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A static precise single‑point 
positioning method based 
on carrier phase zero‑baseline 
self‑differencing
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Satellite navigation positioning has become an indispensable component of everyday life, where 
precise pinpointing and rapid convergence are crucial in delivering timely and accurate location 
information. However, due to the damping of integer ambiguities and system residual errors, the 
rapid convergence of Precise Point Positioning (PPP) implementation is a significant challenge. 
To address this, this paper proposes a novel Carrier Phase Zero‑Baseline Self‑Differencing Precise 
Point Positioning (CZS‑PPP) technique and its ionosphere‑free fusion model. By employing the 
proposed CZS‑PPP approach in separate scenarios involving BDS‑3, GPS, and dual‑system settings, 
we systematically validate the efficacy of the method. The experimental results indicate that the 
convergence time of the method is less than 4 min in a single‑system scenario. Furthermore, in 
a dual‑system scenario, the method can achieve rapid convergence in less than 3 min. The CZS‑
PPP technique presented demonstrates the elimination of integer ambiguities and the effective 
suppression of system residuals, in comparison to the conventional method. The proposed approach 
has demonstrated remarkable performance across different systems, offering a promising new 
pathway for achieving PPP fast convergence in BDS/GNSS.
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For over 30 years, the development of PPP has progressed slowly. The lengthy convergence time of PPP has posed 
an international challenge, impeding its adoption in the scientific, academic, and industrial communities and 
preventing its real-time and commercial use. To address the issue of shortening PPP convergence time effectively, 
international scholars have proposed several classic PPP models, including the Single-Difference (SD)  model1,2, 
the Uncombined (UC) positioning  model3, the University of Calgary model (UoFC)4, and the ionosphere-free 
combination model (IF)5–8. In recent years, with the development of BeiDou Navigation Satellite System (BDS) 
and Galileo, research on PPP using multi-frequency, multi-system, and multi-frequency multi-system combina-
tions has become a hot topic.

BDS-3 was the first to launch onboard real-time PPP services internationally. Researchers such as Zhang 
et al. evaluated the static and dynamic positioning performance of PPP-B2b9. For BDS-3 (BDS-3 + GPS), the 
static positioning accuracy was 2.6 (2.1) cm, the dynamic positioning accuracy was 21.5 (15.2) cm horizontally 
and 33.4 (30.3) cm vertically, with a convergence time of 17.4 (16.2) minutes. Other scholars have reported 
similar performance  results10–13. Multi-frequency combination models are advantageous for speeding up PPP 
 convergence14. Duong V analyzed the UD model, showing that its convergence time could reach 15 min with 
positioning accuracy better than 10  cm15. Laurichesse D analyzed the positioning performance of three-frequency 
PPP, demonstrating centimeter-level  accuracy16. Academician Yang Yuanxi, Basile F, Zhang Xiaohong, and oth-
ers analyzed the convergence performance of three-frequency PPP. The experimental results indicate that the 
convergence time of three-frequency PPP can be shortened to 10  minutes17–19.

OPEN

1School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan, China. 2School 
of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, Hunan, China. 3School of 
Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China. 4Shanghai Astronomical 
Observatory, Chinese Academy of Sciences, Shanghai 200030, China. 5School of Physical Science and Technology, 
ShanghaiTech University, Shanghai 200030, China. *email: chengcailin@126.com; lkh8022150@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-63570-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12590  | https://doi.org/10.1038/s41598-024-63570-2

www.nature.com/scientificreports/

Multi-system combination models also play a significant role in accelerating PPP  convergence20. The primary 
benefit of employing multi-system combination lies in the increased number of observed satellites and improved 
spatial geometry, resulting in enhanced PPP convergence time and positioning accuracy. Noteworthy research-
ers such as Geng Jianghui, Li Xingxing, and Duong V. have delved into the study of multi-system PPP models, 
demonstrating that, in comparison to single-system models, multi-system PPP models have the capability to 
expedite the resolution of integer  ambiguities21,22. In another exploration, Zhang Baocheng, Li Xingxing, and 
their colleagues investigated the GCRE four-system PPP model and determined that the static convergence time 
for the four-system PPP model could be reduced to less than 10 min, with positioning accuracy better than 10 
 cm23. Furthermore, the multi-frequency multi-system combination model has also attracted great attention. The 
results show that the combination of multi-frequency and multi-system can further shorten the convergence 
 time24. In conclusion, diverse combination models can significantly reduce PPP convergence time, albeit fac-
ing constraints such as errors in atmospheric delay models, time-varying effects, and gradual changes in GNSS 
satellite constellations.

