 0.84 ). The performance of both SWIR1 and SWIR were close to each other 
( R2 ≈ 0.79 ) and showed poorer performance compared to the VNIR bands. In case of the VNIR results, the 
model seem to underperform on the higher values, specifically for the VNIR1 (Fig. 5a) where observed values 
(actual pixel values) greater than 0.2 were underpredicted to below 0.2. Similar observation was seen for VNIR2 

Figure 4.   Histogram showing the distribution of each seed traits where the x axis and y axis represents value 
and frequency respectively.

Table 1.   Descriptive statistics of the explainable variables for samples collected from both fields and all years.

Statistics

Seed composition traits (%)

Yield (kg/ha)Protein Oil Sucrose Fiber Ash Starch

Mean 39.49 22.33 5.84 6.54 5.34 3.84 2700.20

Standard deviation 1.76 1.60 0.92 0.29 0.15 0.64 1271.81

Minimum 36.1 16.61 4.06 5.66 5.02 0.48 211.64

25% Percentile 38.15 21.29 5.11 6.36 5.22 3.49 1786.19

50% Percentile 39.10 22.52 5.62 6.52 5.36 3.81 2692.17

75% Percentile 40.86 23.52 6.63 6.7 5.45 4.18 3483.19

Maximum 45.94 25.39 8.15 7.57 5.87 5.91 7515.06
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and VNIR3 but to a smaller extent. However, the model performed the worst for both SWIR1 and SWIR2 where 
the values higher than the mean were severely underpredicted.

A spectral profile shows the way light reflects or absorbs across different wavelengths of electromagnetic 
spectra. Figure 6 shows the spectral profiles for PS, S2, and fused image for the same vegetative pixel. Because of 
photosynthesis, healthy vegetation tends to absorb light in the blue (band 1) and red (band 3) light. The spectral 
profile shows the similar dips in all three spectral signatures. Moderate reflectance in the green band has been 
seen which typically represents healthy vegetation. The cellular structure of the healthy vegetation strongly reflects 
near-infrared light. The following Fig. 5 shows a strong reflection in NIR band from PS image. However, the 
reflectance of the S2 and fused were low (around 0.2) but close to each other. High reflectance in the NIR band 
is a key indicator of healthy vegetation. The predicted 5 bands from S2 images gave reflectance almost similar to 
the original S2 image. Band 5, 6, and 7 are the red edge bands of the spectrum where the reflectance of vegetation 
increases rapidly. The high reflectance value in these regions indicates healthy vegetation. The shortwave infrared 
(SWIR) region is well known for water absorption. Healthy vegetation usually absorbs a significant amount of 
SWIR light and as a result a drop in SWIR bands is seen. Both the S2 and fused image show a dip, which indicates 
healthy, well-hydrated vegetation. Overall, the spectral signature of fused image and the S2 image were similar, 
indicating a valid fused image from the kernel based fusion process.

Model performance on seed composition estimation
The comparative analysis of the four machine learning models, i.e., PLSR, SVR, RFR, and GBR, across different 
seed composition traits revealed varying degrees of success. Among the traits, sucrose (Fig. 7d) demonstrated 
the most promising results, with the RFR model ( R2 = 0.68) consistently outperforming other models across 
the DAS range. In terms of most of the traits, RFR tended to outperform all other models and showed consistent 
behavior for different DAS sets. However, the performance of the models with protein, fiber and starch showed 
the nonsignificant test set metrics ( R2 ranging from 0.0 to 0.35).

Yield (Fig. 7a) with the RFR model showed consistent R2 ranging from 0.36 to 0.49 across the DAS ranges, 
where the peak was reached at 93 DAS (between R4 to R5 stage). PLSR tend to perform the worst in the initial 
DAS stages (18 to 33) but reached its peak performance right at 38 DAS ( R2 = 0.44 ). GBR tended to follow the 
performance of RFR closely but showed some variability across DAS, and SVR tended to perform poorly with 
DAS ranging from 53 to 68. Although the overall performance of protein (Fig. 7b) was lower, comparatively 
better performance was achieved with RFR at the later DAS stages (i.e., 108 to 118 DAS, representing R6 stage). 
However, the first two DAS stages showed comparative results but varied across different models. The models 

Figure 5.   Scatter plot for the predicted bands including VNIR1, VNIR2, VNIR3, SWIR1, SWIR2 with their R2 
and NRMSE. The x-axis represents the observed values, which is the actual pixel values from the test set and the 
y-axis shows the predicted values.
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with oil (Fig. 7c) initially started with lower performance but peaked at the range of 33 and 53 (V3 to R1), while 
showing a plateau after 53 DAS. A consistently better performance was also achieved from both RFR and GBR 
( R2 = 0.49 ) at 33 DAS. A similar pattern was also observed in case of sucrose (Fig. 7d), where the peak perfor-
mance ( R2 ≈ 0.67 ) was achieved by RFR at both 18 DAS (VC to V1 growth stage), 43 DAS (V4 to R1 stage), and 
103 DAS (R7 stage). For ash (Fig. 7e), we have seen the lowest model variability as most of the models (except 
for SVR) showed similar performance ( R2 ranging from 0.4 to 0.5) with different DAS groups. Finally, both fiber 
(Fig. 7f) and starch (Fig. 7g) showed the least R2 along with high variability across different models and DAS. 
In summary, while the optimal model and DAS combination varies based on the specific trait, certain patterns 
emerge. The RFR model’s strength for yield and the consistent mid-range DAS peak performance for several 
traits underscore the significance of a targeted approach for optimal seed composition prediction.

