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Compact coherent perfect 
absorbers using topological 
guided‑mode resonances
Chan Young Park 1,3, Ki Young Lee 1,2,3, Yu Sung Choi 1 & Jae Woong Yoon 1,2*

We propose a topological coherent perfect absorber that enables almost ideal performance with 
remarkably compact device footprint and tight incident beams. The proposed structure is based 
on a topological junction of two guided‑mode‑resonance gratings. The structure provides robust 
systematic ways of remarkably tight lateral confinement of the absorbing resonance mode and 
near‑perfect mode‑match to arbitrary incident beams, which are unavailable with the conventional 
approaches. We demonstrate an exemplary amorphous Si thin‑film structure that enables near‑perfect 
absorptance modulation between 1.7 and 99% with device footprint width of 30‑μm and 10‑μm‑wide 
incident Gaussian beams. Therefore, our proposed approach greatly improves practicality of guided‑
mode‑resonance coherent perfect absorbers.

In a lossy scattering system, complete annihilation of electromagnetic radiation fields is possible by appropri-
ately designing structure geometry and coherent incident-waveform configuration. Such devices are known as 
coherent perfect  absorbers1,2 They in general require resonant elements such as optical cavities, waveguides, and 
 nanoparticles3. When such elements are configured at a certain optimal condition referred to as the critical cou-
pling  condition4, it enables remarkably efficient phase-sensitive optical modulation between two extreme states—
the coherent perfect absorption (CPA) and coherent total scattering (CTS)5. Various CPA devices have been 
proposed on the bases of thin  films6, graphene  nanostructures7, metallic  gratings8, and dielectric  metasurfaces9.

Toward this end, guided-mode resonance (GMR) absorbers have been studied because of their technical 
advantages including structural simplicity, compactness, almost freely adjustable operation band and Q factor, 
polarization selectivity, and many  others10,11. There are fundamental limitations of GMR CPA devices. Con-
ventional GMR CPA devices demand extremely uniform nanostructures over a considerably large surface area 
(~ 1  mm2) in order to secure desired  performance12,13. This originates from narrow angular tolerance of GMRs, 
associated diffraction-limited beam diameters, and in-plane delocalization of resonant modes as bulk Bloch-
Floquet states in  principle14,15. Therefore, significant degradation of device performance is inevitable if tight 
incident beams or small-footprint devices are required in favor of their practical applications.

In this paper, we propose a GMR CPA-device structure based on a diffractive topological junction as an effi-
cient solution to this problem. We utilize a photonic Jackiw–Rebbi (JR) state at a junction of two topologically 
distinguished GMR  gratings16,17. Under 10-μm-wide Gaussian beam incidence on an optimized amorphous-Si 
(α-Si) device, we numerically demonstrate a phase-sensitive switching between the CPA and CTS states with 
their absorptance values at 99% and 1.7%, respectively. This remarkably high performance is enabled by tight 
lateral confinement of the GMR JR state and a unique mode-matching capability to the incident beams by means 
of adoptable Dirac-mass shaping. Importantly, such high performance is crucial for practical applications such 
as coherence filters, modulators, and pulse  recovery18.

Results
Impact of finite beam and device sizes
We first consider a conventional GMR CPA device in order to describe our proposed approach in compari-
son. In Fig. 1a, we show a conventional GMR CPA device and its resulting field distribution, respectively. We 
assume thickness d = 500 nm, core refractive index nc = 3.485 (α-Si), clad refractive index nd = 2.45  (Si3N4), period 
a = 540 nm, and fill factor F = 0.45 in this calculation. In addition, we include intrinsic loss of α-Si at 0.0052, 
which is reasonable from experimental data in the  literature19,20. We use the finite element method (FEM) for 
the numerical analyses. See Method section for details of the simulation conditions.
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This trial device induces a critically-coupled GMR at wavelength 1468 nm under normal incidence of trans-
verse-electric (TE)-polarized light and thereby it can function as a CPA device under planewave incidence in 
principle. For two coherent Gaussian-beam incidences with beam width 14 μm, an incomplete CPA with its 
absorptance degraded down to ~ 50% is obtained. The imperfection is significant and originates in two major 
factors—in-plane leakage losses and modal mismatch between the incident field and resonance mode. In a fun-
damental viewpoint, these two factors are inevitable because GMR states are basically delocalized Bloch–Floquet 
states with its coupled radiation modes being planewaves with infinite width in general. Consequently, conven-
tional GMR CPA devices are highly sensitive to sizes of a device or incident beam.