In recent years, two new PPP mechanisms, Precise Point Positioning and Real-Time Kinematic (PPP–RTK) 
and Low Earth Orbit Satellite Navigation Enhanced GNSS (LE-GNSS), have gained significant attention. 
PPP–RTK aims to overcome the factors impeding rapid convergence in PPP, with a primary focus on effectively 
resolving errors in atmospheric delay models and their temporal  variations25. Introduced by Germany’s Wüb-
bena in 2005, this concept relies on ground-based CORS networks to accurately differentiate satellite orbits, 
satellite clock errors, and atmospheric delay errors. Users can leverage this model data to achieve instantaneous 
centimeter-level positioning, akin to Real-Time Kinematic (RTK)26–28. The “Heavenly RTK” proposed by Hexa-
gon in the United States, essentially disseminates this data via satellites, rendering it a satellite-based PPP–RTK 
technology. LE-GNSS addresses the slow-changing GNSS satellite constellation structure. Low Earth Orbit (LEO) 
satellites operate at high speeds, and when combined with BDS-3, they can rapidly alter the geometric structure 
of GNSS navigation constellations. This approach can solve the ill-posed problem of multi-epoch combined PPP 
models in a short time frame. Researchers like Li Bofeng and Li Xingxing have conducted studies and analysis, 
suggesting preliminary conclusions that, with a sufficient number of deployed LEO satellites (300 or more), LE-
GNSS can achieve PPP convergence times of less than 1  minute29,30.

Harnessing external aids, such as Heavenly RTK and LEO Satellite Navigation Enhancement, undeniably 
contributes to overcoming the international challenge of PPP slow convergence. This paper seeks to investigate 
whether PPP can achieve swift convergence autonomously, without relying on external assistance.

Principles and methods
CZS‑PPP principle
The core principle entails employing itself as a reference, essentially considering the epochs before and after as 
the reference station and the mobile station. This involves a static baseline length of zero and a dynamic baseline 
length approaching zero, forming a zero-baseline self-differencing mode. Changes in position relative to the pre-
vious epoch are computed by analyzing the carrier phase variations between the current and preceding epochs. 
This involves subtracting the carrier phase from the previous epoch from the carrier phase of the current epoch. 
Subsequently, the self-differencing values for carrier phase at each frequency are calculated. The coordinates are 
then determined using a dual-frequency ionosphere-free combination model.

The basic procedure of our method is as follows: In the first step, Single-Point Positioning (SPP) is used to 
determine the receiver coordinates at the initial epoch. In the second step, taking the receiver coordinates at 
the initial epoch as a virtual station, epoch differencing is performed between the second epoch and the initial 
epoch. The solution provides the coordinate changes relative to the virtual station, so the receiver coordinates 
at the second epoch are obtained by adding the virtual station coordinates and the coordinate changes. In the 
third step, the virtual station is updated, taking the receiver coordinates at the second epoch as the new virtual 
station. Similarly, epoch differencing is performed between the third epoch and the second epoch to obtain new 
coordinate changes and the receiver coordinates at the third epoch, updating the virtual station. This process 
is iteratively applied to subsequent epochs until convergence to the true receiver coordinates is achieved. The 
carrier phase observation equation (converted to distance), as shown in the equation, is used.

In the above equation, Li represents the carrier phase observations (converted to distance), where the subscript 
i denotes the carrier frequency. ρ is the satellite-to-ground geometric distance, δtk represents the receiver clock 
bias, δtj represents the satellite clock bias, and c is the speed of light, all in units of seconds. Gh and Gw are the 
tropospheric zenith direction dry and wet mapping functions, respectively. Th represents the zenith direction 
dry delay component, obtained from the Saastamoinen  model31. Tw represents the zenith direction wet delay 
component and is treated as an estimated parameter alongside position parameters. Ii represents the ionospheric 
delay on Li . εLi represents the observation noise for carrier phase, all in units of meters. Ni represents the integer 
ambiguity on Li.