Figure 8 shows the relationships between the measured and predicted values for the test-set samples of dif-
ferent traits with the best performing model which indicates the models performed well for the observed values 
that are close to its mean. Models performed relatively better for yield, oil, sucrose, and ash, whereas the over and 
underestimation of the extreme values led to poor performance metrics for protein, fiber, and starch.

Feature importance for seed composition traits
In this study, a total of 45 features were considered during different modeling paradigms. To understand which 
feature contributed the most in the modeling performance, we calculated the permutation feature importance 
score for the best performing model from each seed composition trait. In the permutation feature importance 
algorithm, the procedure calculates the difference between the model’s baseline metric (with all features unal-
tered) and its metric with a feature’s values permuted. Therefore, a higher positive permutation feature impor-
tance score indicates that permuting the feature’s values decreased the model’s performance. A higher positive 
value implies the feature is more important for the model’s prediction capability. Figure 9 shows the 10 best 
performing features for the best models from each trait.

The placement of fused vegetation indices at the top of feature importance plots indicates the importance of 
having the additional VNIR1, VNIR2, VNIR3, SWIR1 and SWIR2 bands as model inputs. The range of x-axis 
for different plots indicates how much the model R2 changes based on permuting certain features. In case of yield 
(Fig. 9a), most of the features showed slight change in R2 difference (ranging from 0.02 to 0.05) and the mean 
value (middle of the whiskers) of each feature did not show drastic difference in each other. However, the two 
most important features were PSRI (Plant Senescing Reflectance Index) comprised of red, blue, and VNIR242; 
and NDII (Normalized Difference Infrared Index) composed of NIR, SWIR1, and SWIR243, which includes 
bands that were the result of fusion. In contrast, the third most important feature was found as EVI (Enhanced 
Vegetation Index), comprised of NIR, red, and blue bands44 that are not part of the fused image. This scenario 
was observed for other traits as well. This indicates that a combination of vegetation indices coming from both 
4 band and fused 9 band images were the key in explaining the yield and seed composition traits. Among the 

Figure 6.   Shows the fused image and its properties. (a) Represents the close view of L2 field from PS images; 
(b) illustrating S2 image; (c) the fused image in a false color combination; (d) the average spectra for the L2 
field from both sensor and the fused image where the x-axis represents wavelength and y-axis shows reflectance 
value.
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other traits, the top two features for protein (Fig. 9b) and oil (Fig. 9c) showed the considerably greater importance 
compared to other features as the distance between the first two and others were comparatively higher. For both 
protein and oil, MBWI (Multi-band Water Index) and MNDVI (Modified Normalized Difference Vegetation 
Index) were the most important features which is composed of green, red, NIR, SWIR1, and SWIR245,46. For 
sucrose (Fig. 9d), which was the highest performing trait among others, showed NMDI (Normalized Multi-band 
Drought Index) and NDII (Normalized Difference Infrared Index) as the most important features, which are 
both comprised of fused bands43,47. NDII was found to be the second most important features for both sucrose 
and yield. For ash, fiber, and starch, the level of decrease in model R2 found by the permutation tests was limited 
(ranging from 0.01 to 0.06). However, the vegetation indices coming from the fused bands were still found on 
top of the important feature list.

Discussion
Imagery based MKSF technique in data fusion
The MKSF neural network presented in this study is a unique approach to the analysis and interpretation of 
spectral data. Its multi-output architecture is particularly advantageous for tasks that require the simultaneous 
prediction of multiple spectral bands, as it allows for shared learning48–50 across outputs. The use of a custom 
activation function that bounds the outputs between 0 and 1 is practical for reflectance data and ensures that 
the model’s predictions adhere to physical constraints. We tried with many different linear activation functions, 
which ended up with poorer performance compared to the results from our custom tanh-based activation 
function. However, the underprediction of the higher values could be the result of using the custom activation 
function. Although the underprediction of higher values reduced the overall performance of the model, the 
bounded nature of the custom activation function provided a natural regularization effect, ensuring the model’s 
predictions remained within the physically plausible range of reflectance.