A topological-junction GMR device can considerably alleviate or even completely remove these issues, as 
shown in Fig. 1b. We assume a junction of two topologically distinguished waveguide gratings with parameters 
FL = 0.35, aL = 560 nm, FR = 0.45, and aR = 540 nm with subscripts L and R denoting the left and right side of the 
junction, respectively. This parameter set is derived such that the two gratings about the junction have opposite 
Dirac-mass signs, which are determined by a formal mapping of the photonic wave equation onto the one-
dimensional Dirac equation for relativistic elementary  particles16.

In Fig. 1b, we assume the identical coherent Gaussian-beam incidences at wavelength 1493 nm. No in-plane 
leakage loss is observed and the guided-mode field is well confined within the incident beam region, implying 
better mode match. Subsequently, the absorptance is improved up to 80%. In Fig. 1c, we compare the phase-
sensitive absorptance-modulation profiles of the conventional and topological-junction cases. We note that 
the proposed topological junction structure can enhance the absorptance peak up to almost 100%, as we will 
demonstrate in the next section.

We further investigate the finite beam-width effect on the coherent absorption properties for the conventional 
and topological junction structures. Figure 2 shows the phase-sensitive absorptance change for the Gaussian 
beam width varying from 2 to 28 μm. The absorptance is modulated by the interference while the phase difference 
between the incident beams are changing from − π to π. The modulation depth depends on the incident beam 
width. For the conventional GMR case, the modulation depth increases with the beam width (W) because the 
ideal point is obtained for the infinitely wide beam, i.e., planewave. In contrast, the topological junction case has 
its largest modulation-depth point at W = 14 μm for our particular design. This optimal beam-width condition 
is obtained when the incident beam profile best matches to the localized GMR state at the junction. The effect 
of finite beam size is closely related to angular tolerance of a resonance. In our case here, we identify an angular-
tolerance width as angular full-width at half-maximum of a resonance peak. The calculated angular-tolerance 
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Figure 1.  Basic concept of a topological GMR CPA. (a,b) Electric field intensity |Ey|2 distributions in the CPA 
operation for conventional and topological GMRs with footprint size 50 μm, Gaussian beam width W = 14 μm 
under normal incidence of TE-polarized light at wavelengths 1468 and 1493 nm, respectively. (c) Enhanced 
phase-sensitive absorptance-modulation profile of the topological GMR CPA device in comparison with the 
conventional GMR at the critical coupling condition.
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widths for the conventional GMR at off-normal-incidence and normal-incidence conditions are 0.16° and 0.8°, 
respectively. These values are substantially smaller than the topological junction structure which has 1.6° for the 
angular-tolerance width. We also note in the small beam-width region below 14 μm that the large modulation 
depth domain is much more persistent for the topological junction case, which is highly desirable for compact 
device development.