The Eq. (1) is differenced between consecutive epochs to obtain the zero-baseline self-differencing equation 
(converted to distance) as follows:

In the equation, � represents the differencing operator between consecutive epochs. The carrier phase zero-
baseline self-differencing eliminates the integer ambiguity parameters. �ρ represents the change in satellite-to-
receiver geometric distance between consecutive epochs, and �ρ is defined as follows:

(1)Li = ρ + c · δtk − c · δtj + Gh · Th + Gw · Tw − Ii + Ni + εLi

(2)�Li = Lt − Lt−1 = �ρ + c ·
(

�δtk −�δtj
)

+ Gh ·�Th + Gw ·�Tw −�Ii +�εLi
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In the equation, t  and t − 1 represent two consecutive epochs; et =
Rst−Rrt
|Rst−Rrt |

 represents the unit direction vector 
from the receiver to the satellite; Rs

t represents the satellite coordinate vector, and Rr
t  represents the receiver 

coordinate vector. Additionally, Rr
t = Rr

t−1 +�R , where �R represents the change in receiver coordinates. There-
fore, �ρ can be expressed as follows:

Substituting Eq. (4) into Eq. (2) yields:

and calculate its error equation as:

where l  is:

(

XJ ,YJ ,ZJ
)

 represents the satellite coordinates, while 
(

X0
K ,Y

0
K ,Z

0
K

)

 represents the approximate coordinates 
of the receiver.

In Eqs. (6), v represents the residual vector, l  denotes the known parameters, and the parameters to be esti-
mated include the changes in receiver coordinates �R for both before and after epochs, the variation in tropo-
spheric zenith wet delay component �Tw , and the receiver clock bias change �δtk . When a sufficient number 
of visible satellites is available, these parameters can be estimated through the least-squares method or Kalman 
filtering.

Reconstructed Doppler method
Presently, the unprocessed Doppler observations obtained from receivers display substantial noise, making them 
unsuitable for accurate GNSS positioning or velocity estimation due to elevated error levels and diminished 
accuracy. As a result, a method has been suggested to reconstruct Doppler frequency shift values, aiming to 
produce noise-free theoretical values. The reconstructed alterations in carrier phase demonstrate remarkable 
precision and are devoid of cycle slips.

The reconstructed Doppler frequency shift values depend on various parameters, such as satellite positions, 
satellite clock biases, tropospheric delays, ionospheric delays, receiver velocity, receiver position, and receiver 
clock biases, among others. These parameters constitute the variables to be estimated, establishing a theoretical 
basis for the pseudorange single-point positioning model utilizing reconstructed Doppler values.

For satellite positioning, satellites orbit around the Earth, making them mobile signal sources. When extend-
ing the formula to single-point positioning, one can derive the reconstructed Doppler frequency shift value, 
denoted as fd . In Fig. 1, the observation vector −→ρ  of a satellite points from the receiver to the satellite, while the 
−→
v  vector represents the receiver’s velocity. Let −→vs = (xvs , yvs , zvs) be the satellite velocity, Ps = (xs , ys , zs) be the 

satellite position, and Pu = (xu, yu, zu) be the receiver’s position, obtained through pseudorange positioning. 
Therefore, �ρ = (xρ , yρ , zρ) =

(

xs − xu, ys − yu, zs − zu
)

 . The reconstructed Doppler value can be calculated as 
follows:

In the equation, �l is the unit observation vector, �l = �ρ/|�ρ| , where |�ρ| represents the satellite-to-earth geometric 
distance, � is the wavelength. The dot symbol “.”denotes vector dot product.