Advantages of this architecture include the efficiency gained from the shared layers, which allow for the 
reduction of computational resources compared to separate models for each output51,52. The use of dropout can 

Figure 7.   The variation of seed composition prediction based on different growth stages where the x-axis 
represents the days after sowing (DAS) and the y-axis shows the R-squared. Each rectangle box is for a seed trait 
and different models are shown in a particular color. The blue to red color bar shows the soybean growth stage.
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also be seen as an effective regularization strategy, potentially leading to better generalization. Figure 10 shows 
the aggregated loss along with individual loss curve for the bands. The model was trained using an early stopping 
criterion which stopped the model training if validation loss was not decreasing for at least 10 epochs.

However, there are drawbacks to consider. The shared layers assume that all outputs benefit from the same 
feature representation, which might not hold if the spectral bands have distinct characteristics requiring special-
ized feature extraction. In comparison with other spectral fusion techniques such as early fusion, where features 
are combined at the beginning of the model53,54 or late fusion, features are combined during the model training 
at the end55,56, the MKSF finds a middle ground. It allows for both shared representation learning and specialized 
output-focused adjustments. Traditional fusion techniques might either neglect the benefits of shared learning 
(as with late fusion) or fail to tailor the model to specific output requirements (as with early fusion).

Integrated analysis of seed traits and plant phenology
This study demonstrates the effectiveness of using fused images to estimate soybean seed traits and yield. The 
Random Forest Regression (RFR) model was adept to capture complex interactions between biophysical param-
eters and spectral signatures57-. It showed high efficiency and consistency in yield prediction, especially during 
critical phenological windows58. Interestingly, oil content prediction peaked based on imagery collected between 
33 and 53 days after sowing (DAS), which is prior to reproductive growth. Previously, we performed a similar 
study with unfused PS image-derived vegetation indices for seed composition trait estimation, where the results 
indicated similar or slightly poorer performance59. However, in the future we will set up several experimental 
sites with varying genotype and environmental combination and then perform a comprehensive analysis with 
the fused and unfused images.

This study leverages VNIR SWIR band of Sentinel-2 and spatial and temporal resolution of Planet Scope 
data for their distinct properties. VNIR effectively detects chlorophyll content, indicating plant health and nutri-
ent assimilation capabilities60. SWIR responds to water content variations, providing insights into water stress 
and leaf structural changes61. This research added three VNIR bands to the fused image which helped to enhance 
seed composition and yield estimation. Additionally, incorporating two SWIR bands allowed for comprehensive 
monitoring of phenological changes and water stress, crucial for understanding plant behavior and improving 
soybean cultivation strategies.

Conclusion
Our study demonstrates the feasibility of a multiheaded kernel-based spectral fusion algorithm to enhance the 
spectral resolution of PS with the help of S2 satellite information. The MKSF combines the usefulness of higher 
spatial resolution from PS and the better spectral band coverage from S2. We specifically tested the usefulness 

Figure 8.   Scatter plot illustrating the total yield and seed composition traits against their top-performing 
models, where x-axis displays the observed measurements (i.e., actual ground truth values measured using NIR 
spectroscopy), while the y-axis presents the predicted values.
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Figure 9.   The top 10 most important features for the prediction of each soybean traits and yield. The x-axis 
represents the decrease in model R2 whereas the y-axis represents the most important feature contributing to the 
prediction models.

Figure 10.   The loss curve while training the deep neural network where number of epochs are in the x-axis 
and the loss are in the y-axis (a) represents the aggregated loss for the total model training; (b–f) shows the 
individual loss curve for each band.
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of having additional VNIR and SWIR bands for estimating soybean seed composition traits to capture the phe-
nological variation of soybean plants. The major findings from our study are:

•	 The MKSF network successfully enhanced the spectral resolution of PS images. The model showed VNIR3 
had the highest predictive accuracy for vegetation health with an R2 of 0.90, while SWIR bands performed 
less effectively.

•	 The sucrose showed the highest predictive performance compared to other seed composition traits (R2 rang-
ing from 0.50 to 0.68), followed by oil, ash and yield (R2 ranging from 0.50 to 0.66).

•	 The most optimal growth stage to estimate seed composition varied by trait. Among the better predicted 
traits, R5 to R6 stages were important for yield, V3 to R1 for oil, R1 for sucrose, R5 to R7 for protein and 
R4-R5 for ash.

•	 Among the machine learning models, RFR outperformed other models and showed consistent performance 
across different traits, followed by the GBR model.

•	 The permutation-based feature analysis reveals that the most important feature was found from the vegeta-
tion index that encompassed at least one of the fused bands derived from the S2 images.

The MKSF holds great promise for future applications in remote sensing and crop phenotyping where compre-
hensive spectral data are essential. The ability to integrate VNIR and SWIR regions can significantly improve the 
accuracy of crop trait estimations and can be expanded to other crops across a larger region and for phenotypic 
traits that require detailed spectral analysis.
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