Topological mode‑matching method
In analogy to the zero-energy state solution of the Dirac equation, a junction of two topologically distinguished 
lattices supports a leaky JR  state16,17 at the center of the bandgap. In such structures, optical near-field and 
radiation patterns of this leaky JR state can be conveniently described, using the formal analogy of the photonic 
coupled-mode theory to the one-dimensional Dirac equation. The theory describes the transversal electric field 
for the JR state as a localized standing wave

where u(z) is the cross-sectional wave function of the guided mode, G = 2π/a is the grating vector, and 
fJR(x) = exp[

∫ x
−x −m(x′)dx′] is the lateral envelope function of the JR state with m denoting the Dirac mass 

parameter. Consequently, Eq. (1) describes the localized state part ψJR of the total electric field, which is confined 
within the guided-mode envelope function u(z). Note that a π/2 phase difference between two standing guided 
modes u(z)eiGx and iu(z)e–iGx arises due to the phase delay from the Bragg reflection processes, respectively. As 
previously discussed in Ref.18, fJR(x) also describes the beam envelope of the coupled leakage-radiation distribu-
tion fleak(x), i.e., fleak(x) = fJR(x). The relation between fleak(x) and Dirac-mass distribution m(x) can be alternatively 
expressed as

Equation (2) provides a convenient method for the complete mode match essential for the ideal CPA opera-
tion. An essential condition for the ideal CPA state is to have coherent incident beams configured such that they 
are the exact time-reversal of the leakage-radiation from the localized mode. This implies that fleak(x) must be 
matched to the incident beam profile for the ideal CPA state. In this perspective, a complete mode match can 
be obtained for a given arbitrary incident beam profile finc(x) by configuring m(x) according to Eq. (2) with the 
mode-matching condition finc(x) = fleak(x).

(1)ψJR = u(z)(eiGx + ie−iGx)fJR(x),

(2)m(x) = −
1
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Figure 2.  Impact of finite beam width on the performance. Incident-beam-width-dependent absorptance 
modulation profiles for the conventional and topological GMR CPA devices in Fig. 1. Footprint size of the 
devices is fixed at 50 μm.
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In experimental situations, obtaining the mode-matching condition finc(x) = fleak(x) is possible in two oppo-
site ways in general. One is to carefully configure finc by means of available beam-shaping methods. The other 
is to configure fleak by means of nanophotonic structure optimizations. The latter is desirable in many practical 
situations, where finc is predetermined by the specific choice of sources and other required conditions. However, 
configuring a desired fleak is basically nontrivial and involves tedious numerical optimizations that often do not 
ensure an ideal solution. The topological GMR CPA device with Eq. (2) takes a remarkable advantage within 
this context.

The mode-matching condition by means of Eq. (2) can be conveniently obtained by appropriately designing 
unit-cell geometry. For a rectangular grating-ridge unit cell of our interest here, the Dirac mass is determined 
primarily by fill-factor F of the grating as

where sinc(x) = sinc(πx)/(πx) is the normalized sinc function, Δε = nc
2–nd

2 is the dielectric constant contrast in 
the grating layer, ng is the group index of the guided mode, λ0 is the bandgap center wavelength, and C1 and C2 
are dimensionless constants associated with the strength of the first- and second-order diffraction processes, 
 respectively17. Therefore, we can systematically configure fleak(x) = finc(x) for a given arbitrary finc(x) by taking 
fill-factor distribution F(x) according to Eqs. (2) and (3).

We numerically demonstrate this topological mode-matching method for a most popular beam shape—
Gaussian beam. For the trial case of Fig. 1b, we assume a piece-wise constant Dirac-mass distribution, i.e., 
m(x < 0) = − m0 and m(x > 0) =  + m0, where m0 > 0. We refer to this case as “simple junction” hereafter. Thereby, 
the leakage radiation has a bidirectional decaying-exponential beam profile, which is not matched quite well to 
the Gaussian beam and results in the incomplete CPA at 80%. We provide an example that the lost 20% efficiency 
is almost completely recovered by means of the topological mode-matching method.

Equation (2) implies a linear m(x) distribution for a Gaussian fleak profile, as shown in Fig. 3a. We design each 
unit cell for such m(x) distribution by introducing a cell-by-cell parameter δq = δ0 − qΔ, where q is unit-cell index 
running over − N to + N, δ0 is a critical point for m = 0, and Δ is constant increment, as shown in Fig. 3b. For the 
sake of convenience in this proof-of-concept demonstration, parameter δq simultaneously tunes nc and F of the 
q-th unit cell such that ncq = nd + δq and fill factor Fq = (navg − nd)/δq with navg = F0 nc0 + (1 − F0)nd. Equation (3) for 
Eq. (2) is conveniently mapped onto the unit cell geometry in this way.