Due to the presence of cycle slips, clock jumps, and gross errors in traditional carrier phase-smoothed pseu-
dorange methods, this paper introduces a method to calculate the carrier phase change quantity � ·��ij (con-
verted to distance) through the integration of the reconstructed Doppler frequency shift values. This method 
can be expressed as follows:

(3)�ρ = ρt − ρt−1 = et ·
(

Rs
t − Rr

t

)

− et−1 ·
(

Rs
t−1 − Rr

t−1

)

(4)�ρ = −et ·�R + et ·
(

Rs
t − Rr

t−1

)

− et−1 ·
(

Rs
t−1 − Rr

t−1

)

(5)
�Li =− et ·�R + et ·

(

Rs
t − Rr

t−1

)

− et−1 ·
(

Rs
t−1 − Rr

t−1

)

+ c ·
(

�δtk −�δtj
)

+ Gh ·�Th + Gw ·�Tw −�Ii +�εLi

(6)v =
�

−ex − ey − ez1Gw

�

·











�x
�y
�z

c ·�δtk
�Tw











− l

(7)et =
(

ex , ey , ez
)

=

(

XJ − X0
K

∣

∣Rs
t − Rr

t

∣

∣

,
YJ − Y0

K
∣

∣Rs
t − Rr

t

∣

∣

,
ZJ − Z0

K
∣

∣Rs
t − Rr

t

∣

∣

)

(8)�R =
(

�x,�y,�z
)

(9)l = �Li − et ·
(

Rs
t − Rr

t−1

)

+ et−1 ·
(

Rs
t−1 − Rr

t−1

)

+ c ·�δtj − Gh ·�Th +�Ii

(10)fd =

(−→v −−→vs
)

·
−→
l

�
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In the equation, � represents the wavelength of the carrier signal transmitted by the satellite, ti and tj are two 
epochs in time, fd(ti) and fd

(

tj
)

 represent the reconstructed Doppler frequency shift values at the two epochs, 
�i and �j denote the carrier phase observations at the two epochs, and � ·��ij represents the carrier phase 
change between the two epochs. The time difference between tj and ti represents the time interval between the 
two epochs. This approach effectively mitigates the effects of carrier phase observations including cycle slips, 
clock jumps, and gross errors.

Moreover, considering the carrier phase change between epochs as an indicator of the pseudorange rate, and 
in an ideal scenario where factors like ionospheric effects, tropospheric effects, and receiver clock bias are disre-
garded, the theoretical equivalence of pseudorange change and carrier phase change between the same epochs 
holds true. Nevertheless, in real-world scenarios, owing to diverse errors and observational noise, the carrier 
phase change exhibits greater precision compared to the pseudorange change. Consequently, incorporating the 
reconstructed Doppler frequency shift values to substitute the pseudorange change can result in a more smoothed 
pseudorange and enhanced pseudorange accuracy, as outlined below:

In the equation, δρj
(

ti , tj
)

 represents the change in pseudorange between two epochs, ti and tj.
The initial epoch positioning relies on single-point pseudorange positioning, where pseudorange measure-

ments are susceptible to significant noise. This noise is a random variable conforming to a zero-mean normal 
distribution, typically ranging between 5 and 10 m. Consequently, mitigating pseudorange noise becomes impera-
tive. While traditional carrier phase-smoothed pseudorange  techniques32 with Doppler observations show no 
signs of cycle slips, Doppler observations from GNSS receivers often harbor considerable noise, leading to 
heightened errors and diminished accuracy. In light of this, a novel approach based on reconstructed Doppler 
for carrier phase-smoothed pseudorange is proposed to effectively suppress pseudorange noise and enhance 
accuracy. The underlying principle of this method is elucidated below:

The pseudorange observations at the first epoch can be deduced by integrating the carrier phase change 
quantities obtained from different epochs’ reconstructed Doppler values. A smoothing window of length k is 
defined, which means there are k observations within the window: ρj(t1) , ρj(t2) , …, ρj(tk) . By utilizing the inte-
grated reconstructed Doppler frequency shift values, carrier phase change quantities δρj(t1, t2) , δρj(t1, t3) , …, 
δρj(t1, tk) can be calculated from t1 to tk and retroactively applied to the first epoch. Consequently, k pseudorange 
observations are available for the first epoch, namely:

As the sliding window encompasses k epochs, the pseudorange values computed for these k epochs are aver-
aged to derive the smoothed pseudorange value for the initial epoch:

(11)� ·��ij = �
(

�j −�i

)

= �

tj

∫
ti
fddt

(12)δρj
(

ti , tj
)

= � ·��ij = �

tj

∫
ti
fddt

(13)

ρj(t1)1 =ρj(t1)

ρj(t1)2 =ρj(t2)− δρj(t1, t2) = ρj(t2)− �
t2
∫
t1
fddt

· · · · · ·

ρj(t1)k =ρj(tk)− δρj(t1, tk) = ρj(tk)− �

tk
∫
t1
fddt

Figure 1.  Doppler model of satellites and receivers.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12590  | https://doi.org/10.1038/s41598-024-63570-2

www.nature.com/scientificreports/

By leveraging the integrated Doppler frequency shift values reconstructed at any specific epoch, it is possible 
to calculate the alteration in pseudorange concerning the initial epoch time. Following this, through the process 
of smoothing and adjusting the mean pseudorange value at the initial epoch time, one can obtain smoothed 
pseudorange values for all subsequent epochs.

First, we integrate the Doppler values, and then obtain the integrated change by subtracting the values 
between consecutive epochs. This integrated change reflects the variation in noise. In Fig. 2, the comparison 
shows the difference between reconstructed Doppler values and Doppler observations (generated by the receiver 
observation file): Reconstructed Doppler values are smooth and noise-free, with a monotonically increasing curve 
reflecting the relative motion trajectory between the satellite and the receiver. In contrast, Doppler observation 
values are mixed with observational noise, displaying irregular and non-stationary fluctuations.

Figure 3 compares the original pseudorange observations with the pseudorange observations smoothed by 
reconstructed Doppler. The positioning performance of these two types of observations is further validated in 
Fig. 4. It can be observed from Fig. 4 that the SPP-Reconstruct Doppler (the SPP with Reconstructed Doppler 
smoothed pseudorange) demonstrates significantly better positioning accuracy and stability compared to SPP 
with original pseudorange observations.

CZS‑PPP ionosphere‑free combination model
The conventional PPP method employs the dual-frequency ionosphere-free model (PPP-IF), where the combined 
model of pseudorange and carrier phase observations is as follows:

(14)ρj(t1) =
1

k

k
∑

i=1

ρj(t1)i

(15)ρj(ti) = ρj(t1)+ δρj(t1, ti) = ρj(t1)+ �
ti
∫
t1
fdd

Figure 2.  Comparison of the integrated changes between observed Doppler values and reconstructed Doppler 
values.

Figure 3.  Comparison between original observations and newly generated observations.
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In eqs. (16) and (17), PIF represents the ionosphere-free combined observations of dual-frequency pseu-
dorange observations P1 and P2 ; LIF represents the ionosphere-free combined observations of dual-frequency 
carrier phase observations L1 and L2 ; f1 and f2 are the frequencies of the observations; δtk denotes the receiver 
clock bias; δtj represents the satellite clock bias; c is the speed of light in vacuum; Gh and Gw are the mapping 
functions for dry and wet tropospheric delays, respectively; Th and Tw are the dry and wet tropospheric delays; 
NIF is the integer ambiguity of the ionosphere-free combined carrier phase observations; �IF is the wavelength of 
the ionosphere-free combined observations; εPIF and εLIF denote the noise errors of the pseudorange and carrier 
phase observations, respectively.

The dual-frequency ionosphere-free combination  model33 for CZS-PPP is presented as follows:

In Eqs. (18) and (19), PIF and �LIF represent the ionosphere-free linear combinations of pseudorange obser-
vations and carrier phase self-differencing values on BDS-3 satellites B1C and B2A, respectively. ρ is the geo-
metric distance from the receiver to the satellite, and �ρ represents the change in satellite-to-receiver geometric 
distance between the previous and current epochs. Gh and Gw are the tropospheric zenith direction dry and 
wet mapping functions, respectively. �Th is the change in tropospheric zenith direction dry delay component 
between the previous and current epochs, and �Tw is the change in tropospheric zenith direction wet delay 
component between the previous and current epochs. �Tw is treated as an estimated parameter along with 
position parameters. εPIF represents the pseudorange observation noise for the ionosphere-free combination, 
while �εLIF represents the phase observation noise for the ionosphere-free combination between the previous 
and current epochs. All the above units are in meters. c denotes the speed of light. �δtk is the change in receiver 
clock bias between the previous and current epochs, and �δtj is the change in satellite clock bias between the 
previous and current epochs, both in seconds. Other error terms in the observation equation (such as antenna 
phase center  corrections34, phase wind-up  effects35, tidal loading  deformations36, relativistic  effects37, and Earth 
 rotation38) are corrected using respective models. The dual-frequency ionosphere-free combination model offers 
the advantages of eliminating first-order ionospheric effects with fewer estimated parameters, resulting in stable 
positioning performance, a simple model, and ease of operation.