The result is provided in Fig. 3c. The design parameters are δ0 = 1.035, Δ = 0.04, N = 10, α = 4.4 ×  10–3, nd = 2.45, 
navg = 2.864, a = 550 nm, and d = 500 nm. These parameters are optimized for a Gaussian JR-state envelope with 

(3)m(x) =
πng

�0
�εF[C1�ε sin c2(F)− C2 sin c(2F)],

Figure 3.  Topological mode-matching to a Gaussian beam. (a) Dirac mass m(x) distribution for the mode-
matching condition in Eq. (2) with an exemplary Gaussian beam. (b) Schematic of a mode-matched topological 
junction structure. (c) Electric field Ey pattern of the JR state in the mode-matched structure in comparison with 
the simple junction structure.
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beam diameter 9.4 μm. We show the mode-matched Gaussian envelope in comparison with the simple junc-
tion case where m(x) is piece-wise constant at − m0 for x < 0 and + m0 for x > 0, of which values correspond to 
the cell-by-cell parameter δ0 + 0.3 and δ0 − 0.3. The 2D field distribution of the JR state for the mode-matched 
junction is provided below.

The resonance band structure and phase-sensitive control performance of the mode-matched junction 
structure is shown in Fig. 4 in comparison with the simple-junction case. In Fig. 4a, we show angle-dependent 
coherent-absorption spectra for simple junction and mode-matched junction. We clearly identify the JR-state 
resonance in the middle of the bandgap region for both cases. See Method section for details of simulation 
conditions. The phase-sensitive absorptance modulation profile under a Gaussian beam incidence is provided 
in Fig. 4b. The mode-matching results in a remarkable performance enhancement from those for the simple-
junction JR-state and conventional GMR cases, where parameter δ for the conventional GMR case is constant at 
δ0 − 0.3. Note that the area illuminated by the incident beam profile finc(x) and the linear m(x) distribution for a 
Gaussian fleak(x) profile must be aligned, so that they are ideally mode-matched in the excitation area. At the in-
phase excitation condition (Δφ = 0) with 9.4-μm-wide Gaussian incident beams, the absorptance becomes almost 
perfect at A = 0.989 when compared to A = 0.616 and 0.473 for the simple-junction JR-state and conventional 
GMR cases, respectively. Importantly, such a high efficiency is obtained for a remarkably small footprint size 
at 30 μm. In this comparison, the peak absorptance for the simple junction structure can be slightly enhanced 
up to 63% by reducing the beam width down to 8.5 μm. Thereby, the case provided in Fig. 4b is a near-optimal 
condition for the simple junction structure.

The mode-matched JR-state device enables highly efficient optical modulation between the CPA and CTS 
states by tuning the incoming phase difference from 0 to π as indicated by I (Δφ = 0) and II (Δφ = π) in Fig. 4b. 
Corresponding field distributions are shown in Fig. 4c. At the CPA state, strong excitation of the mode-matched 
JR state and no out-going wave are clearly observable. At the CTS state in contrast, the JR state is not excited due 
to the complete destructive interference in the resonance mode while the complementary constructive interfer-
ence happens in the out-going wave field, leading to the complete scattering with no absorption. Therefore, this 
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device can function as a compact coherent perfect absorber without any significant performance degradation 
in the previous conventional approaches.