In our research, we utilized L1 and L2 dual-frequency observations from the BDS-3 and GPS dual-systems39 
to compute the intermediate-frequency combinations. The ionosphere-free combination equation, established 
based on pseudorange observations and carrier phase self-differencing values, can be expressed as:

(16)PIF =
f 21 P1 − f 22 P2

f 21 − f 22
= ρ + c ·

(

δtk − δtj
)

+ Gh · Th + Gw · Tw + εPIF

(17)LIF =
f 21 L1 − f 22 L2

f 21 − f 22
= ρ + c ·

(

δtk − δtj
)

+ Gh · Th + Gw · Tw + �IF · NIF + εLIF

(18)PIF =
f 21 P1 − f 22 P2

f 21 − f 22
= ρ + c ·

(

δtk − δtj
)

+ Gh · Th + Gw · Tw + εPIF

(19)�LIF =
f 21 · L1 − f 22 · L2

f 21 − f 22
= �ρ + c ·

(

�δtk −�δtj
)

+ Gh ·�Th + Gw ·�Tw +�εLIF

(20)P
g
IF = ρg + c · δtk + Gw · T

g
w + ε

′g
PIF

(21)�L
g
IF = �ρg + c ·�δtk + Gw ·�T

g
w +�ε

′g
LIF

Figure 4.  Comparison of three-dimensional positioning errors between SPP and SPP-reconstruct doppler.
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In the equations, � represents the differencing operator between the previous and current epochs. The super-
scripts g and b denote GPS and BDS-3 satellites, respectively. δtb,gsys  represents the system time difference param-
eter between GPS and BDS-3, measured in seconds. In the dual-constellation PPP model combining GPS and 
BDS-3, in this paper, GPS time is used as the reference and BDS-3 time is converted to GPS time. In addition, we 
include the parameter �δt

b,g
sys  in the set of parameters to be determined for estimating the system clock difference 

between GPS and BDS-3. The dual-frequency ionosphere-free combination model consists of five parameters: 
position changes ( �x,�y,�z ), receiver clock bias �δtk , tropospheric zenith wet component �Tw , and system 
time difference parameter �δt

b,g
sys .

In this paper, a conventional random model is used, and the noise ( σ ) in the observation equation is weighted 
according to the elevation angle.

In the Eq. (25), ele is the elevation angle. σ0 is commonly set to 1 m for pseudorange observations and 1 cm 
for phase observations. The random model is as follows:

In the Eq. (26), w signifies the weight matrix of the observations, while R denotes the covariance matrix 
associated with the observations.

Due to the different observation accuracies of GPS and BDS, the corresponding observation weights are also 
different. In this paper the observation weights of GPS and BDS are set to 1:2.

Algorithm validation and performance analysis
The method in this paper is applicable to static mode, in order to verify the effectiveness of the above CZS-PPP 
algorithm for static data processing, experiments will be carried out utilizing a Beidou Xingtong receiver at the 
Intelligent Navigation and Remote Sensing Research Center of Xiangtan University. All receivers employed 
in these experiments will utilize both the GPS and BDS-3 satellite navigation systems for precise positioning.

As depicted in Fig. 5, the algorithmic experiments employed a dual-frequency GNSS receiver (BeiDou Xing-
tong) positioned on the rooftop of the Information Building at Xiangtan University to capture satellite signals. 

(22)PbIF = ρb + c · δtk + Gw · Tb
w + c · δt

b,g
sys + ε

′b
PIF

(23)�LbIF = �ρb + c ·�δtk + Gw ·�Tb
w + c ·�δt

b,g
sys +�ε

′b
LIF

(24)dX =
[

�x,�y,�z,�δtk ,�Tw ,�δt
b,g
sys

]

(25)
{

σ(ele) = σ0 ele > 30
◦

σ(ele) = σ0
2 sin (ele) else

(26)w = R−1 =









1

σ 2
1

. . .
1

σ 2
n









Figure 5.  (a) Beidou Xingtong Receiver and (b) Beidou Xingtong Antenna.
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This setup significantly reduced multipath effects, which could be considered negligible. The Earth Centered, 
Earth Fixed (ECEF) coordinates of its antenna were accurately measured using standard precision instruments, 
achieving an accuracy better than 3 mm. Original observation data spanning days 017–023 of the year 2023, total-
ing 7 days, was acquired. The data was sampled at 1-s intervals, encompassing simultaneous reception of BDS-3 
and GPS satellite data. Raw observation data was collected daily from 9:00 to 10:00, over a one-hour period. The 
convergence criteria in this paper are as follows: achieving convergence thresholds simultaneously in the East 
(E), North (N), and Up (U) directions for PPP, and ensuring stability within the thresholds for 120 consecutive 
epochs (with a sampling interval of 60 min). The convergence threshold is set at 10 cm, and the convergence 
time is measured from the initial epoch to reaching the convergence threshold. The experiment utilized dual-
frequency raw observation data from BDS-3 and GPS satellite systems to validate the superiority of CZS-PPP.

Experiment 1
In conditions where only a single system was considered, distinct experiments were conducted to validate and 
compare the individual BDS-3  system40,41 and the standalone GPS system. Precise satellite coordinates and 
accurate satellite clock biases were sourced from products provided by the International GNSS Service (IGS) 
center. CZS-PPP utilized 5-min precise satellite coordinates and 30-s precise satellite clock bias products from 
the German Research Centre for Geosciences (GFZ). Raw observations in dual frequency, encompassing BDS-3 
B1C,  B2A42,43, and GPS L1C, L2W, were collected over seven consecutive days, from the 17th to the 23rd day of 
the year 2023, as acquired by the receiver.

Figure 6 showcases the positioning results for a single BDS-3 system. In the diagram, (E, N, U) represent a 
specific station coordinate system, known as the East-North-Up (ENU) coordinate system. The ENU coordinate 
system captures the positional changes of the receiver in the East (E), North (N), and Up (U) directions. The 
error curves in the figure depict the absolute differences between the coordinates obtained through CZS-PPP 
calculations and the receiver’s standard coordinates in the ENU coordinate systems. Over time, convergence is 
achieved. At 217 s, the convergence reaches 0.07 m in the E direction, 0.06 m in the N direction, and 0.08 m in 
the U direction. Figure 7 illustrates the number of BDS-3 satellites observed within an hour. During the specified 
time interval, approximately 8 satellites are observed, meeting the minimum requirement of at least 4 satellites 
for positioning.

Figure 6.  Positioning results for a single BDS-3 system.

Figure 7.  BDS-3 satellite observations.
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Figure 8 depicts the positioning results for a single GPS system. Over time, convergence is attained, reaching 
0.03 m in the E direction, 0.08 m in the N direction, and 0.09 m in the U direction at 201 s. Following conver-
gence, the positioning accuracy remains consistently stable. In contrast, Fig. 9 illustrates that the number of GPS 
satellites is approximately equivalent to the number of BDS-3 satellites.

Table 1 presents information on the convergence time and three-dimensional RMS positioning accuracy in 
the ENU coordinates for both the individual BDS-3 satellite system and the standalone GPS satellite system. 
Based on continuous observations spanning 7 days, it is evident that the average convergence time for the single 
BDS-3 system is 220 s, accompanied by an average ENU three-dimensional RMS positioning accuracy of 0.08 m. 
In comparison, the single GPS system demonstrates an average convergence time of 214 s, with an average ENU 
three-dimensional RMS positioning accuracy of 0.076 m. The two satellite systems display comparable average 
convergence times and average positioning accuracy.

Figure 8.  Presents the positioning results for a single GPS system.

Figure 9.  Displays the number of observed GPS satellites.

Table 1.  Comparison between BDS-3 and GPS systems.