The remarkable enhancement of the performance by mode matching suggests that the device performance 
should be sensitive to spatial alignment of the incident beam position with the junction center. The sensitivity can 
be inferred by considering spatial correlation, i.e., normalized spatial overlap, between the incident beam profile 
and JR-state envelope. In the spatial-correlation approach, the alignment tolerance can be roughly determined in 
a similar sense to the Rayleigh criterion for diffraction-limited optical resolution. Accordingly, the lateral toler-
ance width Δxc for in-plane alignment must be half-width at half-maximum WJR/2 of the JR state envelope, i.e., 
Δxc ≈ WJR/2. For out-of-plane alignment along the surface normal axis, the axial tolerance region Δzc must be 
depth of beam waist, which corresponds to the Rayleigh range in case of Gaussian beams, i.e., Δzc ≈ (πλ−1)WJR

2. 
For ideal performance, the lateral and vertical alignment errors Δx and Δz should be substantially smaller than 
Δxc and Δzc, respectively. In our simulated case for Fig. 4, Δxc ≈ 4.9 μm and Δzc ≈ 50 μm. This implies that sub-
micron level (~ Δxc/10) precision is required for lateral alignment while micron-scale (~ Δzc/10) precision is 
enough for vertical alignment in order to obtain ideal performance.

Discussion
In conclusion, we have proposed a topological-junction coherent perfect absorber taking advantages of small 
device footprint and persistently high performance. Characteristic field distributions of a leaky JR state at the 
junction lead to efficient mode-matching to incident Gaussian beams. On this basis, we numerically demonstrate 
30-μm-wide CPA device with almost ideal interferometric control of absorption and scattering of coherent inci-
dent beams with 10-μm diameter. Such properties are hardly available with the conventional GMR structures. 
Therefore, our result strongly encourages further extensive follow-up study including higher-order JR states for 
complete two-dimensional confinement and subsequent adoptable mode matching as well as practical applica-
tions to low-power optical modulators, light-electricity transducers, coherence filters, sensors, and many others.

In particular, absolute absorptance values at the CPA and CTS states are crucial in practice. Considering the 
responses in Fig. 4b for example, the modulation depth in the transmitted coherent signal between the CPA 
and CTS states is 19.5 dB for the beam-shaped topological junction, which is remarkably higher than 4.1 dB 
for the simple-junction case and 2.7 dB for the conventional GMR case. If we further consider coherence filter 
applications, impact of such modulation depth contrast is also significant. Suppose a coherence filter system 
that transmits coherent signal while rejecting incoherent noises below a certain required level, let’s say 10% of 
the incident noise. For this, we have to set the operation condition at the CTS state so that the coherent signal 
absorption is minimal. The incoherent absorptance is simply given by 0.5Amax, where Amax is the absorptance at 
the CPA state. We then estimate the minimal number Nd of devices in a serial connection and absolute efficiency 
η of the transmitted coherent signal. We obtain Nd = 4 and η = 93% for the beam-shaped topological junction 
whereas Nd = 10 and η = 84% for the conventional GMR performing the same incoherent noise rejection capabil-
ity. Besides such efficiency-wise comparison, the topological junction device is highly desirable in consideration 
of robustness against structural imperfections and errors, which are unavoidable in experiments. Although we 
do not provide detailed analyses for our particular cases treated, it is previously known well from Ref.16 that 
spectral location and resonance strength of a topological-junction GMR are insensitive to random parametric 
errors in the structural parameters such as grating ridge width and period.

Methods
The calculation domain for supercell structure which consists of multiple of unit-cell elements was covered 
with perfect matched layers (PML) with the scattering boundary condition. The phase-sensitive absorptance 
profiles were calculated by surface integration of total power dissipation density for the supercell computational 
domain. The mode-matched Gaussian JR-state in Fig. 3c was obtained using the time stationary eigenfrequency 
solver for the supercell with the PML boundary condition. In the calculation of the angle-dependent absorption 
spectra, we use the same supercell computational domain and apply the periodic boundary condition to the 
lateral boundaries of the supercell.

Data availability
All data needed to evaluate the conclusions during this study are present in this paper. Request for additional 
information should be addressed to J.W.Y. at yoonjw@hanyang.ac.kr.
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