Statistic (Annual date)

BDS-3 GPS

Convergence(s)
RMS(m) ENU 3D Convergence(s) RMS(m) ENU 3D

017 213 0.08 201 0.07

018 229 0.09 200 0.10

019 205 0.07 219 0.06

020 233 0.10 213 0.10

021 223 0.10 198 0.05

022 225 0.05 237 0.08

023 217 0.07 221 0.07

Mean 220 0.08 214 0.076
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Experiment 2
In the context of the BDS-3/GPS dual-satellite  system44,45, the positioning results of CZS-PPP are compared with 
those of the widely employed PPP method. The conventional PPP method employs the PPP-IF  model46,47. Both 
methodologies utilize identical observational data and precise ephemeris. A comparative analysis is conducted 
using data continuously collected for 7 days, drawn from the dual-frequency raw data received by the receiver 
over the consecutive 7 days, spanning from day 17 to day 23 in 2023.

In Fig. 10, in the context of a dual-satellite navigation system, a notable increase in the count of visible satel-
lites is depicted, leading to an enhanced satellite spatial geometry.

In Fig. 11, it is evident that the convergence time for PPP-IF is notably extended, requiring approximately 
700 s to converge, and achieving a three-dimensional average positioning accuracy of 0.15 m.

The outcomes illustrated in Fig. 12 clearly demonstrate the superior performance of CZS-PPP over PPP-
IF. CZS-PPP achieves convergence in 152 s and sustains a three-dimensional average positioning accuracy of 
0.06 m. This highlights the superior performance of CZS-PPP in terms of both convergence time and positioning 
accuracy when compared to PPP-IF.

In Fig. 13, this paper presents a statistical comparison of the system residual errors between CZS-PPP and the 
traditional PPP-IF method under the dual-constellation conditions of GPS and BDS-3. The horizontal axis repre-
sents satellite numbers, and the vertical axis represents system residual errors. It can be observed that the system 
residual errors of the proposed method are significantly smaller than those of the traditional PPP-IF method.

Table 2 presents data spanning seven consecutive days. The average convergence time for PPP-IF is 709 s, 
accompanied by an average three-dimensional RMS positioning accuracy of 0.132 m. In contrast, CZS-PPP 
attains an average convergence time of 156 s, with an average three-dimensional RMS positioning accuracy of 
0.068 m. This underscores the superior performance of CZS-PPP.

Conclusions
This study delves into the critical factors impeding the rapid convergence of PPP, such as integer ambiguity and 
residual errors within the system. Notably, it addresses these challenges without relying on external sources like 
ground augmentation networks or enhancements from low Earth orbit satellite navigation systems, resulting in 
a significant reduction in PPP convergence time. The proposed method, termed Carrier Phase Zero-Baseline 
Self-Differencing PPP (CZS-PPP), initially employs principles of satellite precise orbits and Doppler generation 

Figure 10.  Number of BDS-3/GPS dual-system satellite observations.

Figure 11.  PPP-IF positioning results.
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to reconstruct error-free Doppler measurements. It then utilizes Doppler integration equations to smooth pseu-
dorange, minimizing cumulative residual errors and enhancing pseudorange accuracy for precise initial epoch 
coordinates. Subsequently, through self-differencing between consecutive epochs, system residual errors and 
integer ambiguities are further mitigated, leading to a substantial reduction in PPP convergence time. The single-
system case achieves convergence in less than 4 min, while the dual-system case converges in under 3 min. The 
accuracy of these findings is effectively validated using actual measurements from BDS-3, GPS, and BDS-3/
GPS. This research contributes crucial theoretical and technical support for real-world applications of BDS-3/
GNSS real-time PPP.

Figure 12.  Positioning results of CZS-PPP.

Figure 13.  Comparison of system residual errors between CZS-PPP and PPP-IF.

Table 2.  Comparison between CZS-PPP and PPP-IF.

Statistic (Annual date)

PPP-IF CZS-PPP

Convergence(s)
RMS(m) ENU 3D

Convergence(s)
RMS(m) ENU 3D

017 688 0.11 147 0.05

018 732 0.16 168 0.09

019 714 0.10 159 0.05

020 722 0.12 162 0.06

021 700 0.15 152 0.07

022 681 0.12 143 0.06

023 729 0.17 165 0.10

Mean 709 0.132 156 0.068
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Data availability
The data related to or connected with the work are all encompassed in the manuscript and its supporting 
information. The datasets generated and/or analysed during the current study are not publicly available due the 
confidentiality of this project but are available from the corresponding author on reasonable request.
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